Chemical Digestion, Absorption, and Transport

  • Menizibeya Osain WelcomeEmail author


Chemical digestion involves the catalytic processing of food in the gastrointestinal (GI) tract by digestive enzymes, aided by co-secreted substances, required to break down the food substances into simpler molecules for absorption. This process is necessary for transport and subsequent metabolic reactions that access the macroergic bonds in food molecules. The catalytic process of digestion starts from the mouth for lipids and carbohydrates. For proteins, the catalytic process begins from the stomach. The sources of the enzymes and co-secreted factors are the glands lining the GI tract, namely salivary, submucosal, gastric, and intestinal glands. This chapter provides up-to-date information on the course of discovery as well as the discoverers of major digestive enzymes in humans. The functions and mechanisms of action of all major digestive enzymes discovered up to the twenty-first century are discussed herein. This chapter is a useful reference source on the history and discovery of major digestive enzymes and the mechanisms of regulation of their functions. The clinical importance of the enzymes is systematically provided at strategic points of the discussion. This chapter provides cellular and molecular mechanisms on the absorption and transport of nutrients, ions, dietary elements, vitamins, toxic metals, and pharmacological drugs in the gut. Pathological implications of some of the components of GI metabolism are strategically outlined.


Chemical processing of food Chemical digestion Catalysis Carbohydrate Lipid Fatty acids Protein Amino acids Protease Pepsin Trypsin Chymotrypsin Duodenase Enterokinase Carbohydrase Amylase Lipase Lingual lipase Gastric lipase Pancreatic lipase Colipase Alpha-glucosidases Maltase-glucoamylase Sucrase-isomaltase Lactase-phlorizin hydrolase Trehalase Disaccharidases Succus entericus Trypsin inhibitor Trypsin receptor SWEET Glucose chansporter TGA resynthesis Chylomicrons Basolateral exocytosis Lipid absorption Dietary elements’ gut epithelial ion transport Calcium absorption and transport Iron absorption and transport Magnesium absorption and transport Zinc absorption and transport Metal absorption and transport Anion absorption and transport Toxic metal absorption and transport Pharmacological drug Vitamin absorption and transport Water-soluble vitamins Lipid-soluble vitamins Bile acids Enterohepatic recirculation Water absorption and transport Cystic fibrosis Pancreatic hyperenzymemia Gullo’s syndrome Variant pancreatic ducts Pancreatic ductal system Alexander Mixailovich Ugolev Alexander Yakovlevich (Jakulovich) Danilevsky or Alexander Jakulowitsch Danilewsky Anselme Payen Apollinaire Bouchardat Claude Bernard Erhard Friedrich Leuchs Gabriel Gustav Valentin Hans Henriksen Ussing Horace Middleton Vernon Jacques Loeb James Batcheller Sumner Jean-François Persoz Johann Nepomuk Eberle Johannes Bohn John Howard Northrop Julius Wohlgemuth Lucio Gullo Moses Kunitz Nikolas Petrovich Shepovalnikov Robert Robison Roger moss Herriott Rudolf P. H. Heidenhain Sigmund Rosenheim Otto Theodor Schwann Wendell Meredith Stanley Willy Kühne (Wilhelm Friedrich Kühne) Zamolodchikova Tatyana Stepanovna 



