Advertisement

Gastrointestinal Exocrine (Lumencrine) Secretions. The Reception Theory as the Basis for Developing the First Antisecretory Pharmacotherapy Drugs

  • Menizibeya Osain Welcome
Chapter

Abstract

Secretions of the gastrointestinal (GI) tract were identified since antiquity. However, the role of these secretions in the process of digestion was not recognized after a couple of centuries. Modern knowledge about the secretory activity and regulation of the gut began with the work of Camillo Golgi (1843–1926), Jan Evangelista Purkyně (1787–1869), William Beaumont (1785–1853), Rudolph Heidenhain (1834–1897), Ivan Petrovich Pavlov (1849–1936). GI secretions include oral secretions (saliva), gastric juice, pancreatic juice, intestinal juice, bile, and other co-released components produced by the glandular cells of the digestive tract. Enzymes and their cofactors represent major components of these digestive juices that help to break down proteins, fats, and carbohydrates into simple absorbable substances. The GI juices also contain water, ions, mineral salts, and other endogenous proteins. In its broader sense, however, GI secretions include neuromediators and hormones. Of special attention is the secretion of the cells of the stomach (known as gastric juice), which has immense clinical implications in gastric pathology. Though it was widely accepted that hydrochloric acid is a major component of stomach juice, the clinical importance of gastric acid was not appreciated until the cellular and molecular mechanisms of gastric secretion were unraveled. It was known that gut secretions are controlled by a complex network involving the nervous and humoral systems as well as components of ingested food. However, nothing was known about the molecular processes regulating the secretory activity of the stomach. Compelling evidences on the mechanisms of regulation of gastric secretion came in the second half of the twentieth century following the groundbreaking investigations led by Sir James Whyte Black (1924–2010), which was rooted on chemical reception theory proposed around the beginning of the twentieth century by John Newport Langley (1852–1925) and Paul Ehrlich (1854–1915). The theory of chemical reception posits that chemical receptive substances (receptors), which are plasma membrane proteins, are required for receiving incoming chemical messengers (hormones and neurotransmitters) that initiate cellular response. The discovery of the hormone gastrin by John Sydney Edkins (1863–1940) in 1906 and of the GI source and functions of the hormone histamine by a student of Pavlov, Popielski Leon Bernardovich (Popielski Lev Bernardovich) (1866–1920) in 1916, coupled with the discovery of proton pumps in 1973 by Allen L. Ganser (1942–), and John Gaetano Forte (1934–2012), made it possible for the pioneer investigator Dr. George Sachs to extensively study proton pump inhibitors (PPI) and histamine (H) type 2 receptor blockers, which provided a good and superior alternative to gastric surgery that was initially the mainstay of treatment of gastric ulcer. This chapter not only gives a historic account on discoveries and the clinical importance of gastric secretions, but also discusses the mechanisms and secretory functions of the various regions of the GI tract.

Keywords

Reception theory Chemical reception Chemical signaling Ion transport Gastrointestinal secretions Saliva Exocrine glands Duacrine glands Gastric juice Pancreatic juice Intestinal juice Bile Proton pumps Proton pump inhibitors Histamine type 2 receptor blockers Gastric pharmacology Gastric history John Newport Langley Paul Ehrlich Sir James Whyte Black John Sydney Edkins Popielski Leon Bernardovich (Popielski Lev Bernardovich) Allen L. Ganser John Gaetano Forte George Sachs 

Abbreviations

HCl

Hydrochloric acid

M1, M2, M3, M4, and M5

Muscarinic acetylcholine receptor types

µg/kg

Microgram per kilogram

µg/kg/h

Microgram per kilogram per hour

PPIs

Proton pump inhibitors

GABA

Gamma-aminobutyric acid

NO

Nitric oxide

CCK

Cholecystokinin

CNS

Central nervous system

5-HT(2A)

Serotonin 2A (5-HT(2A)) receptor

LD50 or LC50

Lethal dose or concentration 50%

nmol/kg

Nanomole per kilogram

microM

Micromole

4-DAMP

4-Diphenyl-acetoxy-N-methyl-piperidine

ATP4A

Adenosine triphosphate type 4A

TM4, TM5, TM6, and TM8

Transmembrane segments

Kir4.1

ATP-dependent inwardly rectifying potassium

KCNQ1

Voltage-gated potassium channel, KQT-like subfamily Q, member 1

KCNE2

Member 2 of the potassium voltage-gated channel subfamily E also known as MinK-related peptide 1 (MiRP1)