5-Hydroxytryptamine type 1B




Beta-site APP-cleaving enzyme-1


Calcium ion




Cluster of differentiation




Central nervous system

COX-1 & -2

Cyclooxygenases-1 and 2


Computer tomography


Copper ion




F-type of adenosine triphosphate enzyme


Hydrochloric acid


Mercury ion






Milliequivalent per liter


Milligram per deciliter






N-benzoyl-l-tyrosyl-p-aminobenzoic acid


Non-steroid anti-inflammatory drug




Short-chain fatty acids








  1. 1.
    Fruton JS (2002) A history of pepsin and related enzymes. Q Rev Biol 77(2):127–147PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sampath-Kumar PS, Fruton JS (1974) Studies on the extended active sites of acid proteinases. Proc Natl Acad Sci U S A 71(4):1070–1072PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Klockars M, Reitamo S (1975) Tissue distribution of lysozyme in man. J Histochem Cytochem 23(12):932–940PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Isenman L, Liebow C, Rothman S (1999) The endocrine secretion of mammalian digestive enzymes by exocrine glands. Am J Physiol 276(2 Pt 1):E223–E232PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hamosh M (1990) Lingual and gastric lipases. Nutrition 6(6):421–428PubMedGoogle Scholar
  7. 7.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman, New YorkGoogle Scholar
  8. 8.
    Rabin BR (1970) The mechanism of enzyme action. J Clin Pathol Suppl (Assoc Clin Pathol) 4:1–7Google Scholar
  9. 9.
    Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Antonov VK, Ginodman LM, Rumsh LD, Kapitannikov YV, Barshevskaya TN, Yavashev LP et al (1981) Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem 117(1):195–200PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ugolev AM, Iezuitova NN, Smirnova LF (1984) Role of digestive enzymes in the permeability of the enterocyte. In: Csáky TZ (ed) Pharmacology of intestinal permeation II, vol 70. Springer, HeidelbergGoogle Scholar
  12. 12.
    Clericuzio A (2012) Chemical and mechanical theories of digestion in early modern medicine. Stud Hist Philos Biol Biomed Sci 43(2):329–337PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Borgstrom B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36(10):1521–1536PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ugolev AM (1965) Membrane (contact) digestion. Physiol Rev 45:555–595PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ugolev AM, Kooshuck RI (1966) Hydrolysis of dipeptides in cells of the small intestine. Nature 212:859–860CrossRefGoogle Scholar
  16. 16.
    Ugolev AM (1980) Trophic ecology, a new interdisciplinary science. Vestnik Acad Sci USSR 1:50–61Google Scholar
  17. 17.
    Ugolev AM (1991) The theory of adequate nutrition and trophic ecology. Nauka, St. PetersburgGoogle Scholar
  18. 18.
    Dahlqvist A, Borgstrom B (1961) Digestion and absorption of disaccharides in man. Biochem J 81(2):411–418PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cajori FA (1933) The enzyme activity of dogs’ intestinal juice and its relation to intestinal digestion. Amer. J. Physiol 104:659–668Google Scholar
  20. 20.
    Miller D, Crane RK (1961) The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate hydrolysis. Biochim Biophys Acta 52:281–293PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Parfenov AI (2010) On the occasion of the 50th anniversary of A. M. Ugolev’s current theory of digestion. Ter Arkh 82(2):5–10PubMedPubMedCentralGoogle Scholar
  22. 22.
    Raymond DA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720CrossRefGoogle Scholar
  23. 23.
    McNaught AD, Wilkinson A; International Union of Pure and Applied Chemistry IUPAC (2014) Compendium of chemical terminology (the gold book). Blackwell Scientific Publications, OxfordGoogle Scholar
  24. 24.
    Chain EB, Mansford KRL, Pocchiari F (1960) The absorption of sucrose, maltose and higher oligosaccharides from the isolated rat small intestine. J Physiol 154:39–51PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hamilton JD, McMichael HB (1968) Role of the microvillus in the absorption of disaccharides. Lancet 2(7560):154–157PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Parsons DS, Prichard JS (1968) Disaccharide absorption by amphibian small intestine in vitro. J Physiol 199(137–150):137PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Runge SW, Hill BJF, Moran WM (2006) A simple classroom teaching technique to help students understand Michaelis-Menten kinetics. CBE Life Sci Educ 5(4):348–352PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50(39):8264–8269PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Abbott GW (2017) Chansporter complexes in cell signaling. FEBS Lett 591(17):2556–2576PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Dahlqvist A, Thomson DL (1963) The digestion and absorption of maltose and trehalose by the intact rat. Acta Physiol Scand 59(1–2):111–125PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Malathi P, Ramaswamy K, Caspary WF, Crane RK (1973) Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system. Biochim Biophys Acta Biomembr 307(3):613–626CrossRefGoogle Scholar
  32. 32.
    Warden DA, Fannin FF, Evans JO, Hanke DW, Diedrich DF (1980) A hydrolase-related transport system is not required to explain the intestinal uptake of glucose liberated from phlorizin. Biochim Biophys Acta 599(2):664–672PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Alvarado F, Lherminier M, Phan H-H (1984) Hamster intestinal disaccharide absorption: extracellular hydrolysis precedes transport of the monosaccharide products. J Physiol 355:493–507PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Meyer H, Vitavska O, Wieczorek H (2011) Identification of an animal sucrose transporter. J Cell Sci 124:1984–1991PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Likely R, Johnson E, Ahearn GA (2015) Functional characterization of a putative disaccharide membrane transporter in crustacean intestine. J Comp Physiol B 185(2):173–183PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Haeuw JF, Michalski JC, Strecker G, Spik G, Montreuil J (1991) Cytosolic glycosidases: do they exist? Glycobiology 1(5):487–492PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    De Gasperi R, Daniel PF, Warren CD (1992) A human lysosomal alpha-mannosidase specific for the core of complex glycans. J Biol Chem 267(14):9706–9712PubMedPubMedCentralGoogle Scholar
  38. 38.
    Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473(1):96–107PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Grard T, Herman V, Saint-Pol A, Kmiecik D, Labiau O, Mir AM et al (1996) Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase. Biochem J 316(3):787–792PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Daniel PF, Winchester B, Warren CD (1994) Mammalian alpha-mannosidases–multiple forms but a common purpose? Glycobiology 4(5):551–566PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Moremen KW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573(3):225–235PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3(2):741–783PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Z, Xu S, Du K, Huang F, Chen Z, Zhou K et al (2016) Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol Biol Evol 33(12):3144–3157PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Uneyama H, San Gabriel A, Kawai M, Tomoe M, Torii K (2008) Physiological role of dietary free glutamate in the food digestion. Asia Pac J Clin Nutr 17(1):372–375PubMedPubMedCentralGoogle Scholar
  45. 45.
    Pereverzev VA, Lobanok LM (2014) Physiology of digestion. In: Kubarko AI (ed) Normal physiology. Visheishaya Shkola, Minsk, BelarusGoogle Scholar
  46. 46.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 1. Belarusian State Medical University Press, MinskGoogle Scholar
  47. 47.
    Roxas M (2008) The role of enzyme supplementation in digestive disorders. Altern Med Rev 13(4):307–314PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G (2016) Digestive enzyme supplementation in gastrointestinal diseases. Curr Drug Metab 17(2):187–193PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Layer P, Keller J (2003) Lipase supplementation therapy: standards, alternatives, and perspectives. Pancreas 26(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mößeler A, Kamphues J (2017) Black-box gastrointestinal tract-needs and prospects of gaining insights of fate of fat, protein, and starch in case of exocrine pancreatic insufficiency by using fistulated pigs. Nutrients 9(2):E150PubMedCentralCrossRefGoogle Scholar
  51. 51.
    Nakajima K, Oshida H, Muneyuki T, Kakei M (2012) Pancrelipase: an evidence-based review of its use for treating pancreatic exocrine insufficiency. Core Evid 7:77–91PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lorkowski G (2012) Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases. Int J Physiol Pathophysiol Pharmacol 4(1):10–27PubMedPubMedCentralGoogle Scholar
  53. 53.
    Iwamuro M, Okada H, Matsueda K, Inaba T, Kusumoto C, Imagawa A, Yamamoto K (2015) Review of the diagnosis and management of gastrointestinal bezoars. World J Gastrointest Endosc 7(4):336–345PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Pavan R, Jain S, Shraddha Kumar A (2012) Properties and therapeutic application of bromelain: a review. Biotechnol Res Int 2012:976203PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R (2016) Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 5(3):283–288PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ushakova NA, Nekrasov RV, Pravdin IV, Sverchkova NV, Kolomiyets EI, Pavlov DS (2015) Mechanisms of the effects of probiotics on symbiotic digestion. Biol Bull Russ Acad Sci 42(5):394–400CrossRefGoogle Scholar
  57. 57.
    Czjzek M (2017) Biochemistry: a wine-induced breakdown. Nature 544:45–46PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cruz-Mora J, Martínez-Hernández NE, del Campo-López FM, Viramontes-Hörner D, Vizmanos-Lamotte B, Muñoz-Valle JF, García-García G, Parra-Rojas I, Castro-Alarcón N (2014) Effects of a symbiotic on gut microbiota in mexican patients with end-stage renal disease. J Ren Nutr 24(5):330–335PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Derrien M, Veiga P (2017) Rethinking diet to aid human-microbe symbiosis. Trends Microbiol 25(2):100–112PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hutter T, Gimbert C, Bouchard F, Lapointe F-J (2015) Being human is a gut feeling. Microbiome 3:9PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pudlo NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC (2015) Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 6(6):e01282–15CrossRefGoogle Scholar
  62. 62.
    Austin GL, Ogden LG, Hill JO (2011) Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. Am J Clin Nutr 93(4):836–843PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Medagama A, Fernando D, Widanapathirana H (2015) Energy and nutrient intakes of Sri Lankan patients with type 2 diabetes mellitus: a cross-sectional survey. BMC Res Notes 8:753PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Reynolds RD, Lickteig JA, Howard MP, Deuster PA (1998) Intakes of high fat and high carbohydrate foods by humans increased with exposure to increasing altitude during an expedition to Mt. Everest. J Nutr 128(1):50–55PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wismann J, Willoughby D (2006) Gender differences in carbohydrate metabolism and carbohydrate loading. J Int Soc Sports Nutr 3:28PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lin AH-M, Lee B-H, Nichols BL, Quezada-Calvillo R, Rose DR, Naim HY, Hamaker BR (2012) Starch source influences dietary glucose generation at the mucosal α-glucosidase level. J Biol Chem 287:36917–36921PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lin AH-M, Lee B-H, Chang W-J (2016) Small intestine mucosal α-glucosidase: a missing feature of in vitro starch digestibility. Food Hydrocoll 53:163–171CrossRefGoogle Scholar
  68. 68.
    Cantare BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefGoogle Scholar
  69. 69.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Velmurugan C, Natarajan R (2015) Research productivity of amylase in microbiology in Indian perspective: a scientometric analysis. In: Manimaran D, Velmurugan C, Elangovan N (eds) Microbial production of amylase in Bacillus Cereus Sp. Lambert Academic Publishing, SaarbrückenGoogle Scholar
  71. 71.
    Wisniak J (2004) Anselme Payen. Educ Quím 16(4):114–126Google Scholar
  72. 72.
    Fieker A, Philpott J, Armand M (2011) Enzyme replacement therapy for pancreatic insufficiency: present and future. Clin Exp Gastroenterol 4:55–73PubMedPubMedCentralGoogle Scholar
  73. 73.
    Mehta D, Satyanarayana T (2016) Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol 7:1129PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gopinath SCB, Anbu P, Md Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV (2017) Biotechnological processes in microbial amylase production. Biomed Res Int 2017:1272193PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wu AC, Ral J-P, Morell MK, Gilbert RG (2014) New perspectives on the role of α- and β-amylases in transient starch synthesis. PLoS ONE 9(6):e100498PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V (2003) On the mechanism of alpha-amylase. Eur J Biochem 270(19):3871–3879PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Todaka D, Matsushima H, Morohashi Y (2000) Water stress enhances beta-amylase activity in cucumber cotyledons. J Exp Bot 51(345):739–745PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Picukans I, Umminger BL (1979) Comparative activities of glycogen phosphorylase and gamma-amylase in livers of carp (Cyprinus carpio) and goldfish (Carassius auratus). Comp Biochem Physiol B 62(4):455–457PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Simon K, Gładysz A, Bakońska-Pacoń E, Sobiech KA, Dzik T (1991) The activity of alpha-amylase and gamma-amylase in serum and pancreatic homogenate of rats with experimental liver damage treated with colchicine. Mater Med Pol 23(2):103–106PubMedPubMedCentralGoogle Scholar
  80. 80.
    Soininen K, Ceska M, Adlercreutz H (1972) Comparison between a new chromogenic α-amylase test (phadebas) and the wohlgemuth amyloclastic method in urine. Scand J Clin Lab Investig 30(3):291–297CrossRefGoogle Scholar
  81. 81.
    Chua KS, Tan IK, Vengadiswaran R, Peiris JT (1979) An assessment of four methods for the assay of amylase activity. Ann Acad Med Singapore 8(2):187–192PubMedPubMedCentralGoogle Scholar
  82. 82.
    Hathaway JA, Hunter DT, Berrett CR (1970) An automated method for the determination of amylase. Clin Biochem 3(3):217–224PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Moriyama T, Ikeda H (1996) Hydrolases acting on glycosidic bonds: chromatographic and electrophoretic separations. J Chromatogr B Biomed Appl 684(1–2):201–216PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lehane DP, Wissert PJ, Lum G, Levy AL (1977) Amylase activity in serum and urine: comparison of results by the amyloclastic, dyed-starch, and nephelometric techniques. Clin Chem 23(6):1061–1065PubMedPubMedCentralGoogle Scholar
  85. 85.
    Fenton J, Foery R, Piatt L, Geschwindt K (1982) A new chromogenic amylase method compared with two established methods. Clin Chem 28(4 Pt 1):704–706PubMedPubMedCentralGoogle Scholar
  86. 86.
    Behringer V, Borchers C, Deschner T, Möstl E, Selzer D, Hohmann G (2013) Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PLoS ONE 8(4):e60773PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Foo AY, Rosalki SB (1986) Measurement of plasma amylase activity. Ann Clin Biochem 23:624–637PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Rohleder N, Nater UM (2009) Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology 34(4):469–485PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Branca P, Rodriguez RM, Rogers JT, Ayo DS, Moyers JP, Light RW (2001) Routine measurement of pleural fluid amylase is not indicated. Arch Intern Med 161(2):228–232PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Mones RL, Yankah A, Duelfer D, Bustami R, Mercer G (2011) Disaccharidase deficiency in pediatric patients with celiac disease and intact villi. Scand J Gastroenterol 46(12):1429–1434PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sandeep GK, Sonny CKF, Joseph FF (1999) Disaccharidase activities in children: normal values and comparison based on symptoms and histologic changes. J Pediatric Gastroenterol Nutr 28(3):246–251CrossRefGoogle Scholar
  92. 92.
    Reid EW (1901) Intestinal absorption of maltose. J Physiol (Lond) 26:427–435CrossRefGoogle Scholar
  93. 93.
    Plimmer RHA (1907) On the presence of lactase in the intestines of animals and on the adaptation of the intestine to lactose. J Physiol (Lond) 35:20–31CrossRefGoogle Scholar
  94. 94.
    Stevens JA, Kidder DE (1972) The distribution of trehalase, sucrase, -amylase, glucoamylase and lactase (-galactosidase) along the small intestine of five pigs. Br J Nutr 28(1):129–137PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Dahlqvist A (1970) Assay of intestinal disaccharidases. Enzymol Biol Clin (Basel) 11(1):52–66CrossRefGoogle Scholar
  96. 96.
    Varljen J, Detel D, Batičić L, Erakovic VH, Štrbo N, Ćuk M, Milin Č (2005) Age dependent activity of brush-border enzymes in BALB/c mice. Croat Chem Acta 78(3):379–384Google Scholar
  97. 97.
    Brown HT, Heron J (1880) Uber die hydrolytischen Wirkungen des Pankreas und des Dunndarmes. Ann Chem Pharmacol 204:228–251CrossRefGoogle Scholar
  98. 98.
    Mosenthal HO (1911) Observations on the succus entericus. J Exp Med 13(3):319–327PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dyck WP, Bonnet D, Lasater J, Stinson C, Hall FF (1974) Hormonal stimulation of intestinal disaccharidase release in the dog. Gastroenterology 66(4):533–538PubMedPubMedCentralGoogle Scholar
  100. 100.
    Cajori FA (1935) The lactase activity of the intestinal mucosa of the dog and some characteristics of intestinal lactase. J Biol Chem 109:159–168Google Scholar
  101. 101.
    Johnson FR, Kugler JH (1953) The distribution of alkaline phosphatase in the mucosal cells of the small intestine of the rat, cat and dog. J Anat (Lond) 87:247–256Google Scholar
  102. 102.
    Nachlas MM, Monis B, Rosenblatt D, Seligman AM (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 7:261–264PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Miller D, Crane RK (1961) The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Acta (Amst) 52:293–298CrossRefGoogle Scholar
  104. 104.