CFTR

Cystic fibrosis transmembrane conductance regulator

CLIC-6

Chloride intracellular channel protein 6

Cl

Chloride ion

K+

Potassium ion

KCC4

K+-Cl cotransporter type 4

Å

Armstrong

GERD

Gastroesophageal reflux disease

SLC26A9

Solute carrier family 26 (anion exchanger), member 9

Bibliography

  1. 1.
    Fry C (2009) Secretions of the salivary glands and stomach. Surgery (Oxford) 27(12):503–506CrossRefGoogle Scholar
  2. 2.
    Hendrix TR, Paulk HT (1977) Intestinal secretion. Int Rev Physiol 12:257–284PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bhattarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A et al (2017) Human derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. Am J Physiol Gastrointest Liver Physiol 313(1):G80–G87PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Smolka AJ, Schubert ML (2017) Helicobacter pylori-induced changes in gastric acid secretion and upper gastrointestinal disease. In: Tegtmeyer N, Backert S (eds) Molecular pathogenesis and signal transduction by helicobacter pylori, volume 400 of the series current topics in microbiology and immunology. Springer International Publishing AG, ChamGoogle Scholar
  5. 5.
    Davison JS (1989) Gastrointestinal secretion. Wright Publishing Company, LondonGoogle Scholar
  6. 6.
    Camilleri M (2004) Chronic diarrhea: a review on pathophysiology and management for the clinical gastroenterologist. Clin Gastroenterol Hepatol 2(3):198–206CrossRefPubMedGoogle Scholar
  7. 7.
    Kiela PR, Ghishan FK (2016) Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 30(2):145–159PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Iorgulescu G (2009) Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life 2(3):303–307PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kvietys PR, Granger DN (2010) Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann N Y Acad Sci 1207(1):E29–E43PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Whitehead WE (1989) Effects of psychological factors on gastrointestinal function. In: Snape WJ Jr (ed) Pathogenesis of functional bowel disease, part of the series topics in gastroenterology. Springer, New YorkGoogle Scholar
  11. 11.
    Schneeman B (2004) Food factors and gastrointestinal function: a critical interface. BioFactors 21(1–4):85–88PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Collado MC, Cernada M, Neu J, Pérez-Martínez G, Gormaz M, Vento M (2015) Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants. Pediatr Res 77:726–731PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Park HW, Lee MG (2012) Transepithelial bicarbonate secretion: lessons from the pancreas. Cold Spring Harb Perspect Med 2(10):a009571PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Glass GBJ (1964) Proteins, mucosubstances, and biologically active components of gastric secretion. Adv Clin Chem 7:235–372PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Krogdahl Å, Sundby A, Bakke AM (2011) Integrated function and control of the gut. Gut secretion and digestion. In: Anthony FP (ed) Encyclopedia of fish physiology—from genome to environment. Elsevier, MACrossRefGoogle Scholar
  16. 16.
    Claustre J, Toumi F, Trompette A, Jourdan G, Guignard H, Chayvialle JA, Plaisancié P (2002) Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am J Physiol Gastrointest Liver Physiol 283(3):G521–G528PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Feldman M (2013) American journal of gastroenterology lecture: gastric acid secretion: still relevant? Am J Gastroenterol 108:347–352PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kumar S, Hoh JH (2001) Probing the machinery of intracellular trafficking with the atomic force microscope. Traffic 2:746–756PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148–155PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Farhan H, Rabouille C (2011) Signalling to and from the secretory pathway. J Cell Sci 124:171–180PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Baron S, Vangheluwe P, Sepúlveda MR, Wuytack F, Raeymaekers L, Vanoevelen J (2010) The secretory pathway Ca(2+)-ATPase 1 is associated with cholesterol-rich microdomains of human colon adenocarcinoma cells. Biochim Biophys Acta 1798(8):1512–1521PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman, New YorkGoogle Scholar
  23. 23.