    Wallis JL, Lipski PS, Mathers JC, James OFW, Hirst BH (1993) Duodenal brush-border mucosal glucose transport and enzyme activities in aging man and effect of bacterial contamination of the small intestine. Digest Dis Sci 38(3):403–409PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Gudmand-Høyer E, Skovbjerg H (1996) Disaccharide digestion and maldigestion. Scand J Gastroenterol Suppl 216:111–121PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Jones K, Sim L, Mohan S, Kumarasamy J, Liu H, Avery S et al (2011) Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Bioorg Med Chem 19(13):3929–3934PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Keller J, Layer P (2014) The pathophysiology of malabsorption. Viszeralmedizin 30(3):150–154PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gericke B, Amiri M, Naim HY (2016) The multiple roles of sucrase-isomaltase in the intestinal physiology. Mol Cell Pediatr 3:2PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lee PC, Werlin S, Trost B, Struve M (2004) Glucoamylase activity in infants and children: normal values and relationship to symptoms and histological findings. J Pediatr Gastroenterol Nutr 39(2):161–165PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lebenthal E, Khin-Maung-U Zheng BY, Lu RB, Lerner A (1994) Small intestinal glucoamylase deficiency and starch malabsorption: a newly recognized alpha-glucosidase deficiency in children. J Pediatr 124(4):541–546PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lina BA, Jonker D, Kozianowski G (2002) Isomaltulose (Palatinose): a review of biological and toxicological studies. Food Chem Toxicol 40(10):1375–1381PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Suraphad P, Suklaew PO, Ngamukote S, Adisakwattana S, Mäkynen K (2017) The effect of isomaltulose together with green tea on glycemic response and antioxidant capacity: a single-blind, crossover study in healthy subjects. Nutrients 9(5):E464Google Scholar
  113. 113.
    Takazoe I, Frostell G, Ohta K, Topitsoglou V, Sasaki N (1985) Palatinose—a sucrose substitute. Pilot studies. Swed Dent J 9(2):81–87PubMedPubMedCentralGoogle Scholar
  114. 114.
    Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH et al (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kolho KL, Savilahti E (2000) Ethnic differences in intestinal disaccharidase values in children in Finland. J Pediatr Gastroenterol Nutr 30(3):283–287PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Eloy R, Battinger F, Bignon JY, Ananna A, Grenier JF (1979) Experimental study in rats. Intestinal brush border enzymes and chronic alcohol ingestion. Res Exp Med 175(3):257–269CrossRefGoogle Scholar
  117. 117.
    Neale G (1971) Disaccharidase deficiencies. J Clin Pathol Suppl (R Coll Pathol) 5:22–28CrossRefGoogle Scholar
  118. 118.
    Herber R (1972) Disaccharidase deficiency in health and disease. Calif Med 116(6):23–37PubMedPubMedCentralGoogle Scholar
  119. 119.
    Dahlqvist A (1962) Specificity of the human intestinal disaccharidases and implications for hereditary disaccharide intolerance. J Clin Invest 41(3):463–470PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Semenza G (1976) Small intestinal disaccharidases: their properties and role as sugar translocators across natural and artificial membranes. In: Martonosi AN (ed) The enzymes of biological membranes. Plenum Press, New YorkGoogle Scholar
  121. 121.
    Allen LR, Stephen WA (2006) Low-carbohydrate diets. Am Fam Phys 73(11):1942–1948Google Scholar
  122. 122.
    Food and Nutrition Board. Institute of Medicine (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, WashingtonGoogle Scholar
  123. 123.
    Levin RJ (1994) Digestion and absorption of carbohydrates—from molecules and membranes to humans. Am J Clin Nutr 59(3):690S–698SPubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Shafik A, El Sibai O, Shafik AA, Shafik IA (2006) Demonstration of a physiologic sphincter at duodeno-jejunal junction. Front Biosci 11:2790–2794CrossRefPubMedGoogle Scholar
  125. 125.
    Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393CrossRefPubMedGoogle Scholar
  126. 126.
    Shafik A, Shafik IA, Sibai OE, Shafik AA (2007) Duodeno-jejunal junction dyssynergia: description of a novel syndrome. World J Gastroenterol 13(30):4112–4116PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kellogg EL, Kellogg WA (1921) Chronic duodenal obstruction with duodeno-jejunostomy as a method of treatment. Ann Surg 73(5):578–608PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Virchenko SB, Sayenko VF, Kucherenko TL, Tsedik NN, Elbrønd H, Djurhuus JC, Funch-Jensen P (1993) The duodenojejunal junction and Treitz ligament in the regulation of duodenal emptying. Scand J Gastroenterol 28(9):753–759CrossRefPubMedGoogle Scholar
  129. 129.
    Cheeseman CI (2002) Intestinal hexose absorption: transcellular or paracellular fluxes. J Physiol 544(Pt 2):336PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hewitt JA (1924) The metabolism of carbohydrates. Part III. The absorption of glucose, fructose and galactose from the small intestine. Biochem J 18(1):161–170PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hamilton KL, Butt AG (2013) Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ 37(4):415–426CrossRefPubMedGoogle Scholar
  132. 132.
    Riklis E, Quastel JH (1958) Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol 36:347–362PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Crane RK (1962) Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc 21:891–895PubMedPubMedCentralGoogle Scholar
  134. 134.
    Crane RK (1960) Intestinal absorption of sugars. Physiol Rev 40:789–825PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Wright EM, Loo DDF, Hirayama BA, Turk E (2004) Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology 19(6):370–376PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 9(2):e89977PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Dyer J, Vayro S, King TP, Shirazi-Beechey SP (2003) Glucose sensing in the intestinal epithelium. Eur J Biochem 270(16):3377–3388PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Tyagi NK, Puntheeranurak T, Raja M, Kumar A, Wimmer B, Neundlinger I, et al (2011) A biophysical glance at the outer surface of the membrane transporter SGLT1. Biochim Biophys Acta 1808(1):1–18CrossRefGoogle Scholar
  140. 140.
    Krofchick D, Silverman M (2003) Investigating the conformational states of the rabbit Na+/glucose cotransporter. Biophys J 84(6):3690–3702PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Wilder-Smith CH, Li X, Ho SS, Leong SM, Wong RK, Koay ES, Ferraris RP (2014) Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. United Eur Gastroenterol J 2(1):14–21CrossRefGoogle Scholar
  142. 142.
    Douard V, Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295(2):E227–E237PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Jones HF, Butler RN, Brooks DA (2011) Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 300(2):G202–G206PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Xu Y, Tao Y, Cheung LS, Fan C, Chen L-Q, Xu S et al (2014) Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448–452PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Naftalin RJ (2014) Does apical membrane GLUT2 have a role in intestinal glucose uptake? Version 1. F1000Res 3:304Google Scholar
  146. 146.
    Drozdowski LA, Thomson ABR (2006) Intestinal sugar transport. World J Gastroenterol 12(11):1657–1670PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Sundler F (2004) GI tract, general anatomy (cells). In: Martini L (ed) Encyclopedia of endocrine diseases. Elsevier, MA, USAGoogle Scholar
  148. 148.
    Stümpel F, Burcelin R, Jungermann K, Thorens B (2001) Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. PNAS 98(20):11330–11335PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Hosokawa M, Thorens B (2002) Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. Am J Physiol Endocrinol Metab 282:E794–E801PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Santer R, Hillebrand G, Steinmann B, Schaub J (2003) Intestinal glucose transport: evidence for a membrane traffic–based pathway in humans. Gastroenterology 124:34–39PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Deng D, Yan N (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci 25(3):546–558PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y et al (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527(7577):259–263PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ et al (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Li-Qing C, Bi-Huei H, Sylvie L, Hitomi T, Mara LH, Xiao-Qing Q et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323):527–532CrossRefGoogle Scholar
  155. 155.
    Hitomi T, Wolf BF (2010) Facilitative plasma membrane transporters function during ER transit. FASEB J 24(8):2849–2858CrossRefGoogle Scholar
  156. 156.
    White H, Venkatesh B (2011) Clinical review: ketones and brain injury. Crit Care 15(2):219PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Welcome MO, Razvodovsky YE, Pereverzeva EV, Pereverzev VA (2013) State of cognitive functions of students-medics with different relationship to alcohol use. Belarusian State Medical University Press, Minsk, BelarusGoogle Scholar
  158. 158.
    Kageyama T (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol Life Sci 59(2):288–306PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Roberts NB (2006) Review article: human pepsins—their multiplicity, function and role in reflux disease. Aliment Pharmacol Ther 24(2):2–9PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    McFarlane J, Dunbar VE, Borsook H, Wasteneys H (1927) The stages of the peptic hydrolysis of egg albumin. J Gen Physiol 10(3):437–450PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kousoulis AA, Tsoucalas G, Armenis I, Marineli F, Karamanou M, Androutsos G (2012) From the “hungry acid” to pepsinogen: a journey through time in quest for the stomach’s secretion. Ann Gastroenterol 25(2):119–122PubMedPubMedCentralGoogle Scholar
  162. 162.
    Matlin KS, Caplan MJ (2017) The secretory pathway at 50: a golden anniversary for some momentous grains of silver. Mol Biol Cell 28(2):229–232PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Hajdu SI, Tang P (2008) The saga of carcinoid and oat-cell carcinoma. Ann Clin Lab Sci 38(4):414–417PubMedGoogle Scholar
  164. 164.
    Lee D, Ryle AP (1967) Pepsin D: A minor component of commercial pepsin preparations. Biochem J 104(3):742–748PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lee D, Ryle AP (1967) Pepsinogen D. A fourth proteolytic zymogen from pig gastric mucosa. Biochem J 104(3):735–741PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight-matrix choice. Nucleic Acids Res 22:4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ward PH, Neumann VK, Chiang L (1978) Partial characterization of pepsins and gastricsins and their zymogens from human and toad gastric mucosae. Comp Biochem Physiol Part B Comp Biochem 61(4):491–498CrossRefGoogle Scholar
  168. 168.
    Majewska M, Lipka A, Panasiewicz G, Gowkielewicz M, Jozwik M, Majewski MK, Szafranska B (2017) Identification of novel placentally expressed aspartic proteinase in humans. Int J Mol Sci 18(6):1227PubMedCentralCrossRefGoogle Scholar
  169. 169.
    Shen S, Jiang J, Yuan Y (2017) Pepsinogen C expression, regulation and its relationship with cancer. Cancer Cell Int 17:57PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Florkin M (1957) Discovery of pepsin by Theodor Schwann. Rev Med Liege 12(5):139–144PubMedPubMedCentralGoogle Scholar
  171. 171.
    Northrop JH (1929) Crystalline pepsin. Science 69:580PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Simoni RD, Hill RH, Vaughan M (2002) Urease, the first crystalline enzyme and the proof that enzymes are proteins: the work of James B. Sumner. J Biol Chem 277(35):23ePubMedPubMedCentralGoogle Scholar
  173. 173.
    Hasnain S (2016) Impact and influence of crystallography across the sciences. IUCrJ 3(Pt 6):389–390PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Andersen OS (2005) A brief history of the journal of general physiology. J Gen Physiol 125(1):3–12PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Northrop JH, Kunitz M (1932) Crystalline trypsin. I. Isolation and tests of purity. J Gen Physiol 16:267–294PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Kunitz M, Northrop JH (1934) The isolation of crystalline trypsinogen and its conversion into crystalline trypsin. Science 80:505–506PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Herriott RM, Northrop JH (1936) Isolation of crystalline pepsinogen from swine gastric mucosae and its autocatalytic conversion into pepsin. Science 83:469–470PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Stanley W (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81:644–645PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Eisenstein M (2016) The field that came in from the cold. Nat Methods 13:19–22PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70(Pt 1):2–20PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    McPherson A (2017) Protein crystallization. Methods Mol Biol 1607:17–50PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Coskun O (2016) Separation techniques: chromatography. North Clin Istanb 3(2):156–160PubMedPubMedCentralGoogle Scholar
  183. 183.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  184. 184.
    Ehren J, Govindarajan S, Moron B, Minshull J, Khosla C (2008) Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng Des Sel 21(12):699–707PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Moose RE, Clemente JC, Jackson LR, Ngo M, Wooten K, Chang R et al (2007) Analysis of binding interactions of pepsin inhibitor-3 to mammalian and malarial aspartic proteases. Biochemistry 46(49):14198–14205PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Sampath-Kumar PS, Fruton JS (1974) Studies on the extended active sites of acid proteinases. Proc Natl Acad Sci U S A 71(4):1070–1072PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Kay J, Dykes CW (1977) The first cleavage site in pepsinogen activation. Adv Exp Med Biol 95:103–127PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Khan AR, James MN (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7(4):815–836PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Pizauro JM Jr, Ferro JA, de Lima ACF, Routman KS, Portella MC (2004) The zymogen-enteropeptidase system: a practical approach to study the regulation of enzyme activity by proteolytic cleavage. Biochem Mol Biol Educ 32(1):45–48PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Richter C, Tanaka T, Yada RY (1998) Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochem J 335(3):481–490PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Sanny CG, Hartsuck JA, Tang J (1975) Conversion of pepsinogen to pepsin. Further evidence for intramolecular and pepsin-catalyzed activation. J Biol Chem 250(7):2635–2639PubMedPubMedCentralGoogle Scholar
  192. 192.
    Taggart RT, Mohandas TK, Shows TB, Bell GI (1985) Variable numbers of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high-frequency electrophoretic polymorphism. PNAS 82(18):6240–6244PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Marciniszyn J Jr, Huang JS, Hartsuck JA, Tang J (1976) Mechanism of intramolecular activation of pepsinogen. Evidence for an intermediate delta and the involvement of the active site of pepsin in the intramolecular activation of pepsinogen. J Biol Chem 251(22):7095–7102PubMedPubMedCentralGoogle Scholar
  194. 194.
    Kageyama T (1998) Molecular cloning, expression and characterization of an Ascaris inhibitor for pepsin and cathepsin E. Eur J Biochem 253(3):804–809PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Zalatoris J, Rao-Naik C, Fecho G, Girdwood K, Kay J, Dunn BM (1998) Expression, purification, and characterization of the recombinant pepsin inhibitor from Ascaris suum. Adv Exp Med Biol 436:387–389PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Parikh S, Gut J, Istvan E, Goldberg DE, Havlir DV, Rosenthal PJ (2005) Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother 49(7):2983–2985PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Yang H, Nkeze J, Zhao RY (2012) Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2:32PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Parikh S, Liu J, Sijwali P, Gut J, Goldberg DE, Rosenthal PJ (2006) Antimalarial effects of human immunodeficiency virus type 1 protease inhibitors differ from those of the aspartic protease inhibitor pepstatin. Antimicrob Agents Chemother 50(6):2207–2209PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Boss C, Richard-Bildstein S, Weller T, Fischli W, Meyer S, Binkert C (2003) Inhibitors of the Plasmodium falciparum parasite aspartic protease plasmepsin II as potential antimalarial agents. Curr Med Chem 10(11):883–907PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    dos Santos AL (2010) HIV aspartyl protease inhibitors as promising compounds against Candida albicans André Luis Souza dos Santos. World J Biol Chem 1(2):21–30PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Venugopal C, Demos CM, Rao KS, Pappolla MA, Sambamurti K (2008) Beta-secretase: structure, function, and evolution. CNS Neurol Disord: Drug Targets 7(3):278–294CrossRefGoogle Scholar
  202. 202.
    Wolfe MS (2010) Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases. Biol Chem 391(8):839–847PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Epis R, Marcello E, Gardoni F, Di Luca M (2012) Alpha, beta-and gamma-secretases in Alzheimer’s disease. Front Biosci (Schol Ed) 4:1126–1150Google Scholar
  204. 204.
    Kametani F (2008) Epsilon-secretase: reduction of amyloid precursor protein epsilon-site cleavage in Alzheimer’s disease. Curr Alzheimer Res 5(2):165–171PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Vassar R (2007) Beta-secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 54(12):1589–1602CrossRefGoogle Scholar
  206. 206.
    Tomita T (2009) Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 9(5):661–679PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Evin G, Sernee MF, Masters CL (2006) Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer’s disease: prospects, limitations and strategies. CNS Drugs 20(5):351–372PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Schlenk F (1985) Early research on fermentation—a story of missed opportunities. Trends in Biochem Sci 10(6):252–254CrossRefGoogle Scholar
  209. 209.
    Kukar T, Golde TE (2008) Possible mechanisms of action of NSAIDs and related compounds that modulate γ-secretase cleavage. Curr Top Med Chem 8(1):47–53PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Teich N, Le Maréchal C, Kukor Z, Caca K, Witzigmann H, Chen JM et al (2004) Interaction between trypsinogen isoforms in genetically determined pancreatitis: mutation E79K in cationic trypsin (PRSS1) causes increased transactivation of anionic trypsinogen (PRSS2). Hum Mutat 23(1):22–31PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Hegyi E, Sahin-Tóth M (2017) Genetic risk in chronic pancreatitis: the trypsin-dependent pathway. Dig Dis Sci 62(7):1692–1701PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Zator Z, Whitcomb DC (2017) Insights into the genetic risk factors for the development of pancreatic disease. Therap Adv Gastroenterol 10(3):323–336PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Kühne (1877) Über das Verhalten verschiedener organisirter und sog. Ungeformter Fermente, Verhandlungen des Heidelb. Naturhist Med Vereins, Neue Folge (On the behavior of various organized and so-called unformed ferments, Negotiations of the Heidelb. Naturhist Med Assoc, New Series) 1(3):190–193Google Scholar
  214. 214.
    Lanska DJ (2014) Kühne, Wilhelm (Willy) Friedrich. In: MJ Aminoff, RB Daroff (eds) Encyclopedia of the neurological sciences, 2nd ed. Elsevier, MA, USACrossRefGoogle Scholar
  215. 215.
    Howard JM, Hess W (2002) History of the pancreas: mysteries of a hidden organ. Springer, New YorkCrossRefGoogle Scholar
  216. 216.
    Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(1):205–218PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Maike G (2006) Sculpted through time: evolution and function of serine proteases from the mast cell chymase locus. Uppsala University, UppsalaGoogle Scholar
  218. 218.
    Murthy SN, Kostman J, Dinoso VP Jr (1980) Effect of pH, substrate, and temperature on tryptic activity of duodenal samples. Dig Dis Sci 25(4):289–294PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Cheison CS, Brand J, Leeb E, Kulozik U (2011) Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MS. J Agric Food Chem 59(5):1572–1581CrossRefGoogle Scholar
  220. 220.
    Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41(9):832–836PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Hoffmeister A, Dietz G, Zeitschel U, Mössner J, Rossner S, Stahl T (2009) BACE1 is a newly discovered protein secreted by the pancreas which cleaves enteropeptidase in vitro. JOP 10(5):501–506PubMedPubMedCentralGoogle Scholar
  222. 222.
    Kazal LA, Spicer DS, Brahinsky RA (1948) Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc 70:3034–3040PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Wang G-P, Xu C-S (2010) Pancreatic secretory trypsin inhibitor: more than a trypsin inhibitor. World J Gastrointest Pathophysiol 1(2):85–90PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Herzig KH, Schon I, Tatemoto K, Ohe Y, Li Y, Folsch UR, Owyang C (1996) Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine. Proc Nat Acad Sci 93:7927–7932PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Li Y, Hao Y, Owyang C (2000) Diazepam-binding inhibitor mediates feedback regulation of pancreatic secretion and postprandial release of cholecystokinin. J Clin Invest 105(3):351–359PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci 49(5):325–344PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Anholt RRH, Pederson PL, Desouza EB, Snyder SH (1986) The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J Biol Chem 261:576–583PubMedPubMedCentralGoogle Scholar
  228. 228.
    Gersuk VH, Rose TM, Todaro GJ (1995) Molecular cloning and chromosomal localization of a pseudogene related to the human acyl-CoA binding protein/diazepam binding inhibitor. Genomics 25:469–476PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Li Y, Hao Y, Owyang C (2000) Diazepam-binding inhibitor mediates feedback regulation of pancreatic secretion and postprandial release of cholecystokinin. J Clin Invest 105:351–359PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Rose TM, Schultz ER, Todaro GJ (1992) Molecular cloning of the gene for the yeast homolog (ACB) of diazepam binding inhibitor/endozepine/acyl-CoA-binding protein. Proc Nat Acad Sci 89:11287–11291PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Gray PW, Glaister D, Seeburg PH, Guidotti A, Costa E (1986) Cloning and expression of cDNA for human diazepam binding inhibitor, a natural ligand of an allosteric regulatory site of the gamma-aminobutyric acid type A receptor. Proc Nat Acad Sci 83:7547–7551PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Haefely W (1984) Benzodiazepine interactions with GABA receptors. Neurosci Lett 47(3):201–206PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Shibata T, Ogawa M, Takata N, Matsuda K, Niinobu T, Uda K et al (1987) Distribution of pancreatic secretory trypsin inhibitor in various human tissues and its inactivation in the gastric mucosa. Res Commun Chem Pathol Pharmacol 55(2):243–248PubMedPubMedCentralGoogle Scholar
  234. 234.
    Fushiki T, Fukuoka S, Iwai K (1984) Stimulatory effect of an endogenous peptide in rat pancreatic juice on pancreatic enzyme secretion in the presence of atropine. Biochem Biophys Res Commun 118:532–537PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Iwai K, Fukuoka S, Fushiki T, Tsujikawa M, Hirose M, Tsunasawa S, Sakiyama F (1987) Purification and sequencing of a trypsin-sensitive cholecystokinin-releasing peptide from rat pancreatic juice. Its homology with pancreatic secretory trypsin inhibitor. J Biol Chem 262:8956–8959PubMedPubMedCentralGoogle Scholar
  236. 236.
    Kyoko M, Rieko N, Akihiro F, Kenichi K (1989) Stimulatory effect of monitor peptide and human pancreatic secretory trypsin inhibitor on pancreatic secretion and cholecystokinin release in conscious rats. Pancreas 4(2):139–144CrossRefGoogle Scholar
  237. 237.
    Miyasaka K, Funakoshi A, Nakamura R, Kitani K, Uda K, Murata A, Ogawa M (1989) Differences in stimulatory effects between rat pancreatic secretory trypsin inhibitor-61 and -56 on rat pancreas. Japan J Physiol 39(6):891–899CrossRefGoogle Scholar
  238. 238.
    Graf R, Klauser S, Fukuoka SI, Schiesser M, Bimmler D (2003) The bifunctional rat pancreatic secretory trypsin inhibitor/monitor peptide provides protection against premature activation of pancreatic juice. Pancreatology 3(3):195–206PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41(9):832–836PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Hoffmeister A, Dietz G, Zeitschel U, Mössner J, Rossner S, Stahl T (2009) BACE1 is a newly discovered protein secreted by the pancreas which cleaves enteropeptidase in vitro. JOP 10(5):501–506PubMedPubMedCentralGoogle Scholar
  241. 241.
    Uda K-I, Murata A, Nishijima J-I, Doi S, Tomita N, Ogawa M, Mori T (1994) Elevation of circulating monitor peptide/pancreatic secretory trypsin inhibitor-I (PSTI-61) after turpentine-induced inflammation in rats: hepatocytes produce it as an acute phase reactant. J Surg Res 57(5):563–568PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Miyasaka K, Funakoshi A (1998) Luminal feedback regulation, monitor peptide, CCK-releasing peptide, and CCK receptors. Pancreas 16(3):277–283PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Herzig K-H (1998) Cholecystokinin- and secretin-releasing peptides in the intestine—a new regulatory interendocrine mechanism in the gastrointestinal tract. Regul Pept 73(2):89–94PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Song Y, Li P, Lee KY, Chang T, Chey WY (1999) Canine pancreatic juice stimulates the release of secretin and pancreatic secretion in the dog. Am J Physiol 277(3 Pt 1):G731–G735PubMedPubMedCentralGoogle Scholar
  245. 245.
    Li P, Lee KY, Chang T-M, Chey WY (1990) Mechanism of acid-induced release of secretin in ratspresence of a secretin-releasing peptide. J Clin Invest 86:1474–1479PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Chey WY, Chang TM (2003) Neural control of the release and action of secretin. J Physiol Pharmacol 54(4):105–112PubMedPubMedCentralGoogle Scholar
  247. 247.
    Mellanby J, Woolley VJ (1912) The ferments of the pancreas: Part I. The generation of trypsin from trypsinogen by enterokinase. J Physiol 45(5):370–388PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Mellanby J, Woolley VJ (1913) The ferments of the pancreas. Part II. The action of calcium salts in the generation of trypsin from trypsinogen. J Physiol 46(2):159–172PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Zamolodchikova TS, Sokolova EA, Aleksandrov SL, Mirgorodskaia OA, Morozov IA, Vorotyntseva TI (1998) Duodenase—a potential activator of cascade of digestive proteases. Bioorg Khim 24(4):300–305PubMedPubMedCentralGoogle Scholar
  250. 250.
    Pletnev VZ, Zamolodchikova TS, Pangborn WA, Duax WL (2000) Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities. Proteins 41(1):8–16PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Gaspariana ME, Bobika TV, Kima YV, Ponomarenkoa NA, Dolgikha DA, Gabibova AG, Kirpichnikova MP (2013) Heterogeneous catalysis on the phage surface: display of active human enteropeptidase. Biochimie 95(11):2076–2081CrossRefGoogle Scholar
  252. 252.
    Shlygin GK (1956) The importance of determining enterokinase and alkaline phosphatase for the assessment of the state of human intestines. Clin Chim Acta 1(5):421–433PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Shabalova NP (ed) (2011) Pediatric gastroenterology: a guide for physicians. MEDPress-Inform, Moscow, RussiaGoogle Scholar
  254. 254.
    Kunitz M (1939) Formation of trypsin from crystalline trypsinogen by means of enterokinase. J Gen Physiol 22(4):429–446PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Light A, Janska H (1989) Enterokinase (enteropeptidase): comparative aspects. Trends Biochem Sci 14(3):110–112PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Hooper JD, Clements JA, Quiqley JP, Antalis TM (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276(2):857–860PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Lu D, Yuan X, Zheng X, Sadler JE (1997) Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. J Biol Chem 272:31293–31300PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    McDonald MR, Kunitz M (1941) The effect of calcium and other ions on the autocatalytic formation of trypsin from trypsinogen. J Gen Physiol 25(1):53–73PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Sarkany RP, Moreland BH (1985) Enhancement of the autocatalytic activation of trypsinogen to trypsin by bile and bile acids. Biochim Biophys Acta 839(3):262–267PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC et al (2002) Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70(1):20–25PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Hadorn B, Tarlow MJ, Lloyd JK, Wolff OH (1969) Intestinal enterokinase deficiency. Lancet 1(7599):812–813PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC et al (2002) Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70(1):20–25PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Ferrone M, Raimondo M, Scolapio JS (2007) Pancreatic enzyme pharmacotherapy. Pharmacotherapy 27(6):910–920PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Kuhn RJ, Gelrud A, Munck A, Caras S (2010) 0 CREON (pancrelipase delayed-release capsules) for the treatment of exocrine pancreatic insufficiency. Adv Ther 27(12):895–916PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Fieker A, Philpott J, Armand M (2011) Enzyme replacement therapy for pancreatic insufficiency: present and future. Clin Exp Gastroenterol 4:55–73PubMedPubMedCentralGoogle Scholar
  266. 266.
    David WC, Amit B, Katrin B, Suntje S-S, Shufang L, Mahesh F et al (2016) Efficacy and safety of pancrelipase/pancreatin in patients with exocrine pancreatic insufficiency and a medical history of diabetes mellitus. Pancreas 45(5):679–686CrossRefGoogle Scholar
  267. 267.
    Antonov VK, Vorotyntseva TI, Zamolodchikova TS (1992) Duodenase—a new serine proteinase with unusual specificity. Dokl Akad Nauk 324(6):1318–1322PubMedPubMedCentralGoogle Scholar
  268. 268.
    Zamolodchikova TS, Sokolova EA, Lu D, Sadler JE (2000) Activation of recombinant proenteropeptidase by duodenase. FEBS Lett 466(2–3):295–299PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Sanderink GJ, Artur Y, Siest G (1989) Human aminopeptidases: a review of the literature. J Clin Chem Clin Biochem 26(12):795–807Google Scholar
  270. 270.
    Mucha A, Drag M, Dalton JP, Kafarski P (2010) Metallo-aminopeptidase inhibitors. Biochimie 92(11):1509–1529PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Linderstrøm-Lang K (1929) Über Darmerepsin. Hoppe Seylers Z Physiol Chem 182:151–174CrossRefGoogle Scholar
  272. 272.
    Bradshaw RA (2013) Aminopeptidases. In: Lennarz W, Lane M (eds) Encyclopedia of biological chemistry, 2nd edn. Elsevier, MA, USAGoogle Scholar
  273. 273.
    Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F (2008) BMC Cancer 8:74PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Grdiša M, Vitale L (1991) Types and localization of aminopeptidases in different human blood cells. Int J Biochem 23(3):339–345PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Sidorowicz W, Jackson GC, Behal FJ (1980) Multiple molecular forms of human pancreas alanine aminopeptidase. Clin Chim Acta 104(2):169–179PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Maroux S, Louvard D, Barath J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta Enzymol 321(1):282–295CrossRefGoogle Scholar
  277. 277.
    Magee AI, Grant DA, Hermon-Taylor J (1977) The apparent molecular weights of human intestinal aminopeptidase, enterokinase and maltase in native duodenal fluid. Biochem J 165(3):583–585PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Allen T (1993) Aminopeptidases: structure and function. FASEB J 7(2):290–298CrossRefGoogle Scholar
  279. 279.
    Wickström M, Larsson R, Nygren P, Gullbo J (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102(3):501–508PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Gu Y-Q, Chao WS, Walling LL (1996) Localization and post-translational processing of the wound-induced leucine aminopeptidase proteins of tomato. J Biological Chem 271:25880–25887CrossRefGoogle Scholar
  281. 281.
    Thielitz A, Reinhold D, Vetter R, Bank U, Helmuth M, Hartig R et al (2007) Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation. J Invest Dermatol 127(5):1042–1051PubMedCrossRefGoogle Scholar
  282. 282.
    Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26(1):88–130PubMedCrossRefGoogle Scholar
  283. 283.
    Sapio MR, Fricker LD (2014) Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin Appl 8:327–337PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Lyons PJ, Fricker LD (2011) Carboxypeptidase O is a glycosylphosphatidylinositol-anchored intestinal peptidase with acidic amino acid specificity. J Biol Chem 286(45):39023–39032PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Yoshioka M, Erickson RH, Kim YS (1988) Digestion and assimilation of proline-containing peptides by rat intestinal brush border membrane carboxypeptidases. Role of the combined action of angiotensin-converting enzyme and carboxypeptidase P. J Clin Invest 81(4):1090–1095PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Berger J, Schneeman BO (1988) Intestinal zinc and carboxypeptidase A and B activity in response to consumption of test meals containing various proteins by rats. J Nutr 118(6):723–728PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Wilcox PE (1970) Chymotrypsinogens – chymotrypsins. Methods Enzymol 19:64–108CrossRefGoogle Scholar
  288. 288.
    Appel W (1986) Chymotrypsin: molecular and catalytic properties. Clin Biochem 19(6):317–322PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Gráf L, Szilágyi L, Venekei I (2013) Chymotrypsin. In: Neil RD, Salvesen G (eds) Handbook of proteolytic enzymes. Elsevier, San Diego, CA, USAGoogle Scholar
  290. 290.
    Fleming TC, Riddel GH (1961) Studies of the antigenic properties of alpha chymotrypsin. Am J Ophthalmol 51(5):1104/232–1107/235CrossRefGoogle Scholar
  291. 291.
    Vernon HM (1914) The activation of trypsinogen. Biochem J 8(5):494–529PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Vernon HM (1901) The conditions of action of pancreatic rennin and diastase. J Physiol 27(3):174–199PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Bedford T (1951) H. M. Vernon, M.A., M.D. Br J Ind Med 8(2):96–97Google Scholar
  294. 294.
    Vernon HM (1913) The auto-catalysis of trypsinogen. J Physiol 47(4–5):325–338PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Kunitz M, Northrop JH (1934) The isolation of crystalline trypsinogen and its conversion into crystalline trypsin. Science 80(2083):505–506PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Kunitz M, Northrop JH (1934) Autocatalytic activation of trypsinogen in the presence of concentrated ammonium or magnesium sulfate. Science 80(2069):190PubMedCrossRefPubMedCentralGoogle Scholar
  297. 297.
    Yoosuke T, Shinichi F, Tomoaki M, Kenichi M (1986) Structure of human cholecystokinin gene and its chromosomal location. Gene 50(1–3):353–360CrossRefGoogle Scholar
  298. 298.
    Manchester KL (2004) The crystallization of enzymes and virus proteins: laying to rest the colloidal concept of living systems. Endeavour 28(1):25–29PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Kunitz M (1948) Crystallization of salt-free chymotrypsinogen and chymotrypsin from solution in dilute ethyl alcohol. J Gen Physiol 32:265–269PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Kunitz M (1938) Formation of new crystalline enzymes from chymotrypsin, isolation of beta and gamma chymotrypsin. J Gen Physiol 32:207–237CrossRefGoogle Scholar
  301. 301.
    Kunitz M, Northrop J (1935) Crystalline chymotrypsin and chymotrypsinogen. Isolation, crystallization and general properties of a new proteolytic enzyme and its precursor. J Gen Physiol 18:433–458PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Northrop J, Kunitz M, Herriott R (1948) Crystalline enzymes, 2nd edn. Columbia Univ Press, NY, USAGoogle Scholar
  303. 303.
    Herriott RM (1989) Moses Kunitz: December 19, 1887–April 20, 1978. Biogr Mem Natl Acad Sci 58:305–317PubMedPubMedCentralGoogle Scholar
  304. 304.
    Koertge N (ed) (2007) New dictionary of scientific biography, 1st edn. Charles Scribners & Sons, DetroitGoogle Scholar
  305. 305.
    Fruton GW, Bergmann M (1942) The multiple specificity of chymotrypsin. J Biol Chem 145:253–265Google Scholar
  306. 306.
    Jacobsen CF (1947) The activation of chymotrypsin. Compt Rend Tray Lab Carlsberg Ser Chim 25:325–337Google Scholar
  307. 307.