    Abdullah LH, Davis CW (2007) Regulation of airway goblet cell mucin secretion by tyrosine phosphorylation signaling pathways. Am J Physiol Lung Cell Mol Physiol 293:L591–L599PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Shifflett DE, Jones SL, Moeser AJ, Blikslager AT (2004) Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol 286(6):G906–G913PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Takeuchi Y, Yamada J, Yamada T, Todisco A (1997) Functional role of extracellular signal-regulated protein kinases in gastric acid secretion. Am J Physiol Gastrointest Liver Physiol 273(6):G1263–G1272CrossRefGoogle Scholar
  26. 26.
    Logsdon CD, Ji B (2013) The role of protein synthesis and digestive enzymes in acinar cell injury. Nat Rev Gastroenterol Hepatol 10:362–370PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Capoccia BJ, Jin RU, Kong YY, Peek RM Jr, Fassan M, Rugge M, Mills JC (2013) The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest 123(4):1475–1491PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nakamoto T, Srivastava A, Romanenko VG, Ovitt CE, Perez-Cornejo P, Arreola J et al (2007) Functional and molecular characterization of the fluid secretion mechanism in human parotid acinar cells. Am J Physiol Regul Integr Comp Physiol 292(6):R2380–R2390PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nagasawa J (1977) Exocytosis: the common release mechanism of secretory granules in glandular cells, neurosecretory cells, neurons and paraneurons. Arch Histol Jpn 40:31–47PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Nagasawa J, Douglas WW, Schulz RA (1970) Ultrastructural evidence of secretion by exocytosis and of “synaptic vesicle” formation in posterior pituitary glands. Nature 227(5256):407–409PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Douglas WW, Nagasawa J, Schulz R (1971) Electron microscopic studies on the mechanism of secretion of posterior pituitary hormones and significance of microvesicles (“synaptic vesicles”): evidence of secretion by exocytosis and formation of microvesicles as a by-product of this process. Mem Soc Endocrinol 19:353–378Google Scholar
  32. 32.
    Halm DR, Halm ST (1999) Secretagogue response of goblet cells and columnar cells in human colonic crypts. Am J Physiol Cell Physiol 277(46):C501–C522CrossRefGoogle Scholar
  33. 33.
    De Camilli P (1995) The eighth Datta lecture. Molecular mechanisms in synaptic vesicle recycling. FEBS Lett 369(1):3–12PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wu L-G, Hamid E, Shin W, Chiang H-C (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76:301–331PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Matthews G (2002) Synaptic vesicle exocytosis: does a lingering kiss lead to fusion? Neuron 35(6):1013–1014PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Galli T, Haucke V, Gough NR (2003) Synaptic vesicle fusion followed by clathrin-mediated endocytosis. Sci STKE 2003(198):tr3CrossRefGoogle Scholar
  38. 38.
    Castle AM, Huang AY, Castle JD (2002) The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface of acinar cells. J Cell Sci 115:2963–2973PubMedPubMedCentralGoogle Scholar
  39. 39.
    Koo SJ, Kochlamazashvili G, Rost B, Puchkov D, Gimber N, Lehmann M et al (2015) Vesicular synaptobrevin/VAMP2 levels guarded by AP180 control efficient neurotransmission. Neuron 88(2):330–344PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rajappa R, Gauthier-Kemper A, Böning D, Hüve J, Klingauf J (2016) Synaptophysin 1 clears synaptobrevin 2 from the presynaptic active zone to prevent short-term depression. Cell Rep 14(6):1369–1381PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Oishi Y, Arakawa T, Tanimura A, Itakura M, Takahashi M, Tajima Y et al (2006) Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 125(3):273–281PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wang C-C, Shi H, Guo K, Ng CP, Li J, Gan BQ et al (2007) VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell 18(3):1056–1063PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Barrera MJ, Sánchez M, Aguilera S, Alliende C, Bahamondes V, Molina C et al (2012) Aberrant localization of fusion receptors involved in regulated exocytosis in salivary glands of Sjögren’s syndrome patients is linked to ectopic mucin secretion. J Autoimmun 39(1–2):83–92PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gaffield MA, Betz WJ (2007) Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protocols 1:2916–2921CrossRefGoogle Scholar