    Kato M, Hayakawa S, Naruse S, Kitagawa M, Ishiguro H, Nakae Y, Hayakawa T (1997) Change of pancreatic enzymes, pancreatic stone protein (PSP), and plasma alpha(2)-macroglobulin-trypsin complex-like substance (MTLS) in the activation of pancreatic juice. Pancreas 15(4):345–349PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Vendrell J, Guasch A, Coll M, Villegas V, Billeter M, Wider G et al (1992) Pancreatic procarboxypeptidases: their activation processes related to the structural features of the zymogens and activation segments. Biol Chem Hoppe Seyler 373(7):387–392PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Ventura S, Gomis-Rüth FX, Puigserver A, Avilés FX, Vendrell J (1997) Pancreatic procarboxypeptidases: oligomeric structures and activation processes revisited. Biol Chem 378(3–4):161–165PubMedPubMedCentralGoogle Scholar
  310. 310.
    Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S et al (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem 283(48):33357–33364PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Andersson E-L, Hernell O, Bläckberg L, Fält H, Lindquist S (2011) BSSL and PLRP2: key enzymes for lipid digestion in the newborn examined using the Caco-2 cell line. J Lipid Res 52(11):1949–1956PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Omar A, Krebs A (1975) An analysis of pancreatic enzymes used in epidermal separation. Arch Dermatol Res 253(2):203–212PubMedCrossRefPubMedCentralGoogle Scholar
  313. 313.
    Donà F, Houseley J (2014) Unexpected DNA loss mediated by the DNA Binding activity of ribonuclease A. PLoS ONE 9(12):e115008PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Busnardo AC, DiDio LJA, Tidrick RT, Thomford NR (1983) History of the pancreas. Am J Surg 146(5):539–550PubMedCrossRefPubMedCentralGoogle Scholar
  315. 315.
    Beger HG, Buchler M, Kozarek R, Lerch M, Neoptolemos JP, Warshaw A et al (eds) (2008) The pancreas: an integrated textbook of basic science, medicine, and surgery. Wiley-Blackwell, Oxford, UKGoogle Scholar
  316. 316.
    Navarro S (2014) A brief history of the anatomy and physiology of a mysterious and hidden gland called the pancreas. Gastroenterol Hepatol 37:527–534PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Trevisani F (1983) Ratio and experimentum: Johannes Bohn (1640–1718) and Italian experimental physiology. Clio Med 17(4):199–206PubMedPubMedCentralGoogle Scholar
  318. 318.
    Karamanou M, Koutsilieris M, Laios K, Marineli F, Androutsos G (2014) Apollinaire Bouchardat (1806–1886): founder of modern Diabetology. Hormones 13(2):296–300PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Chast F (2000) Apollinaire Bouchardat, pharmacist, nutritionist. Ann Pharm Fr 58(6):435–442PubMedPubMedCentralGoogle Scholar
  320. 320.
    Chiray M, Salmon AR, Mercier A (1926) Action of purified secretin on external secretion of pancreas in man. Bull Soc Med Hop Paris 50:1417Google Scholar
  321. 321.
    Goldstein F, Wirts CW, Cozzolino HJ, Menduke H (1964) Secretin tests of pancreatic and biliary tract disease. Arch Intern Med 114(1):124–131PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Burton P, Evans DG, Harper AA, Howath T, Oleesky S, Scott JE, Varley H (1960) A test of pancreatic function in man based on the analysis of duodenal contents after administration of secretin and pancreozymin. Gut 1:111–124PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Sun DC, Shay H (1960) Pancreozymin-secretin test. The combined study of serum enzymes and duodenal contents in the diagnosis of pancreatic disease. Gastroenterology 38:570–581PubMedPubMedCentralGoogle Scholar
  324. 324.
    McGillivray DC, Stordy SN, Bogoch A (1966) The pancreozymin-secretin test after partial gastrectomy. Can Med Assoc J 94(24):1261–1263PubMedPubMedCentralGoogle Scholar
  325. 325.
    Jorpes EJ, Mutt V (1973) Secretin and cholecystokinin (CCK). In: Jorpes EJ, Mutt V (eds) Secretin, cholecystokinin, pancreozymin and gastrin. Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  326. 326.
    Wong LT, Turtle S, Davidson AG (1982) Secretin pancreozymin stimulation test and confirmation of the diagnosis of cystic fibrosis. Gut 23(9):744–750PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Mee AS, Girdwood AH, Walker E, Gilinsky NH, Kottler RE, Marks IN (1985) Comparison of the oral (PABA) pancreatic function test, the secretin-pancreozymin test and endoscopic retrograde pancreatography in chronic alcohol induced pancreatitis. Gut 26(11):1257–1262PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Raimondo M, Imoto M, DiMagno EP (2003) Rapid endoscopic secretin stimulation test and discrimination of chronic pancreatitis and pancreatic cancer from disease controls. Clin Gastroenterol Hepatol 1(5):397–403PubMedCrossRefPubMedCentralGoogle Scholar
  329. 329.
    John G, Lieb II, Draganov Peter V (2008) Pancreatic function testing: here to stay for the 21st century. World J Gastroenterol 14(20):3149–3158CrossRefGoogle Scholar
  330. 330.
    Chowdhury RS, Forsmark CE (2003) Pancreatic function testing. Aliment Pharmacol Ther 17:733–750PubMedCrossRefPubMedCentralGoogle Scholar
  331. 331.
    Malfertheiner P, Büchler M (1989) Correlation of imaging and function in chronic pancreatitis. Radiol Clin North Am 27(1):51–64PubMedPubMedCentralGoogle Scholar
  332. 332.
    Alkaade S, Cem Balci N, Momtahen AJ, Burton F (2008) Normal pancreatic exocrine function does not exclude MRI/MRCP chronic pancreatitis findings. J Clin Gastroenterol 42(8):950–955PubMedCrossRefPubMedCentralGoogle Scholar
  333. 333.
    Moeller DD, Dunn GD, Klotz AP (1972) Comparison of the pancreozymin-secretin test and the Lundh test meal. Am J Digest Dis 17(9):799–805PubMedCrossRefPubMedCentralGoogle Scholar
  334. 334.
    Burton P, Harper AA, Howat HT, Scott JE, Varley H (1960) The use of cholecystokinin to test gall bladder function in man. Gut 1:193–204PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Lundh G (1962) Pancreatic exocrine function in neoplastic and inflammatory disease; a simple and reliable new test. Gastroenterology 42:275–280PubMedPubMedCentralGoogle Scholar
  336. 336.
    Czakó L, Hajnal F, Németh J, Lonovics J (2000) Assessment of pancreatic enzyme secretory capacity by a modified Lundh test. Int J Pancreatol 27(1):13–19PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Augarten A, Dubenbaum L, Yahav Y, Katznelson D, Szeinberg A, Blank A, Sack J (1999) Lundh meal: a single non-invasive challenge test for evaluation of exocrine and endocrine pancreatic function in cystic fibrosis patients. Int J Clin Lab Res 29(3):114–116PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    James O (1973) Progress report: the Lundh test. Gut 14:582–591Google Scholar
  339. 339.
    Wong LT, Turtle S, Davidson AG (1982) Secretin pancreozymin stimulation test and confirmation of the diagnosis of cystic fibrosis. Gut 23(9):744–750PubMedPubMedCentralCrossRefGoogle Scholar
  340. 340.
    Augarten A, Berman H, Aviram M, Diver-Habber A, Akons H, Ben Tur L et al (2003) Serum CA 19-9 levels as a diagnostic marker in cystic fibrosis patients with borderline sweat tests. Clin Exp Med 3(2):119–123PubMedCrossRefPubMedCentralGoogle Scholar
  341. 341.
    Fong ZV, Winter JM (2012) Biomarkers in pancreatic cancer: diagnostic, prognostic, and predictive. Cancer J 18(6):530–538PubMedCrossRefPubMedCentralGoogle Scholar
  342. 342.
    Gullo L, Lucrezio L, Calculli L, Salizzoni E, Coe M, Migliori M et al (2009) Magnetic resonance cholangiopancreatography in asymptomatic pancreatic hyperenzymemia. Pancreas 38(4):396–400PubMedCrossRefPubMedCentralGoogle Scholar
  343. 343.
    Paola T, Raffaele P, Marina M, De Roberto G (2010) A tribute to Lucio Gullo, MD (1938–2009). Pancreas 39(4):423–424CrossRefGoogle Scholar
  344. 344.
    Galassi E, Birtolo C, Migliori M, Bastagli L, Gabusi V, Stanghellini V, De Giorgio R (2014) A 5-year experience of benign pancreatic hyperenzymemia. Pancreas 43(6):874–878PubMedCrossRefPubMedCentralGoogle Scholar
  345. 345.
    Gullo L (2000) Familial pancreatic hyperenzymemia. Pancreas 20(2):158–160PubMedCrossRefPubMedCentralGoogle Scholar
  346. 346.
    Mariani A (2010) Chronic asymptomatic pancreatic hyperenzymemia: is it a benign anomaly or a disease? JOP. J Pancreas 11(2):95–98Google Scholar
  347. 347.
    Gullo L, Lucrezio L, Migliori M, Bassi M, Nesticò V, Costa PL (2008) Benign pancreatic hyperenzymemia or Gullo’s syndrome. Adv Med Sci 53(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  348. 348.
    Gullo L, Migliori M (2007) Benign pancreatic hyperenzymemia in children. Eur J Pediatr 166:125–129PubMedCrossRefPubMedCentralGoogle Scholar
  349. 349.
    Gullo L (2007) Day-to-day variations of serum pancreatic enzymes in benign pancreatic hyperenzymemia. Clin Gastroenterol Hepathol 5(1):70–74CrossRefGoogle Scholar
  350. 350.
    Türkvatan A, Erden A, Türkoğlu MA, Yener Ö (2013) Congenital variants and anomalies of the pancreas and pancreatic duct: imaging by magnetic resonance cholangiopancreaticography and multidetector computed tomography. Korean J Radiol 14(6):905–913PubMedPubMedCentralCrossRefGoogle Scholar
  351. 351.
    Alexander LF (2012) Congenital pancreatic anomalies, variants, and conditions. Radiol Clin North Am 50(3):487–498PubMedCrossRefPubMedCentralGoogle Scholar
  352. 352.
    Borghei P, Sokhandon F, Shirkhoda A, Morgan DE (2013) Anomalies, anatomic variants, and sources of diagnostic pitfalls in pancreatic imaging. Radiology 266(1):28–36PubMedCrossRefPubMedCentralGoogle Scholar
  353. 353.
    Dinter D, Löhr JM, Neff KW (2007) Bifid tail of the pancreas: benign bifurcation anomaly. AJR Am J Roentgenol 189(5):W251–W253PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    Kanne JP, Rohrmann CA, Lichtenstein JE (2006) Eponyms in radiology of the digestive tract: historical perspectives and imaging appearances. Part 2. Liver, biliary system, pancreas, peritoneum, and systemic disease. Radiographics 26(2):465–480PubMedCrossRefPubMedCentralGoogle Scholar
  355. 355.
    Avisse C, Flament J-B, Delattre J-F (2000) Ampulla of Vater: anatomic, embryologic, and surgical aspects. Surg Clin North Am 80(1):201–212PubMedCrossRefPubMedCentralGoogle Scholar
  356. 356.
    Kamisawa T, Koike M, Okamoto A (1999) Embryology of the pancreatic duct system. Digestion 60(2):161–165PubMedCrossRefPubMedCentralGoogle Scholar
  357. 357.
    Kamisawa T, Takuma K, Egawa N, Tsuruta K, Sasaki T (2010) A new embryological theory of the pancreatic duct system. Dig Surg 27(2):132–136PubMedCrossRefPubMedCentralGoogle Scholar
  358. 358.
    Stern CD (1986) A historical perspective on the discovery of the accessory duct of the pancreas, the ampulla of Vater and pancreas divisum. Gut 27:203–212PubMedPubMedCentralCrossRefGoogle Scholar
  359. 359.
    Wang D-B, Yu J, Fulcher AS, Turner MA (2013) Pancreatitis in patients with pancreas divisum: Imaging features at MRI and MRCP. World J Gastroenterol 19(30):4907–4916PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Largman C, Brodrick JW, Geokas MC (1976) Purification and characterization of two human pancreatic elastases. Biochemistry 15(11):2491–2500PubMedCrossRefPubMedCentralGoogle Scholar
  361. 361.
    Gonzales AC, Vieira SM, Maurer RL, Silva FA, Silveira TR (2011) Use of monoclonal faecal elastase-1 concentration for pancreatic status assessment in cystic fibrosis patients. J Pediatr (Rio J) 87(2):157–162Google Scholar
  362. 362.
    Löser C, Möllgaard A, Fölsch UR (1996) Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut 39(4):580–586PubMedPubMedCentralCrossRefGoogle Scholar
  363. 363.
    Allan BJ, Zager NI, Keller PJ (1970) Human pancreatic proteins: Amylase, proelastase, and trypsinogen. Archiv Biochem Biophys 136(2):529–540CrossRefGoogle Scholar
  364. 364.
    Shamamian P, Goldberg JD, Ye XY, Stewart JD, White PJ, Gilvarg C (2006) Evaluation of pro-carboxypeptidase A and carboxypeptidase A as serologic markers for adenocarcinoma of the pancreas. HPB (Oxford) 8(6):451–457CrossRefGoogle Scholar
  365. 365.
    Müller CA, Appelros S, Uhl W, Büchler W, Borgström A (2002) Serum levels of procarboxypeptidase B and its activation peptide in patients with acute pancreatitis and non-pancreatic diseases. Gut 51(2):229–235PubMedPubMedCentralCrossRefGoogle Scholar
  366. 366.
    Kemik O, Kemik AS, Sumer A, Beğenik H, Dülger AC, Purisa S, Tuzun S (2012) Serum procarboxypeptidase A and carboxypeptidase A levels in pancreatic disease. Hum Exp Toxicol 31(5):447–451PubMedCrossRefPubMedCentralGoogle Scholar
  367. 367.
    Marlow VL, Cianfanelli FR, Porter M, Cairns LS, Dale JK, Stanley-Wall NR (2014) The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm. Microbiology 160(Pt 1):56–66PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Block H, Maertens B, Spriestersbach A, Kubicek J, Schäfer F (2015) Proteolytic Affinity Tag Cleavage. Methods Enzymol 559:71–97PubMedCrossRefPubMedCentralGoogle Scholar
  369. 369.
    Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116(1):271–284PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Finlay M-F, McCloud L (1990) Intestinal leucine aminopeptidase and alkaline phosphatase: Genetic regulation and development in mice. Biochem Genet 28(5–6):267–281PubMedCrossRefPubMedCentralGoogle Scholar
  371. 371.
    Stefanovic V, Vlahovic P, Ardaillou N, Ronco P, Ardaillou R (1992) Cell surface aminopeptidase A and N activities in human glomerular epithelial cells. Kidney Int 41:1571–1580PubMedCrossRefPubMedCentralGoogle Scholar
  372. 372.
    Shapiro LH, Ashmun RA, Roberts WM, Look AT (1991) Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. J Biol Chem 266(18):11999–12007PubMedPubMedCentralGoogle Scholar
  373. 373.
    Nitta S, Komatsu A, Ishii T, Iwamoto H, Numata K (2016) Synthesis of peptides with narrow molecular weight distributions via exopeptidase-catalyzed aminolysis of hydrophobic amino-acid alkyl esters. Polym J 48:955–961CrossRefGoogle Scholar
  374. 374.
    Stressler T, Ewert J, Merz M, Funk J, Claaßen W, Lutz-Wahl S et al (2016) A novel glutamyl (aspartyl)-specific aminopeptidase a from Lactobacillus delbrueckii with promising properties for application. PLoS ONE 11(3):e0152139PubMedPubMedCentralCrossRefGoogle Scholar
  375. 375.
    Gomez S, Gluschankof P, Lepage A, Cohen P (1988) Relationship between endo- and exopeptidases in a processing enzyme system: activation of an endoprotease by the aminopeptidase B-like activity in somatostatin-28 convertase. Proc Natl Acad Sci U S A 85(15):5468–5472PubMedPubMedCentralCrossRefGoogle Scholar
  376. 376.
    Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44(1):1–93PubMedCrossRefPubMedCentralGoogle Scholar
  377. 377.
    Dhananjaya BL, Souza DCJ (2010) An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry (Mosc) 75(1):1–6CrossRefGoogle Scholar
  378. 378.
    Tolun G, Myers RS (2003) A real-time DNase assay (ReDA) based on PicoGreen® fluorescence. Nucleic Acids Res 31(18):e111PubMedPubMedCentralCrossRefGoogle Scholar
  379. 379.
    Liu Y, Zhang Y, Dong P, An R, Xue C, Ge Y et al (2015) Digestion of nucleic acids starts in the stomach. Sci Rep 5:11936PubMedPubMedCentralCrossRefGoogle Scholar
  380. 380.
    Seno M, Futami J, Kosaka M, Seno S, Yamada H (1994) Nucleotide sequence encoding human pancreatic ribonuclease. Biochim Biophys Acta 1218(3):466–468PubMedCrossRefPubMedCentralGoogle Scholar
  381. 381.
    Baril E, Mitchener J, Lee L, Baril B (1977) Action of pancreatic DNase: requirements for activation of DNA as a template-primer for DNA polymerase. Nucleic Acids Res 4(8):2641–2653PubMedPubMedCentralCrossRefGoogle Scholar
  382. 382.
    Zhu B, Zhang L, Zhang Y-Y, Wang L, Li X-G, Liu T et al (2016) DNase I aggravates islet β-cell apoptosis in type 2 diabetes. Mol Med Rep 13(6):4577–4584PubMedPubMedCentralCrossRefGoogle Scholar
  383. 383.
    Fernández-Zapico ME (2010) Never conclude with a negative result, explore all possibilities before changing your hypothesis: an interview with Dr. Catherine Figarella, Former Director Groupe de Recherche sur lesGlandes Exocrines, Faculté de Médecine, Marseille, France; Active Member of the Board ofthe French Cystic Fibrosis Association: Vaincre la Mucoviscidose. Pancreatology 10:109–111CrossRefGoogle Scholar
  384. 384.
    Ryan JW, Moffat JG, Thompson AG (1964) Role of bradykinin in the development of acute pancreatitis. Nature 204:1212–1213PubMedCrossRefPubMedCentralGoogle Scholar
  385. 385.
    Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, Biswas S et al (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A 105(9):3551–3556PubMedPubMedCentralCrossRefGoogle Scholar
  386. 386.
    Lallès J-P (2014) Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 72(2):82–94PubMedCrossRefPubMedCentralGoogle Scholar
  387. 387.
    Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann NY Acad Sci 1192:190–200PubMedCrossRefPubMedCentralGoogle Scholar
  388. 388.
    Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98:398–416PubMedCrossRefPubMedCentralGoogle Scholar
  389. 389.
    Argiles JM, Lopez-Soriano FJ (1990) Intestinal amino acid transport: an overview. Int J Biochem 22(9):931–937PubMedCrossRefPubMedCentralGoogle Scholar
  390. 390.
    Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447(5):610–618PubMedCrossRefPubMedCentralGoogle Scholar
  391. 391.
    Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch 447(5):629–635PubMedCrossRefPubMedCentralGoogle Scholar
  392. 392.
    Eiden LE, Schafer MK, Weihe E, Schutz B (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 447(5):636–640PubMedPubMedCentralCrossRefGoogle Scholar
  393. 393.
    Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447(5):689–709PubMedCrossRefPubMedCentralGoogle Scholar
  394. 394.
    Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447(5):710–721PubMedCrossRefPubMedCentralGoogle Scholar
  395. 395.
    Gasnier B (2004) The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 447(5):752–755CrossRefGoogle Scholar
  396. 396.
    Boll M, Daniel H, Gasnier B (2004) The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis family. Pflugers Arch 447(5):776–779PubMedCrossRefPubMedCentralGoogle Scholar
  397. 397.
    Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795PubMedCrossRefPubMedCentralGoogle Scholar
  398. 398.
    Munck LK (1995) Chloride dependent amino acid transport in the human small intestine. Gut 36:215–219PubMedPubMedCentralCrossRefGoogle Scholar
  399. 399.
    Jenstad M, Chaudhry FA (2013) The amino acid transporters of the glutamate/GABA-glutamine cycle and their impact on insulin and glucagon secretion. Front Endocrinol 4:199CrossRefGoogle Scholar
  400. 400.
    Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286PubMedCrossRefPubMedCentralGoogle Scholar
  401. 401.
    Reimer RJ, Chaudhry FA, Gray AT, Edwards RH (2000) Amino acid transport system A resembles system N in sequence but differs in mechanism. PNAS 97(14):7715–7720PubMedPubMedCentralCrossRefGoogle Scholar
  402. 402.
    Boudko DY (2012) Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). J Insect Physiol 58(4):433–449PubMedPubMedCentralCrossRefGoogle Scholar
  403. 403.
    Wagner CA, Lang F, Bröer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281(4):C1077–C1093PubMedCrossRefPubMedCentralGoogle Scholar
  404. 404.
    Oxender DL, Christensen HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238:3686–3699PubMedPubMedCentralGoogle Scholar
  405. 405.
    Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL et al (1996) Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 271(31):18657–18661PubMedCrossRefPubMedCentralGoogle Scholar
  406. 406.
    Kekuda R, Torres-Zamorano V, Fei YJ, Prasad PD, Li HW, Mader LD et al (1997) Molecular and functional characterization of intestinal Na(+)-dependent neutral amino acid transporter B0. Am J Physiol 272(6 Pt 1):G1463–G1472PubMedPubMedCentralGoogle Scholar
  407. 407.
    Pochini L, Scalise M, Galluccio M, Indiveri C (2014) Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2:61PubMedPubMedCentralCrossRefGoogle Scholar
  408. 408.
    Baerlocher KE, Scriver CR, Mohyuddin F (1970) Ontogeny of iminoglycine transport in mammalian kidney. Proc Natl Acad Sci U S A 65(4):1009–1016PubMedPubMedCentralCrossRefGoogle Scholar
  409. 409.
    Revsin B, Morrow G 3rd (1979) Imino acid transport in human diploid fibroblasts. Exp Cell Res 119(1):55–61PubMedCrossRefPubMedCentralGoogle Scholar
  410. 410.
    Gilbert ER, Wong EA, Webb KE Jr (2008) Board-invited review: Peptide absorption and utilization: implications for animal nutrition and health. J Anim Sci 86(9):2135–2155PubMedCrossRefPubMedCentralGoogle Scholar
  411. 411.
    Mordrelle A, Jullian E, Costa C, Cormet-Boyaka E, Benamouzig R, Tomé D, Huneau J-F (2000) EAAT1 is involved in transport of L-glutamate during differentiation of the Caco-2 cell line. Am J Physiol Gastrointest Liver Physiol 279(2):G366–G373PubMedCrossRefPubMedCentralGoogle Scholar
  412. 412.
    Vermeulen MAR, de Jong J, Vaessen MJ, van Leeuwen PAM, Houdijk APJ (2011) Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J Gastroenterol 17(12):1569–1573PubMedPubMedCentralCrossRefGoogle Scholar
  413. 413.
    Mariotta L, Ramadan T, Singer D, Guetg A, Herzog B, Stoeger C et al (2012) T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control. J Physiol 590(24):6413–6424PubMedPubMedCentralCrossRefGoogle Scholar
  414. 414.
    Ramadan T, Camargo SM, Herzog B, Bordin M, Pos KM, Verrey F (2007) Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger. Pflugers Arch 454(3):507–516PubMedCrossRefPubMedCentralGoogle Scholar
  415. 415.
    Fraga S, Pinho M, Soares-da-Silva P (2005) Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells. Amino Acids 29(3):229–233PubMedCrossRefPubMedCentralGoogle Scholar
  416. 416.
    Bröer A, Wagner CA, Lang F, Bröer S (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349(3):787–795PubMedPubMedCentralCrossRefGoogle Scholar
  417. 417.
    Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18(1):49–57PubMedPubMedCentralCrossRefGoogle Scholar
  418. 418.
    Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274(49):34948–34954PubMedCrossRefPubMedCentralGoogle Scholar
  419. 419.
    Bröer A, Friedrich B, Wagner CA, Fillon S, Ganapathy V, Lang F, Bröer S (2001) Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains. Biochem J 355(3):725–731PubMedPubMedCentralCrossRefGoogle Scholar
  420. 420.
    del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35(3):161–174PubMedCrossRefPubMedCentralGoogle Scholar
  421. 421.
    Eggermann T, Venghaus A, Zerres K (2012) Cystinuria: an inborn cause of urolithiasis. Orphanet J Rare Dis 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  422. 422.
    Claes DJ, Jackson E (2012) Cystinuria: mechanisms and management. Pediatr Nephrol 27(11):2031–2038PubMedCrossRefPubMedCentralGoogle Scholar
  423. 423.
    Tahmoush AJ, Alpers DH, Feigin RD, Armbrustmacher V, Prensky AL (1976) Hartnup disease. Clinical, pathological, and biochemical observations. Arch Neurol 33(12):797–807PubMedCrossRefPubMedCentralGoogle Scholar
  424. 424.
    Garcia ML, Benavides J, Valdivieso F (1980) Ketone body transport in renal brush border membrane vesicles. Biochim Biophys Acta Biomembr 600(3):922–930CrossRefGoogle Scholar
  425. 425.
    Ding F, Yao J, Rettberg JR, Chen S, Brinton RD (2013) Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS ONE 8(11):e79977PubMedPubMedCentralCrossRefGoogle Scholar
  426. 426.
    Prins ML (2012) Cerebral ketone metabolism during development and injury. Epilepsy Res 100(3):218–223PubMedCrossRefPubMedCentralGoogle Scholar
  427. 427.
    de Romo AC (1989) Tallow and the time capsule: Claude Bernard’s discovery of the pancreatic digestion of fat. Hist Philos Life Sci 11(2):253–274PubMedPubMedCentralGoogle Scholar
  428. 428.
    Kim S-H, Park I-H, Lee S-C, Lee Y-S, Yi Z, Kim TO et al (2008) Discovery of three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl Microbiol Biotechnol 77(5):1041–1051PubMedCrossRefPubMedCentralGoogle Scholar
  429. 429.
    Kim H-K, Lee J-K, Kim H, Oh T-K (1996) Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene. FEMS Microbiol Lett 135(1):117–121PubMedCrossRefPubMedCentralGoogle Scholar
  430. 430.
    Kok RG, van Thor JJ, Nugteren-Roodzant IM, Brouwer MBW, Egmond MR, Nudel CB et al (1995) Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol Microbiol 15(5):803–818PubMedCrossRefPubMedCentralGoogle Scholar
  431. 431.
    Johnston FA Jr, Sell HM (1944) Changes in chemical composition of tung kernels during germination. Plant Physiol 19(4):694–698PubMedPubMedCentralCrossRefGoogle Scholar
  432. 432.
    Lowe ME, Rosenblum JL, Strauss AW (1989) Cloning and characterization of human pancreatic lipase cDNA. J Biol Chem 264(33):20042–20048PubMedPubMedCentralGoogle Scholar
  433. 433.
    Lowe ME (1994) Pancreatic triglyceride lipase and colipase: insights into dietary fat digestion. Gastroenterology 107(5):1524–1536PubMedCrossRefPubMedCentralGoogle Scholar
  434. 434.
    Gargouri Y, Pieroni G, Moreau H, Ferrato F, Rivière C, Saunière JF et al (1986) Lipases of the digestive system. Reprod Nutr Dev 26(5B):1163–1176PubMedCrossRefPubMedCentralGoogle Scholar
  435. 435.
    Douglas GJ Jr, Reinauer AJ, Brooks WC, Pratt JH (1953) The effect on digestion and absorption of excluding the pancreatic juice from the intestine. Gastroenterology 23(3):452–459PubMedPubMedCentralGoogle Scholar
  436. 436.
    Bank S, Krut LH, Marks IN, Bronte-Stewart B, Uys PJ (1964) Hydrolysis of fat by human gastric juice. Gut 5(5):480–484PubMedPubMedCentralCrossRefGoogle Scholar
  437. 437.
    Darnton SJ, Barrowman J (1969) A specific histochemical method for the determination of pancreatic lipase. Histochem J 1(6):551–557PubMedCrossRefPubMedCentralGoogle Scholar
  438. 438.
    Hamosh M, Clary TR, Chernick SS, Scow RO (1970) Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta 210(3):473–482PubMedCrossRefPubMedCentralGoogle Scholar
  439. 439.
    Baskys B, Klein E, Lever WF (1963) Lipases of blood and tissue. Purification and properties of pancreatic lipase. Arch Biochem Biophys 102:201–209PubMedCrossRefPubMedCentralGoogle Scholar
  440. 440.
    Cohen M, Morgan RG, Hofmann AF (1971) Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60(1):1–15PubMedPubMedCentralGoogle Scholar
  441. 441.
    Barrowman JA, Darnton SJ (1970) The lipase of rat gastric mucosa. A histochemical demonstration of the enzymatic activity against a medium chain triglyceride. Gastroenterology 59:13–21PubMedPubMedCentralGoogle Scholar
  442. 442.
    Hamosh M, Scow RO (1973) Lingual lipase and its role in the digestion of dietary lipid. J Clin Invest 52:88–95PubMedPubMedCentralCrossRefGoogle Scholar
  443. 443.
    Newman L, Haryono R, Keast R (2013) Functionality of fatty acid chemoreception: a potential factor in the development of obesity? Nutrients 5(4):1287–1300PubMedPubMedCentralCrossRefGoogle Scholar
  444. 444.
    Hayes JR, Pence DH, Scheinbach S, D’Amelia RP, Klemann LP, Wilson NH, Finley JW (1994) Review of triacylglycerol digestion, absorption, and metabolism with respect to Salatrim triacylglycerols. J Agric Food Chem 42(2):474–483CrossRefGoogle Scholar
  445. 445.
    Voigt N, Stein J, Galindo MM, Dunkel A, Raguse JD, Meyerhof W et al (2014) The role of lipolysis in human orosensory fat perception. J Lipid Res 55(5):870–882PubMedPubMedCentralCrossRefGoogle Scholar
  446. 446.
    Turki S, Kallel H (2012) Emerging approaches for the treatment of fat malabsorption due toexocrine pancreatic insufficiency. In: Brzozowski T (ed) New advances in the basic and clinical gastroenterology. InTech, Rijeka, CroatiaGoogle Scholar
  447. 447.
    Fink CS, Hamosh P, Hamosh M (1984) Fat digestion in the stomach: stability of lingual lipase in the gastric environment. Pediatr Res 18(3):248–254PubMedCrossRefPubMedCentralGoogle Scholar
  448. 448.
    Moreau H, Bernadac A, Gargouri Y, Benkouka F, Laugier R, Verger R (1989) Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 91(5):419–423PubMedCrossRefPubMedCentralGoogle Scholar
  449. 449.
    Hamosh M (1990) Lingual and gastric lipases. Nutrition 6(6):421–428PubMedGoogle Scholar
  450. 450.
    Kawai T, Fushiki T (2003) Importance of lipolysis in oral cavity for orosensory detection of fat. Am J Physiol Regul Integr Comp Physiol 285(2):R447–R454PubMedCrossRefPubMedCentralGoogle Scholar
  451. 451.
    Sedlakova A, Kohút A, Sarisský M (2001) Changes of gastric lipase activity after ethanol and indomethacin administration: influence of pretreatment with allopurinol, pentoxifylline and L-DOPA. Physiol Res 50:299–307PubMedPubMedCentralGoogle Scholar
  452. 452.
    DeNigris SJ, Hamosh M, Kasbekar DK, Lee TC, Hamosh P (1988) Lingual and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in the localization of gastric lipase. Biochim Biophys Acta Lipids Lipid Metab 959(1):38–45CrossRefGoogle Scholar
  453. 453.
    Carrière F, Grandval P, Gregory PC, Renou C, Henniges F, Sander-Struckmeier S, Laugier R (2005) Does the pancreas really produce much more lipase than required for fat digestion? JOP 6(3):206–215PubMedPubMedCentralGoogle Scholar
  454. 454.
    Park M-J, Lin L, Thomas S, Braymer HD, Smith PM, Harrison DHT, York DA (2004) The F1-ATPase β-subunit is the putative enterostatin receptor. Peptides 25(12):2127–2133PubMedCrossRefPubMedCentralGoogle Scholar
  455. 455.
    Dittrich M, Schulten K (2005) Zooming in on ATP hydrolysis in F1. J Bioenerg Biomembr 37:441–444PubMedPubMedCentralCrossRefGoogle Scholar
  456. 456.
    Dittrich M, Hayashi S, Schulten K (2004) ATP hydrolysis in the bTP and bDP catalytic sites of F1-ATPase. Biophys J 87:2954–2967PubMedPubMedCentralCrossRefGoogle Scholar
  457. 457.
    Dittrich M, Hayashi S, Schulten K (2003) On the mechanism of ATP hydrolysis in F1-ATPase. Biophys J 85:2253–2266PubMedPubMedCentralCrossRefGoogle Scholar
  458. 458.
    Lin L, Park M, York DA (2007) Enterostatin inhibition of dietary fat intake is modulated through the melanocortin system. Peptides 28(3):643–649PubMedCrossRefPubMedCentralGoogle Scholar
  459. 459.
    Park M-J, Farrell J, Lemmon K, York DA (2009) Enterostatin alters protein trafficking to inhibit insulin secretion in Beta-TC6 cells. Peptides 30(10):1866–1873PubMedPubMedCentralCrossRefGoogle Scholar
  460. 460.
    Berger K, Winzell MS, Mei J, Erlanson-Albertsson C (2004) Enterostatin and its target mechanisms during regulation of fat intake. Physiol Behav 83(4):623–630PubMedCrossRefPubMedCentralGoogle Scholar
  461. 461.
    Davis RC, Xia YR, Mohandas T, Schotz MC, Lusis AJ (1991) Assignment of the human pancreatic colipase gene to chromosome 6p21.1 to pter. Genomics 10(1):262–265PubMedCrossRefPubMedCentralGoogle Scholar
  462. 462.
    Rosenheim O (1910) On pancreatic lipase. The separation of lipase from its co-enzyme. J Physiol 15:14–16Google Scholar
  463. 463.
    King H (1956) Sigmund Otto Rosenheim. 1871–1955. Biogr Mem Fellows R Soc 2:256–267CrossRefGoogle Scholar
  464. 464.
    Maylie MF, Charles M, Cache C, Desnuelle P (1971) Isolation and partial identification of a pancreatic colipase. Biochim Biophys Acta 229:286–289PubMedCrossRefPubMedCentralGoogle Scholar
  465. 465.
    Borgstrom B, Erlanson-Albertsson C, Wieloch T (1979) Pancreatic colipase: chemistry and physiology. J Lipid Res 20(7):805–816PubMedPubMedCentralGoogle Scholar
  466. 466.
    van Tilbeurgh H, Bezzine S, Cambillau C, Verger R, Carrière F (1999) Colipase: structure and interaction with pancreatic lipase. Biochim Biophys Acta Mol Cell Biol Lipids 1441(2–3):173–184CrossRefGoogle Scholar
  467. 467.
    Crandall WV, Lowe ME (2001) Colipase residues Glu64 and Arg65 are essential for normal lipase-mediated fat digestion in the presence of bile salt micelles. J Biol Chem 276(16):12505–12512PubMedCrossRefPubMedCentralGoogle Scholar
  468. 468.
    Chapus C, Rovery M, Sarda L, Verger R (1988) Minireview on pancreatic lipase and colipase. Biochimie 70(9):1223–1234PubMedCrossRefPubMedCentralGoogle Scholar
  469. 469.
    Bezzine S, Ferrato F, Ivanova MG, Lopez V, Verger R, Carrière F (1999) Human pancreatic lipase: colipase dependence and interfacial binding of lid domain mutants. Biochemistry 38(17):5499–5510PubMedCrossRefPubMedCentralGoogle Scholar
  470. 470.
    John S, Thangapandian S, Sakkiah S, Lee KW (2010) Discovery of potential pancreatic cholesterol esterase inhibitors using pharmacophore modelling, virtual screening, and optimization studies. J Enzyme Inhib Med Chem 26(4):535–545PubMedCrossRefPubMedCentralGoogle Scholar
  471. 471.
    Karmanskiĭ IM, Pichugin AL, Iusupova GI, Sysoev IuA (1981) Isolation of cholesterol esterase from the pancreatic juice of dogs. Biull Eksp Biol Med 91(3):330–332PubMedCrossRefPubMedCentralGoogle Scholar
  472. 472.
    Heidrich JE, Contos LM, Hunsaker LA, Deck LM, Vander Jagt DL (2004) Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacol 4:5PubMedPubMedCentralCrossRefGoogle Scholar
  473. 473.
    Hui TY, Bernlohr DA (1997) Fatty acid transporters in animal cells. Front Biosci 2:d222–d231PubMedCrossRefPubMedCentralGoogle Scholar
  474. 474.
    Tso P, Fujimoto K (1991) The absorption and transport of lipids by the small intestine. Brain Res Bull 27(3–4):477–482PubMedCrossRefPubMedCentralGoogle Scholar
  475. 475.
    Orsavova J, Misurcova L, Ambrozova J, Vicha R, Mlcek J (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 16:12871–12890PubMedPubMedCentralCrossRefGoogle Scholar
  476. 476.
    Food and Agriculture Organization of the United Nations. Food and Agriculture Organization of the United Nations (FAO) (2017) Oilcrops complex: policy changes and industry measures, Annual compendium 2016. FAO, RomaGoogle Scholar
  477. 477.
    Food and Agriculture Organization of the United Nations (FAO) (2017) Food outlook: biannual report on global food markets. FAO, RomeGoogle Scholar
  478. 478.
    US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory (2015) USDA national nutrient database for standard reference. United States, Washington, DCGoogle Scholar
  479. 479.
    McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology (the gold book), 2nd edn. International Union of Pure and Applied Chemistry (IUPAC) Compendium of Chemical Terminology. Blackwell Scientific Publications, OxfordGoogle Scholar
  480. 480.
    Park J-M, Kim N-K, Yang C-Y, Moon K-W, Kim J-M (2014) Determination of the authenticity of dairy products on the basis of fatty acids and triacylglycerols content using GC analysis. Korean J Food Sci Anim Resour 34(3):316–324PubMedPubMedCentralCrossRefGoogle Scholar
  481. 481.
    Gupta SV, Yamada N, Fungwe TV, Khosla P (2003) Replacing 40% of dietary animal fat with vegetable oil is associated with lower HDL cholesterol and higher cholesterol ester transfer protein in cynomolgus monkeys fed sufficient linoleic acid. J Nutr 133(8):2600–2606PubMedCrossRefPubMedCentralGoogle Scholar
  482. 482.
    Kim JM, Kim HJ, Park JM (2015) Determination of milk fat adulteration with vegetable oils and animal fats by gas chromatographic analysis. J Food Sci 80(9):C1945–C1951PubMedCrossRefPubMedCentralGoogle Scholar
  483. 483.
    Klonoff DC (2007) Replacements for trans fats—will there be an oil shortage? J Diabetes Sci Technol 1(3):415–422PubMedPubMedCentralCrossRefGoogle Scholar
  484. 484.
    Liao TH, Hamosh P, Hamosh M (1984) Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res 18(5):402–409PubMedCrossRefPubMedCentralGoogle Scholar
  485. 485.
    Phan CT, Tso P (2001) Intestinal lipid absorption and transport. Front Biosci 6:D299–D319PubMedCrossRefPubMedCentralGoogle Scholar
  486. 486.
    Drent ML, van der Veen EA (1993) Lipase inhibition: a novel concept in the treatment of obesity. Int J Obes Relat Metab Disord 17(4):241–244PubMedPubMedCentralGoogle Scholar
  487. 487.
    Nelson RH, Miles JM (2005) The use of orlistat in the treatment of obesity, dyslipidaemia and Type 2 diabetes. Expert Opin Pharmacother 6(14):2483–2491PubMedCrossRefPubMedCentralGoogle Scholar
  488. 488.
    Dickerson LM, Carek PJ (2000) Drug therapy for obesity. Am Fam Physician 61(7):2131–2138PubMedPubMedCentralGoogle Scholar
  489. 489.
    Wang TY, Liu M, Portincasa P, Wang DQ-H (2013) New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 43(11):1203–1223PubMedPubMedCentralGoogle Scholar
  490. 490.
    Harrison EH (2012) Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 1821(1):70–77PubMedCrossRefPubMedCentralGoogle Scholar
  491. 491.
    Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296:E1183–E1194PubMedPubMedCentralCrossRefGoogle Scholar
  492. 492.
    Goncalves A, Gontero B, Nowicki M, Margier M, Masset G, Amiot M-J, Reboul E (2015) Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. J Lipid Res 56(6):1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
  493. 493.
    Mansbach CM 2nd, Cohen RS, Leff PB (1975) Isolation and properties of the mixed lipid micelles present in intestinal content during fat digestion in man. J Clin Invest 56(4):781–791PubMedPubMedCentralCrossRefGoogle Scholar
  494. 494.
    Abrahamse E, Minekus M, van Aken GA, van de Heijning B, Knol J, Bartke N et al (2012) Development of the digestive system—experimental challenges and approaches of infant lipid digestion. Food Dig 3(1–3):63–77PubMedPubMedCentralCrossRefGoogle Scholar
  495. 495.
    Dejgaard SY, Presley JF (2014) New automated single-cell technique for segmentation and quantitation of lipid droplets. J Histochem Cytochem 62(12):889–901PubMedPubMedCentralCrossRefGoogle Scholar
  496. 496.
    Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685CrossRefPubMedGoogle Scholar
  497. 497.
    St-Onge M-P, Jones PJH (2002) Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 132(3):329–332PubMedCrossRefPubMedCentralGoogle Scholar
  498. 498.
    Hardy SC, Tanpowpong P, Kleinman RE (2014) Nutrition in children with liver disease: evaluation and management. In: Murray K, Horslen S (eds) Diseases of the liver in children. Springer, New YorkGoogle Scholar
  499. 499.