  46. 46.
    Tsuboi T (2008) Molecular mechanism of docking of dense-core vesicles to the plasma membrane in neuroendocrine cells. Med Mol Morphol 41:68PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gong LW, Hafez I, Alvarez de Toledo G, Lindau M (2003) Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J Neurosci 23(21):7917–7921PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Edgar WM (1992) Saliva: its secretion, composition and functions. Br Dent J 172(8):305–312PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    du Toit DF, Nortjé C (2004) Salivary glands: applied anatomy and clinical correlates. SADJ 59(2):65–66, 69–71, 73–74Google Scholar
  50. 50.
    Ellis H (2012) Anatomy of the salivary glands. Surgery 30(11):569–572Google Scholar
  51. 51.
    Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85(2):162–169PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ferguson DB (1999) The flow rate and composition of human labial gland saliva. Arch Oral Biol 44(1):S11–S14PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sonesson M (2011) On minor salivary gland secretion in children, adolescents and adults. Swed Dent J 215:9–64Google Scholar
  54. 54.
    Sonesson M, Ericson D, Kinnby B, Wickström C (2011) Glycoprotein 340 and sialic acid in minor-gland and whole saliva of children, adolescents, and adults. Eur J Oral Sci 119(6):435–440PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Varga G (2012) Physiology of the salivary glands. Surgery (Oxford) 30(11):578–583CrossRefGoogle Scholar
  56. 56.
    Lee MG, Ohana E, Park HW, Yang D, Muallem S (2012) Molecular mechanism of pancreatic and salivary gland fluid and HCO3− secretion. Physiol Rev 92(1):39–74PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands. Acta Histochem Cytochem 45(5):241–250PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hunter KD, Wilson WS (1995) The effects of antidepressant drugs on salivary flow and content of sodium and potassium ions in human parotid saliva. Arch Oral Biol 40:983–989PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Silvers AR, Som PM (1998) Salivary glands. Radiol Clin North Am 36(5):941–966PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Nadershah M, Salama A (2012) Removal of parotid, submandibular, and sublingual glands. Oral Maxillofac Surg Clin North Am 24(2):295–305PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lakraj AA, Moghimi N, Jabbari B (2013) Sialorrhea: anatomy, pathophysiology and treatment with emphasis on the role of botulinum toxins. Toxins (Basel) 5(5):1010–1031CrossRefGoogle Scholar
  62. 62.
    Leung AKC, Kao CP (1999) Drooling in children. Paediatr Child Health 4(6):406–411PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zlotnik Y, Balash Y, Korczyn AD, Giladi N, Gurevich T (2015) Disorders of the oral cavity in parkinson’s disease and parkinsonian syndromes. Parkinsons Dis 2015:379482PubMedPubMedCentralGoogle Scholar
  64. 64.
    Restivo DA, Panebianco M, Casabona A, Lanza S, Marchese-Ragona R, Patti F, et al (2018) Botulinum toxin A for sialorrhoea associated with neurological disorders: evaluation of the relationship between effect of treatment and the number of glands treated. Toxins (Basel) 10(2):E55PubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dashtipour K, Bhidayasiri R, Chen JJ, Jabbari B, Lew M, Torres-Russotto D (2017) RimabotulinumtoxinB in sialorrhea: systematic review of clinical trials. J Clin Mov Disord 4:9PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Petracca M, Guidubaldi A, Ricciardi L, Ialongo T, Del Grande A, Mulas D, et al (2015) Botulinum toxin A and B in sialorrhea: long-term data and literature overview. Toxicon 107(Pt A):129–140PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kondo Y, Nakamoto T, Jaramillo Y, Choi S, Catalan MA, Melvin JE (2015) Functional differences in the acinar cells of the murine major salivary glands. J Dent Res 94(5):715–721PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Delporte C, Bryla A, Perret J (2016) Aquaporins in salivary glands: from basic research to clinical applications. Int J Mol Sci 17(2):166CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Holmberg KV, Hoffman MP (2014) Anatomy, biogenesis, and regeneration of salivary glands. Monogr Oral Sci 24:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shah AAK, Mulla AF, Mayank M (2016) Pathophysiology of myoepithelial cells in salivary glands. J Oral Maxillofac Pathol 20(3):480–490PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Balachander N, Masthan KMK, Babu NA, Anbazhagan V (2015) Myoepithelial cells in pathology. J Pharm Bioallied Sci 7(1):S190–S193PubMedPubMedCentralGoogle Scholar
  72. 72.
    Patterson K, Catalán MA, Melvin JE, Yule DI, Crampin EJ, Sneyd J (2012) A quantitative analysis of electrolyte exchange in the salivary duct. Am J Physiol Gastrointest Liver Physiol 303(10):G1153–G1163PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sato A (2007) Tuft cells. Anat Sci Int 82(4):187–199PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sato A, Miyoshi S (1996) Tuft cells in the main excretory duct epithelia of the three major rat salivary glands. Eur J Morphol 34(3):225–228PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Segawa A, Loffredo F, Puxeddu R, Yamashina S, Testa Riva F, Riva A (1998) Exocytosis in human salivary glands visualized by high-resolution scanning electron microscopy. Cell Tissue Res 291(2):325–336PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hand AR, Pathmanathan D, Field RB (1999) Morphological features of the minor salivary glands. Arch Oral Biol 44(1):S3–S10CrossRefPubMedGoogle Scholar
  77. 77.
    Stephens LC, King GK, Peters LJ, Ang KK, Schultheiss TE, Jardine JH (1986) Unique radiosensitivity of serous cells in rhesus monkey submandibular glands. Am J Pathol 124(3):479–487PubMedPubMedCentralGoogle Scholar
  78. 78.
    Davis PB (1987) Pathophysiology of cystic fibrosis with emphasis on salivary gland involvement. J Dent Res 66:667–671PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lydiatt DD, Bucher GS (2012) The historical evolution of the understanding of the submandibular and sublingual salivary glands. Clin Anat 25(1):2–11PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Trivedi N (2015) Tumors of the parotid. Atlas of head and neck cancer surgery. Springer, New DelhiGoogle Scholar
  81. 81.
    Larian B (2016) Parotidectomy for benign parotid tumors. Otolaryngol Clin N Am 49:395–413CrossRefGoogle Scholar
  82. 82.
    Carlson GW (2000) The salivary glands. Embryology, anatomy, and surgical applications. Surg Clin North Am 80(1):261–273, xiiPubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kuijper-Lenstra AH, Kramer MF (1975) Rate of protein synthesis in rat salivary gland cells after pilocarpine or feeding. I. Rate of (glyco) protein secretion from cells of mixed salivary glands. Cell Tissue Res 164(4):435–446PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ohshima H (2014) Dental and oral biology, anatomy. In: Caplan M, Bradshaw RA, Bylund DB, Carlson BM, Enna SJ, Hart GW et al (eds) Physiology of the digestive system. Human physiology. Reference module in biomedical sciences. Elsevier, MAGoogle Scholar
  85. 85.
    Rastogi R, Bhargava S, Mallarajapatna GJ, Singh SK (2012) Pictorial essay: salivary gland imaging. Indian J Radiol Imaging 22(4):325–333PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ekström J, Khosravani N, Castagnola M, Messana I (2011) Saliva and the control of its secretion. In: Ekberg O (ed) Dysphagia. Medical radiology. Springer, HeidelbergCrossRefGoogle Scholar
  87. 87.
    Tandler B, Pinkstaff CA, Riva A (1994) Ultrastructure and histochemistry of human anterior lingual salivary glands (glands of Blandin and Nuhn). Anat Rec 240(2):167–177PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Cheng SJ, Huang CF, Chen YC, Lee JJ, Chang HH, Chen HM et al (2009) Ultrastructural changes of posterior lingual glands after hypoglossal denervation in hamsters. J Anat 214(1):163–170PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Riva A, Puxeddu R, Uras L, Loy F, Serreli S, Testa Riva F (2000) A high resolution sem study of human minor salivary glands. Eur J Morphol 38(4):219–226PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kraitrakul S, Sirithunyaporn S, Yimtae K (2001) Distribution of minor salivary glands in the peritonsillar space. J Med Assoc Thai 84(3):371–378PubMedPubMedCentralGoogle Scholar
  91. 91.