    Ziarnik E, Nesbitt J (2015) Chyle leak after esophageal surgery. In: Pawlik T, Maithel S, Merchant N (eds) Gastrointestinal surgery. Springer, New YorkGoogle Scholar
  500. 500.
    Mattes RD (2009) Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses 34(2):145–150PubMedCrossRefPubMedCentralGoogle Scholar
  501. 501.
    Senior JR (1964) Intestinal absorption of fats. J Lipid Res 5:495–521PubMedPubMedCentralGoogle Scholar
  502. 502.
    Kirat D, Kato S (2006) Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum. Exp Physiol 91(5):835–844PubMedCrossRefPubMedCentralGoogle Scholar
  503. 503.
    Sellin JH, De Soignie R (1998) Short-chain fatty acids have polarized effects on sodium transport and intracellular pH in rabbit proximal colon. Gastroenterology 114(4):737–747PubMedCrossRefPubMedCentralGoogle Scholar
  504. 504.
    Kirat D, Masuoka J, Hayashi H, Iwano H, Yokota H, Taniyama H, Kato S (2006) Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J Physiol 576(2):635–647PubMedPubMedCentralCrossRefGoogle Scholar
  505. 505.
    Nedjadi T (2014) Trans-cellular transport of short chain fatty acids in the large intestine. BMC Genom 15(2):P4CrossRefGoogle Scholar
  506. 506.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340CrossRefGoogle Scholar
  507. 507.
    Abumrad NA, Davidson NO (2012) Role of the gut in lipid homeostasis. Physiol Rev 92(3):1061–1085PubMedPubMedCentralCrossRefGoogle Scholar
  508. 508.
    D’Aquila T, Hung Y-H, Carreiro A, Buhman KK (2016) Recent discoveries on absorption of dietary fat: presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta 1861(8):730–747CrossRefGoogle Scholar
  509. 509.
    Uchida A, Lee HJ, Cheng JX, Buhman KK (2013) Imaging cytoplasmic lipid droplets in enterocytes and assessing dietary fat absorption. Methods Cell Biol 116:151–166PubMedCrossRefPubMedCentralGoogle Scholar
  510. 510.
    Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JFC, Luiken JJFP (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219PubMedPubMedCentralCrossRefGoogle Scholar
  511. 511.
    Abumrad N, Harmon C, Ibrahimi A (1998) 0 Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318PubMedPubMedCentralGoogle Scholar
  512. 512.
    Kazantzis M, Stahl A (2012) Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta Mol Cell Biol Lipids 1821(5): 852–857CrossRefGoogle Scholar
  513. 513.
    Glatz JFC, Luiken JJFP, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417PubMedCrossRefPubMedCentralGoogle Scholar
  514. 514.
    Shim J, Moulson CL, Newberry EP, Lin M-H, Xie Y, Kennedy SM et al (2009) Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J Lipid Res 50(3):491–500PubMedPubMedCentralCrossRefGoogle Scholar
  515. 515.
    Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30(3):149–156PubMedCrossRefPubMedCentralGoogle Scholar
  516. 516.
    Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(2):251–262PubMedPubMedCentralGoogle Scholar
  517. 517.
    Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N (2013) Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 13(6):869–874PubMedCrossRefPubMedCentralGoogle Scholar
  518. 518.
    Moschen I, Bröer A, Galić S, Lang F, Bröer S (2012) Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res 37(11):2562–2568PubMedCrossRefPubMedCentralGoogle Scholar
  519. 519.
    Davis HR Jr, Altmann SW (2009) Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta Mol Cell Biol Lipids 1791(7):679–683CrossRefGoogle Scholar
  520. 520.
    Kramer W, Girbig F, Corsiero D, Pfenninger A, Frick W, Jähne G et al (2005) Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane. J Biol Chem 280:1306–1320PubMedCrossRefPubMedCentralGoogle Scholar
  521. 521.
    Bays HE, Neff D, Tomassini JE, Tershakovec AM (2008) Ezetimibe: cholesterol lowering and beyond. Expert Rev Cardiovasc Ther 6(4):447–470PubMedCrossRefPubMedCentralGoogle Scholar
  522. 522.
    Fraunberger P, Gröne E, Gröne HJ, Drexel H, Walli AK (2017) Ezetimibe reduces cholesterol content and NF-kappaB activation in liver but not in intestinal tissue in guinea pigs. J Inflamm (Lond) 14:3CrossRefGoogle Scholar
  523. 523.
    Le NA, Tomassini JE, Tershakovec AM, Neff DR, Wilson PW (2015) Effect of switching from statin monotherapy to ezetimibe/simvastatin combination therapy compared with other intensified lipid-lowering strategies on lipoprotein subclasses in diabetic patients with symptomatic cardiovascular disease. J Am Heart Assoc 4(10):e001675PubMedPubMedCentralCrossRefGoogle Scholar
  524. 524.
    Reboul E, Borel P (2011) Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 50(4):388–402PubMedCrossRefPubMedCentralGoogle Scholar
  525. 525.
    Ueshima K, Akihisa-Umeno H, Sawada M, Nagayoshi A, Ozaki T, Takakura S, Manda T, Mutoh S (2004) Possible involvement of enhanced intestinal microsomal triglyceride transfer protein (MTP) gene expression in acceleration of lipid absorption by a western-type diet in apolipoprotein E knockout mice. Life Sci 76(2):179–190PubMedCrossRefPubMedCentralGoogle Scholar
  526. 526.
    Swift LL, Kakkad B, Boone C, Jovanovska A, Jerome WG, Mohler PJ, Ong DE (2005) Microsomal triglyceride transfer protein expression in adipocytes: a new component in fat metabolism. FEBS Lett 579(14):3183–3189PubMedCrossRefPubMedCentralGoogle Scholar
  527. 527.
    Beierfuß A, Dietrich H, Kremser C, Hunjadi M, Ritsch A, Rülicke T et al (2017) Knockout of apolipoprotein E in rabbit promotes premature intervertebral disc degeneration: a new in vivo model for therapeutic approaches of spinal disc disorders. PLoS ONE 12(11):e0187564PubMedPubMedCentralCrossRefGoogle Scholar
  528. 528.
    Wetterau JR, Lin MC, Jamil H (1997) Microsomal triglyceride transfer protein. Biochim Biophys Acta 1345:136–150PubMedCrossRefPubMedCentralGoogle Scholar
  529. 529.
    Havel RJ (1995) Chylomicron remnants: hepatic receptors and metabolism. Curr Opin Lipidol 6(5):312–316PubMedCrossRefPubMedCentralGoogle Scholar
  530. 530.
    Feingold KR, Grunfeld C (2000) Introduction to lipids and lipoproteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM et al (eds) Endotext [Internet]. Inc, South DartmouthGoogle Scholar
  531. 531.
    Röhrl C (1831) Stangl H (2013) HDL endocytosis and resecretion. Biochim Biophys Acta 11:1626–1633Google Scholar
  532. 532.
    Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M (2016) Coconut oil and palm oil’s role in nutrition, health and national development: a review. Ghana Med J 50(3):189–196PubMedPubMedCentralGoogle Scholar
  533. 533.
    Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L et al (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12(3):829–875PubMedPubMedCentralCrossRefGoogle Scholar
  534. 534.
    Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308PubMedPubMedCentralCrossRefGoogle Scholar
  535. 535.
    Larsen EH (2002) Hans H. Ussing–scientific work: contemporary significance and perspectives. Biochim Biophys Acta Biomembr 1566(1–2):2–15CrossRefGoogle Scholar
  536. 536.
    Lindemann B (2001) Hans Ussing, experiments and models. J Membr Biol 184(3):203–210PubMedCrossRefPubMedCentralGoogle Scholar
  537. 537.
    Hamilton KL (2011) Ussing’s “little chamber”: 60 years + old and counting. Front Physiol 2:6PubMedPubMedCentralCrossRefGoogle Scholar
  538. 538.
    Larsen EH (2009) Hans Henriksen Ussing. 30 December 1911–22 December 2000. Biogr Mems Fellows R Soc 55:305–335Google Scholar
  539. 539.
    Coetzer H, Claassen N, van Papendorp DH, Kruger MC (1994) Calcium transport by isolated brush border and basolateral membrane vesicles: role of essential fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 50(5):257–266PubMedCrossRefPubMedCentralGoogle Scholar
  540. 540.
    Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) (2011) Dietary reference intakes for calcium and vitamin D. National Academies Press, WashingtonGoogle Scholar
  541. 541.
    Wasserman RH, Chandler JS, Meyer SA, Smith CA, Brindak ME, Fullmer CS et al (1992) Intestinal calcium transport and calcium extrusion processes at the basolateral membrane. J Nutr 122(3):662–671PubMedCrossRefPubMedCentralGoogle Scholar
  542. 542.
    Wasserman RH, Fullmer CS (1995) Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr 125(7):1971S–1979SPubMedCrossRefPubMedCentralGoogle Scholar
  543. 543.
    Christakos S (2012) Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Rev Endocr Metab Disord 13(1):39–44PubMedCrossRefPubMedCentralGoogle Scholar
  544. 544.
    Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393CrossRefPubMedGoogle Scholar
  545. 545.
    Ghishan FK, Dannan G, Arab N, Kikuchi K (1987) Intestinal maturation: calcium transport by basolateral membranes. Pediatr Res 21(3):257–260PubMedCrossRefPubMedCentralGoogle Scholar
  546. 546.
    Bronner F (2009) Recent developments in intestinal calcium absorption. Nutr Rev 67(2):109–113PubMedCrossRefPubMedCentralGoogle Scholar
  547. 547.
    Christakos S, Dhawan P, Ajibade D, Benn BS, Feng J, Joshi SS (2010) Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J Steroid Biochem Mol Biol 121(1–2):183–187PubMedPubMedCentralCrossRefGoogle Scholar
  548. 548.
    Trent JT III, Watts RA, Hargrove MS (2001) Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 276:30106–30110PubMedCrossRefPubMedCentralGoogle Scholar
  549. 549.
    Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V et al (2011) Human neuroglobin functions as a redox regulated nitrite reductase. J Biol Chem 286(20):18277–18289PubMedPubMedCentralCrossRefGoogle Scholar
  550. 550.
    Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):164–174PubMedPubMedCentralGoogle Scholar
  551. 551.
    Linder MC (2013) Mobilization of stored iron in mammals: a review. Nutrients 5(10):4022–4050PubMedPubMedCentralCrossRefGoogle Scholar
  552. 552.
    Muñoz M, Villar I, García-Erce JA (2009) An update on iron physiology. World J Gastroenterol 15(37):4617–4626PubMedPubMedCentralCrossRefGoogle Scholar
  553. 553.
    Sheftel AD, Mason AB, Ponka P (2012) The long history of iron in the universe and in health and disease. Biochim Biophys Acta 1820(3):161–187CrossRefGoogle Scholar
  554. 554.
    Santiago P (2012) Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci World J 2012:846824CrossRefGoogle Scholar
  555. 555.
    Short MW, Domagalski JE (2013) Iron deficiency anemia: evaluation and management. Am Fam Physician 87(2):98–104PubMedPubMedCentralGoogle Scholar
  556. 556.
    McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309PubMedCrossRefPubMedCentralGoogle Scholar
  557. 557.
    Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57(11):749–759PubMedPubMedCentralCrossRefGoogle Scholar
  558. 558.
    Latunde-Dada GO, Simpson RJ, McKie AT (2008) Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells. J Nutr 138(6):991–995PubMedCrossRefPubMedCentralGoogle Scholar
  559. 559.
    Mackenzie B, Garrick MD (2005) Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 289(6):G981–G986PubMedCrossRefPubMedCentralGoogle Scholar
  560. 560.
    Vulpe CD, Kuo Y-M, Murphy TL, Cowley L, Askwith C, Libina N et al (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199PubMedCrossRefPubMedCentralGoogle Scholar
  561. 561.
    Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 107(50):21570–21575PubMedPubMedCentralCrossRefGoogle Scholar
  562. 562.
    Tallkvist J, Bowlus CL, Lönnerdal B (2003) Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol Toxicol 92(3):121–124PubMedCrossRefPubMedCentralGoogle Scholar
  563. 563.
    Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B (2012) H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr Top Membr 70:169–214PubMedCrossRefPubMedCentralGoogle Scholar
  564. 564.
    Mackenzie B, Ujwal ML, Chang MH, Romero MF, Hediger MA (2006) Divalent metal-ion transporter DMT1 mediates both H+-coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch 451(4):544–558PubMedCrossRefPubMedCentralGoogle Scholar
  565. 565.
    Kuo YM, Su T, Chen H, Attieh Z, Syed BA, McKie AT et al (2004) Mislocalisation of hephaestin, a multicopper ferroxidase involved in basolateral intestinal iron transport, in the sex linked anaemia mouse. Gut 53(2):201–206PubMedPubMedCentralCrossRefGoogle Scholar
  566. 566.
    Krishnamurthya P, Xieb T, Schuetza JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114(3):345–358CrossRefGoogle Scholar
  567. 567.
    Fiorito V, Geninatti Crich S, Silengo L, Aime S, Altruda F, Tolosano E (2013) Lack of plasma protein hemopexin results in increased duodenal iron uptake. PLoS ONE 8(6):e68146PubMedPubMedCentralCrossRefGoogle Scholar
  568. 568.
    Wu W, Song Y, He C, Liu C, Wu R, Fang L et al (2015) Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease. Sci Rep 5:16344PubMedPubMedCentralCrossRefGoogle Scholar
  569. 569.
    Philip M, Zaballa A, Phelps S, Abkowitz J (2011) FLVCR, a heme export protein, is required for T cell development beyond the CD4+ CD8+ double-positive stage. J Immunol 186:18–64Google Scholar
  570. 570.
    Bakken AF, Thaler MM, Schmid R (1972) Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J Clin Invest 51(3):530–536PubMedPubMedCentralCrossRefGoogle Scholar
  571. 571.
    Przybyszewska J, Żekanowska E (2014) The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Prz Gastroenterol 9(4):208–213PubMedPubMedCentralGoogle Scholar
  572. 572.
    Tailor CS, Willett BJ, Kabat D (1999) A putative cell surface receptor for anemia-inducing feline leukemia virus subgroup C is a member of a transporter superfamily. J Virol 73(8):6500–6505PubMedPubMedCentralGoogle Scholar
  573. 573.
    D’Angelo G (2013) Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res 48(1):10–15PubMedPubMedCentralCrossRefGoogle Scholar
  574. 574.
    Rossi E (2005) Hepcidin—the iron regulatory hormone. Clin Biochem Rev 26(3):47–49PubMedPubMedCentralGoogle Scholar
  575. 575.
    Fuqua BK, Lu Y, Darshan D, Frazer DM, Wilkins SJ, Wolkow N et al (2014) The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS ONE 9(6):e98792PubMedPubMedCentralCrossRefGoogle Scholar
  576. 576.
    Vashchenko G, MacGillivray RTA (2013) Multi-copper oxidases and human iron metabolism. Nutrients 5:2289–2313PubMedPubMedCentralCrossRefGoogle Scholar
  577. 577.
    Ramírez-Cárdenas L, Costa NMB, Reis FP (2005) Copper-iron metabolism interaction in rats. Nutr Res 25(1):79–92CrossRefGoogle Scholar
  578. 578.
    Aaseth J, Gerhardsson L, Skaug MA, Alexander J (2016) General chemistry of metal toxicity and basis for metal complexation. In: Aaseth J, Crisponi G, Anderson O (eds) Chelation therapy in the treatment of metal intoxication. Elsevier, OxfordGoogle Scholar
  579. 579.
    Ponka P, Lok CN (1999) 0 The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31(10):1111–1137PubMedCrossRefPubMedCentralGoogle Scholar
  580. 580.
    Delanghe JR, Langlois MR (2001) Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta 312(1–2):13–23PubMedCrossRefPubMedCentralGoogle Scholar
  581. 581.
    Tolosano E, Altruda F (2004) Hemopexin: structure, function, and regulation. DNA Cell Biol 21(4):297–306CrossRefGoogle Scholar
  582. 582.
    Smith A, Morgan WT (1978) Transport of heme by hemopexin to the liver: evidence for receptor-mediated uptake. Biochem Biophys Res Commun 84(1):151–157PubMedCrossRefPubMedCentralGoogle Scholar
  583. 583.
    Schweigel M, Martens H (2000) Magnesium transport in the gastrointestinal tract. Front Biosci 5:D666–D677PubMedCrossRefPubMedCentralGoogle Scholar
  584. 584.
    Hardwick LL, Jones MR, Brautbar N, Lee DB (1990) Site and mechanism of intestinal magnesium absorption. Miner Electrolyte Metab 16(2–3):174–180PubMedPubMedCentralGoogle Scholar
  585. 585.
    Leonhard-Marek S, Stumpff F, Brinkmann I, Breves G, Martens H (2005) Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+. Am J Physiol Gastrointest Liver Physiol 288(4):G630–G645PubMedCrossRefPubMedCentralGoogle Scholar
  586. 586.
    Wang X, Zhou B (2010) Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life 62(3):176–182PubMedCrossRefPubMedCentralGoogle Scholar
  587. 587.
    Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13(7–8):337–343PubMedPubMedCentralGoogle Scholar
  588. 588.
    Cragg RA, Phillips SR, Piper JM, Varma JS, Campbell FC, Mathers JC, Ford D (2005) Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut 54(4):469–478PubMedPubMedCentralCrossRefGoogle Scholar
  589. 589.
    Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71(17):3281–3295PubMedCrossRefPubMedCentralGoogle Scholar
  590. 590.
    Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172PubMedCrossRefPubMedCentralGoogle Scholar
  591. 591.
    Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089PubMedCrossRefPubMedCentralGoogle Scholar
  592. 592.
    Cousins RJ (2010) Gastrointestinal factors influencing zinc absorption and homeostasis. Int J Vitam Nutr Res 80:243–248PubMedPubMedCentralCrossRefGoogle Scholar
  593. 593.
    Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5):1374S–1377SPubMedPubMedCentralCrossRefGoogle Scholar
  594. 594.
    Myers S, Shastri MD, Adulcikas J, Sohal SS, Norouzi S (2017) Zinc and gastrointestinal disorders: a role for the zinc transporters Zips and ZnTs. Curr Pharm Des 23(16):2328–2332PubMedCrossRefPubMedCentralGoogle Scholar
  595. 595.
    Maywald M, Wessels I, Rink L (2017) Zinc signals and immunity. Int J Mol Sci 18(10):E2222PubMedCentralCrossRefGoogle Scholar
  596. 596.
    Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M et al (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16(1):41–54PubMedCrossRefPubMedCentralGoogle Scholar
  597. 597.
    Przybyłkowski A, Gromadzka G, Wawer A, Grygorowicz T, Cybulska A, Członkowska A (2013) Intestinal expression of metal transporters in Wilson’s disease. Biometals 26(6):925–934PubMedPubMedCentralCrossRefGoogle Scholar
  598. 598.
    Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046PubMedCrossRefPubMedCentralGoogle Scholar
  599. 599.
    Mercer SW, Wang J, Burke R (2017) In vivo modeling of the pathogenic effect of copper transporter mutations that cause menkes and wilson diseases, motor neuropathy, and susceptibility to alzheimer’s disease. J Biol Chem 292(10):4113–4122PubMedPubMedCentralCrossRefGoogle Scholar
  600. 600.
    Ariöz C, Li Y, Wittung-Stafshede P (2017) The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals 30(6):823–840PubMedPubMedCentralCrossRefGoogle Scholar
  601. 601.
    Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1(6):1125–1142PubMedPubMedCentralCrossRefGoogle Scholar
  602. 602.
    Jayakanthan S, Braiterman LT, Hasan NM, Unger VM, Lutsenko S (201) Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem 292(46):18760–18774PubMedCrossRefPubMedCentralGoogle Scholar
  603. 603.
    Markovich D (2010) Sulfate and phosphate transporters in mammalian renal and gastrointestinal systems. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, New YorkGoogle Scholar
  604. 604.
    Kiela PR, Ghishan FK (2016) Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 30(2):145–159PubMedPubMedCentralCrossRefGoogle Scholar
  605. 605.
    Nozawa T, Sugiurac S, Hashino Y, Tsuji A, Tamai I (2004) Role of anion exchange transporter PAT1 (SLC26A6) in intestinal absorption of organic anions. J Drug Target 12(2):97–104PubMedCrossRefPubMedCentralGoogle Scholar
  606. 606.
    Hediger MA, Clémençon B, Burrier RE, Bruford EA (2013) The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 34(2–3):95–107PubMedPubMedCentralCrossRefGoogle Scholar
  607. 607.
    Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM, Aronson PS (2011) Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol 22(12):2247–2255PubMedPubMedCentralCrossRefGoogle Scholar
  608. 608.
    Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Sem Nephrol 28(2):143–151CrossRefGoogle Scholar
  609. 609.
    Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111(7):931–943PubMedPubMedCentralCrossRefGoogle Scholar
  610. 610.
    Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308PubMedPubMedCentralCrossRefGoogle Scholar
  611. 611.
    Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol 262(5 Pt 2):R761–R765PubMedPubMedCentralGoogle Scholar
  612. 612.
    Bridges CC, Zalups RK (2017) Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63–81PubMedCrossRefPubMedCentralGoogle Scholar
  613. 613.
    Chmielowska-Bąk J, Izbiańska K, Deckert J (2013) The toxic Doppelganger: on the ionic and molecular mimicry of cadmium. Acta Biochim Pol 60(3):369–374PubMedPubMedCentralGoogle Scholar
  614. 614.
    Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571PubMedCrossRefPubMedCentralGoogle Scholar
  615. 615.
    Foulkes EC (2000) Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 223(3):234–240PubMedCrossRefPubMedCentralGoogle Scholar
  616. 616.
    Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110(5):689–694PubMedPubMedCentralCrossRefGoogle Scholar
  617. 617.
    Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N (2002) Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J 367(1):239–246PubMedPubMedCentralCrossRefGoogle Scholar
  618. 618.
    Oude Elferink RP, de Waart R (2007) Transporters in the intestine limiting drug and toxin absorption. J Physiol Biochem 63(1):75–81PubMedCrossRefPubMedCentralGoogle Scholar
  619. 619.
    Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21(1):25–51PubMedCrossRefPubMedCentralGoogle Scholar
  620. 620.
    Pang KS (2003) Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette review series). DMD 31(12):1507–1519CrossRefGoogle Scholar
  621. 621.
    Lemos C, Jansen G, Peters GJ (2008) Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 98(5):857–862PubMedPubMedCentralCrossRefGoogle Scholar
  622. 622.
    Dietrich CG, Geier A, Oude Elferink RPJ (2003) ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52(12):1788–1795PubMedPubMedCentralCrossRefGoogle Scholar
  623. 623.
    Albermann N, Schmitz-Winnenthal FH, Z’graggen K, Volk C, Hoffmann MM, Haefeli WE, Weiss J (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70(6):949–58PubMedCrossRefPubMedCentralGoogle Scholar
  624. 624.
    Tsuji A, Tamai I (1996) Carrier-mediated intestinal transport of drugs. Pharm Res 13(7):963–977PubMedCrossRefPubMedCentralGoogle Scholar
  625. 625.
    Hukkanen J, Hakkola J, Rysä J (2014) Pregnane X receptor (PXR)—a contributor to the diabetes epidemic? Drug Metab Drug Interact 29(1):3–15CrossRefGoogle Scholar
  626. 626.
    Tamai I, Nakanishi T, Hayashi K, Terao T, Sai Y, Shiraga T et al (1997) The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine. J Pharm Pharmacol 49(8):796–801PubMedCrossRefPubMedCentralGoogle Scholar
  627. 627.
    El-Kattan A, Varma M (2012) Oral absorption, intestinal metabolism and human oral bioavailability. In: Paxton J (ed) Topics on drug metabolism. InTech, ChinaGoogle Scholar
  628. 628.
    Kajal P, Bhutani N, Tyagi N, Arya P (2017) Trichobezoar with and without Rapunzel syndrome in paediatric population: a case series from a tertiary care centre of Northern India. Int J Surg Case Rep 40:23–26PubMedPubMedCentralCrossRefGoogle Scholar
  629. 629.
    Eng K, Kay M (2012) Gastrointestinal bezoars: history and current treatment paradigms. Gastroenterol Hepatol (N Y) 8(11):776–778Google Scholar
  630. 630.
    Jao SW, Wang LT, Wu CC, Hsiao CW (2015) Removal of a giant rectosigmoid phytobezoar without Laparotomy. Indian J Surg 77(1):69–71PubMedCrossRefPubMedCentralGoogle Scholar
  631. 631.
    Iwamuro M, Okada H, Matsueda K, Inaba T, Kusumoto C, Imagawa A, Yamamoto K (2015) Review of the diagnosis and management of gastrointestinal bezoars. World J Gastrointest Endosc 7(4):336–345PubMedPubMedCentralCrossRefGoogle Scholar
  632. 632.
    Koulas SG, Zikos N, Charalampous C, Christodoulou K, Sakkas L, Katsamakis N (2008) Management of gastrointestinal bezoars: an analysis of 23 cases. Int Surg 93(2):95–98PubMedPubMedCentralGoogle Scholar
  633. 633.
    Kim Y, Park BJ, Kim MJ, Sung DJ, Kim DS, Yu YD, Lee JH (2013) Biliary phytobezoar resulting in intestinal obstruction. World J Gastroenterol 19(1):133–136PubMedPubMedCentralCrossRefGoogle Scholar
  634. 634.
    Andrus CH, Ponsky JL (1988) Bezoars: classification, pathophysiology, and treatment. Am J Gastroenterol 83(5):476–478PubMedPubMedCentralGoogle Scholar
  635. 635.
    Guillermo PTJ, Carlos PHJ, Ivonne BAM, Herminio TF, Rubén RP (2014) Extended release potassium salts overdose and endoscopic removal of a pharmacobezoar: a case report. Toxicol Rep 1:209–213PubMedPubMedCentralCrossRefGoogle Scholar
  636. 636.
    Arda K, Yilmaz S, Calikoglu U, Olçer T (1995) Duodenal phytobezoar: a case report and review of the literature. Acta Gastroenterol Belg 58(5–6):470–474PubMedPubMedCentralGoogle Scholar
  637. 637.
    Corona-Cruz JF, Sánchez-Lozada R, Gracida-Mancilla NI, Palomeque-López A, Vega Chavaje GR (2005) Intestinal trichobezoar as a cause of small bowel obstruction. Case report and review of the literature. Gac Med Mex 141(5):417–419PubMedPubMedCentralGoogle Scholar
  638. 638.
    Balogun OS, Osinowo AO, Afolayan MO, Adesanya AA (2017) An obstructing small bowel phytobezoar in an elderly female nigerian: a case report and literature review. Case Rep Surg 2017:6962876PubMedPubMedCentralGoogle Scholar
  639. 639.
    Ugenti I, Travaglio E, Lagouvardou E, Iambrenghi OC, Martines G (2017) Successful endoscopic treatment of gastric phytobezoar: a case report. Int J Surg Case Rep 37:45–47PubMedPubMedCentralCrossRefGoogle Scholar
  640. 640.
    Lung D, Cuevas C, Zaid U, Ancock B (2011) Venlafaxine pharmacobezoar causing intestinal ischemia requiring emergent hemicolectomy. J Med Toxicol 7(3):232–235PubMedPubMedCentralCrossRefGoogle Scholar
  641. 641.
    Said HM, Mohammed ZM (2006) Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22(2):140–146PubMedCrossRefPubMedCentralGoogle Scholar
  642. 642.
    Eck P, Kwon O, Chen S, Mian O, Levine M (2013) The human sodium-dependent ascorbic acid transporters SLC23A1 and SLC23A2 do not mediate ascorbic acid release in the proximal renal epithelial cell. Physiol Rep 1(6):e00136PubMedPubMedCentralCrossRefGoogle Scholar
  643. 643.
    Kozyraki R, Cases O (2013) Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders. Biochimie 95(5):1002–1007PubMedCrossRefPubMedCentralGoogle Scholar
  644. 644.
    Cooperstone JL, Goetz HJ, Riedl KM, Harrison EH, Schwartz SJ, Kopec RE (2017) Relative contribution of α-carotene to postprandial vitamin A concentrations in healthy humans after carrot consumption. Am J Clin Nutr 106(1):59–66PubMedCrossRefPubMedCentralGoogle Scholar
  645. 645.
    Goncalves A, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot MJ, Reboul E (2015) Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption. Food Chem 172:155–160PubMedCrossRefPubMedCentralGoogle Scholar
  646. 646.
    Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437(3):357–372PubMedPubMedCentralCrossRefGoogle Scholar
  647. 647.
    Said HM, Ortiz A, Ma TY (2003) A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway. Am J Physiol Cell Physiol 285(5):C1219–C1225PubMedCrossRefPubMedCentralGoogle Scholar
  648. 648.
    Said HM, Ortiz A, Kumar CK, Chatterjee N, Dudeja PK, Rubin S (1999) Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2. Am J Physiol 277(4 Pt 1):C645–C651PubMedCrossRefPubMedCentralGoogle Scholar
  649. 649.
    Said HM, Kumar C (1999) Intestinal absorption of vitamins. Curr Opin Gastroenterol 15(2):172–176PubMedCrossRefPubMedCentralGoogle Scholar
  650. 650.
    Sahoo S, Aurich MK, Jonsson JJ, Thiele I (20140 Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 5:91Google Scholar
  651. 651.
    Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437(3):357–372PubMedPubMedCentralCrossRefGoogle Scholar
  652. 652.
    Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E (2017) Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes Nutr 12:27PubMedPubMedCentralCrossRefGoogle Scholar
  653. 653.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Freeman, New YorkGoogle Scholar
  654. 654.
    Said HM (2004) Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu Rev Physiol 66:419–446PubMedCrossRefPubMedCentralGoogle Scholar
  655. 655.
    Zhao R, Goldman ID (2013) The proton-coupled folate transporter: physiological and pharmacological roles. Curr Opin Pharmacol 13(6):875–880PubMedPubMedCentralCrossRefGoogle Scholar
  656. 656.
    Desmoulin SK, Hou Z, Gangjee A, Matherly LH (2012) The human proton-coupled folate transporter—biology and therapeutic applications to cancer. Cancer Biol Ther 13(14):1355–1373PubMedPubMedCentralCrossRefGoogle Scholar
  657. 657.
    Matherly LH, Hou Z (2008) Structure and function of the reduced folate carrier: a paradigm of a major facilitator superfamily mammalian nutrient transporter. Vitam Horm 79:145–184PubMedCrossRefPubMedCentralGoogle Scholar
  658. 658.
    Geller J, Kronn D, Jayabose S, Sandoval C (2002) Hereditary folate malabsorption: family report and review of the literature. Medicine (Baltimore) 81(1):51–68CrossRefGoogle Scholar
  659. 659.
    Aluri S, Zhao R, Lubout C, Goorden SMI, Fiser A, Goldman ID (2018) Hereditary folate malabsorption due to a mutation in the external gate of the proton-coupled folate transporter SLC46A1. Blood Adv 2(1):61–68PubMedPubMedCentralCrossRefGoogle Scholar
  660. 660.
    Thomas DR (2006) Vitamins in aging, health, and longevity. Clin Interv Aging 1(1):81–91PubMedPubMedCentralCrossRefGoogle Scholar
  661. 661.
    Hall BE (1950) Nature of the intrinsic factor of Castle. Br Med J 2(4679):585–589PubMedPubMedCentralCrossRefGoogle Scholar
  662. 662.
    Festen HP (1991) Intrinsic factor secretion and cobalamin absorption. Physiology and pathophysiology in the gastrointestinal tract. Scand J Gastroenterol Suppl 188:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  663. 663.
    Gräsbeck R (2006) Imerslund-Gräsbeck syndrome (selective vitamin B12 malabsorption with proteinuria). Orphanet J Rare Dis 1:17PubMedPubMedCentralCrossRefGoogle Scholar
  664. 664.
    Adkins Y, Lönnerdal B (2001) High affinity binding of the transcobalamin II-cobalamin complex and mRNA expression of haptocorrin by human mammary epithelial cells. Biochim Biophys Acta 1528(1):43–48PubMedCrossRefPubMedCentralGoogle Scholar
  665. 665.
    Corti A, Casini AF, Pompella A (2010) Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Archiv Biochem Biophys 500(2):107–115CrossRefGoogle Scholar
  666. 666.
    Subramanian VS, Sabui S, Moradi H, Marchant JS, Said HM (2018) Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochim Biophys Acta 1860(2):556–565CrossRefGoogle Scholar
  667. 667.
    Rivas CI, Zúñiga FA, Salas-Burgos A, Mardones L, Ormazabal V, Vera JC (2008) Vitamin C transporters. J Physiol Biochem 64(4):357–375PubMedCrossRefPubMedCentralGoogle Scholar
  668. 668.
    May JM (2011) The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 164(7):1793–1801PubMedPubMedCentralCrossRefGoogle Scholar
  669. 669.
    Boyer JC, Campbell CE, Sigurdson WJ, Kuo S-M (2005) Polarized localization of vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochem Biophys Res Commun 334(1):150–156PubMedCrossRefPubMedCentralGoogle Scholar
  670. 670.
    Savini I, Rossi A, Pierro C, Avigliano L, Catani MV (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34(3):347–355PubMedCrossRefPubMedCentralGoogle Scholar
  671. 671.
    Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M (2002) Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. J Biol Chem 277(18):15252–15260PubMedCrossRefPubMedCentralGoogle Scholar
  672. 672.
    Babu PV, Liu D, Gilbert ER (2013) Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24(11):1777–1789PubMedCrossRefPubMedCentralGoogle Scholar
  673. 673.
    Cordero-Herrera I, Martín MÁ, Goya L, Ramos S (2014) Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem Toxicol 64:10–19PubMedCrossRefPubMedCentralGoogle Scholar
  674. 674.
    Petyaev IM, Bashmakov YK (2017) Dark chocolate: opportunity for an alliance between medical science and the food industry? Front Nutr 4:43PubMedPubMedCentralCrossRefGoogle Scholar
  675. 675.
    Vlachojannis J, Erne P, Zimmermann B, Chrubasik-Hausmann S (2016) The impact of cocoa flavanols on cardiovascular health. Phytother Res 30(10):1641–1657PubMedCrossRefPubMedCentralGoogle Scholar
  676. 676.
    Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A et al (2013) Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem 24(10):1751–1757PubMedCrossRefPubMedCentralGoogle Scholar
  677. 677.
    Reboul E (2015) Intestinal absorption of vitamin D: from the meal to the enterocyte. Food Funct 6:356–362PubMedCrossRefPubMedCentralGoogle Scholar
  678. 678.
    Kuipers F, Bloks VW, Groen AK (2014) Beyond intestinal soap—bile acids in metabolic control. Nat Rev Endocrinol 10:488–498PubMedPubMedCentralCrossRefGoogle Scholar
  679. 679.
    Martínez-Augustin O, de Medina FS (2008) Intestinal bile acid physiology and pathophysiology. World J Gastroenterol 14(37):5630–5640PubMedPubMedCentralCrossRefGoogle Scholar
  680. 680.
    Kosters A, Karpen SJ (2008) Bile acid transporters in health and disease. Xenobiotica 38(7–8): 1043PubMedPubMedCentralCrossRefGoogle Scholar
  681. 681.
    Alrefai WA, Gill RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24(10):1803–1823PubMedPubMedCentralCrossRefGoogle Scholar
  682. 682.
    Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y (2006) Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 34(9):1575–1581PubMedCrossRefPubMedCentralGoogle Scholar
  683. 683.
    Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342PubMedCrossRefPubMedCentralGoogle Scholar
  684. 684.
    Ridlon JM, Kang DJ, Hylemon PB, Bile Bajaj JS (2014) Acids and the gut microbiome. Curr Opin Gastroenterol 30(3):332–338PubMedPubMedCentralCrossRefGoogle Scholar
  685. 685.
    Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N (2017) The role of the gut microbiota in bile acid metabolism. Ann Hepatol 16(1):S15–S20PubMedCrossRefPubMedCentralGoogle Scholar
  686. 686.
    Chiang JYL, Ferrell JM (2018) Bile acid metabolism in liver pathobiology. Gene Expr. Scholar
  687. 687.
    Staels B, Fonseca VA (2009) Bile acids and metabolic regulation mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32(2):S237–S245PubMedPubMedCentralCrossRefGoogle Scholar
  688. 688.
    Swanson HI, Wada T, Xie W, Renga B, Zampella A, Distrutti E et al (2013) Role of nuclear receptors in lipid dysfunction and obesity-related diseases. Drug Metab Dispos 41(1):1–11PubMedPubMedCentralCrossRefGoogle Scholar
  689. 689.
    Hofmann AF (1999) Bile acids: the good, the bad, and the ugly. News Physiol Sci 14:24–29PubMedPubMedCentralGoogle Scholar
  690. 690.
    Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL et al (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42(6):1270–1279PubMedCrossRefPubMedCentralGoogle Scholar
  691. 691.
    Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N (2005) The heteromeric organic solute transporter α-β, Ostα-Ostβ, is an ileal basolateral bile acid transporter. J Biol Chem 280(8):6960–6968PubMedCrossRefPubMedCentralGoogle Scholar
  692. 692.
    Kakiyama G, Muto A, Takei H, Nittono H, Murai T, Kurosawa T et al (2014) A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: validation by GC-MS and LC-MS. J Lipid Res 55:978–990PubMedPubMedCentralCrossRefGoogle Scholar
  693. 693.
    Sauter GH, Munzing W, Von RC, Paumgartner G (1999) Bile acid malabsorption as a cause of chronic diarrhea: diagnostic value of 7alpha-hydroxy-4-cholesten-3-one in serum. Dig Dis Sci 44:14–19PubMedCrossRefPubMedCentralGoogle Scholar
  694. 694.
    Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66(4):948–983PubMedPubMedCentralCrossRefGoogle Scholar
  695. 695.
    Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50(12):2340–2357PubMedPubMedCentralCrossRefGoogle Scholar
  696. 696.
    Festa C, De Marino S, Carino A, Sepe V, Marchianò S, Cipriani S et al (2017) Targeting bile acid receptors: discovery of a potent and selective farnesoid X receptor agonist as a new lead in the pharmacological approach to liver diseases. Front Pharmacol 8:162PubMedPubMedCentralCrossRefGoogle Scholar
  697. 697.
    Roda A, Pellicciari R, Gioiello A, Neri F, Camborata C, Passeri D et al (2014) Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat. J Pharmacol Exp Ther 350(1):56–68PubMedCrossRefPubMedCentralGoogle Scholar
  698. 698.
    Duquette PP, Bissonnette P, Lapointe JY (2001) Local osmotic gradients drive the water flux associated with Na(+)/glucose cotransport. Proc Natl Acad Sci U S A 98(7):3796–3801PubMedPubMedCentralCrossRefGoogle Scholar
  699. 699.
    Loo DD, Wright EM, Zeuthen T (2002) 0 Water pumps. J Physiol 542(Pt 1):53–60PubMedPubMedCentralCrossRefGoogle Scholar
  700. 700.
    Sidorov JJ (1976) Intestinal absorption of water and electrolytes. Clin Biochem 9:117–120PubMedCrossRefPubMedCentralGoogle Scholar
  701. 701.
    Lapointe JY, Gagnon MP, Gagnon DG, Bissonnette P (2002) Controversy regarding the secondary active water transport hypothesis. Biochem Cell Biol 80(5):525–533PubMedCrossRefPubMedCentralGoogle Scholar
  702. 702.
    Wright EM, Turk E (2004) The sodium glucose cotransport family SLC5. Pflügers Arch 447(5):813–815CrossRefGoogle Scholar
  703. 703.
    Wright EM, Loo DD (2000) Coupling between Na+, sugar, and water transport across the intestine. Ann N Y Acad Sci 915:54–66PubMedCrossRefPubMedCentralGoogle Scholar
  704. 704.
    Sullivan SK, Field M (1991) Ion transport across mammalian small intestine. In: Schultz SG, Field M, Frizzell RA (eds) Handbook of physiologv. Section 6. The gastrointestinal system, vol 4. Intestinal absorption and secretion. Oxford University Press, New York