    Kumaresan R, Karthikeyan P, Mohammed F, Fairozekhan AT (2013) A novel technique for the management of Blandin-Nuhn mucocele: a case report. Int J Clin Pediatr Dent 6(3):201–204PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Leon NG, Pardo GEM (2013) Mucocele of the glands of Blandin-Nuhn: a case report. Colomb Med (Cali) 44(1):46–47Google Scholar
  93. 93.
    Siqueira WL, Salih E, Wan DL, Helmerhorst EJ, Oppenheim FG (2008) Proteome of human minor salivary gland secretion. J Dent Res 87(5):445–450PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Perez P, Rowzee AM, Zheng C, Adriaansen J, Baum BJ (2010) Salivary epithelial cells: an unassuming target site for gene therapeutics. Int J Biochem Cell Biol 42(6):773–777PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lantini MS, Proto E, Puxeddu P, Riva A, Testa Riva F (1990) Fine structure of excretory ducts of human salivary glands. J Submicrosc Cytol Pathol 22(3):465–475PubMedPubMedCentralGoogle Scholar
  96. 96.
    Chitturi RT, Veeravarmal V, Nirmal RM, Reddy BVR (2015) Myoepithelial cells (MEC) of the salivary glands in health and tumours. J Clin Diagn Res 9(3):ZE14–ZE18Google Scholar
  97. 97.
    Ianez RF, Buim ME, Coutinho-Camillo CM, Schultz R, Soares FA, Lourenço SV (2010) Human salivary gland morphogenesis: myoepithelial cell maturation assessed by immunohistochemical markers. Histopathology 57(3):410–417PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nakamoto T, Romanenko V, Melvin JE (2007) The electrolyte and water secretion mechanism. J Oral Biosci 49(1):27–30CrossRefGoogle Scholar
  99. 99.
    Cutler LS, Gremski W (1991) Epithelial-mesenchymal interactions in the development of salivary glands. Crit Rev Oral Biol Med 2(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Chan YH, Huang TW, Young TH, Lou PJ (2011) Human salivary gland acinar cells spontaneously form three-dimensional structures and change the protein expression patterns. J Cell Physiol 226(11):3076–3085PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Logsdon CD, Ji B (2013) The role of protein synthesis and digestive enzymes in acinar cell injury. Nat Rev Gastroenterol Hepatol 10(6):362–370PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Turner JR, Sugiya H (2002) Understanding salivary fluid and protein secretion. Oral Dis 8:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kim SK, Cuzzort LM, McKean RK (1992) Amylase mRNA synthesis and ageing in rat parotid glands following isoproterenol-stimulated secretion. Arch Oral Biol 37(5):349–354PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Horii A, Emi M, Tomita N, Nishide T, Ogawa M, Mori T, Matsubara K (1987) Primary structure of human pancreatic alpha-amylase gene: its comparison with human salivary alpha-amylase gene. Gene 60(1):57–64PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bonnefond A, Yengo L, Dechaume A, Canouil M, Castelain M, Roger E et al (2017) Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach. BMC Med 15(1):37PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Falchi M, El-Sayed Moustafa JS, Takousis P, Pesce F, Bonnefond A, Andersson-Assarsson JC et al (2014) Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet 46:492–497PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Castle D, Castle A (1998) Intracellular transport and secretion of salivary proteins. Crit Rev Oral Biol Med 9(l):4–22CrossRefGoogle Scholar
  108. 108.
    Yokouchi H, Horii A, Emi M, Tomita N, Doi S, Ogawa M et al (1990) Cloning and characterization of a third type of human alpha-amylase gene, AMY2B. Gene 90(2):281–286PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Samuelson LC, Wiebauer K, Gumucio DL, Meisler MH (1988) Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene. Nucleic Acids Res 16(17):8261–8276PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Carpenter D, Dhar S, Mitchell LM, Fu B, Tyson J, Shwan NA et al (2015) Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum Mol Genet 24(12):3472–3480PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G (2012) Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci 13(4):4295–4320PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81(12):845–850PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Storesund T, Schreurs O, Messelt EB, Kolltveit KM, Schenck K (2009) Trefoil factor family 3 expression in the oral cavity. Eur J Oral Sci 117(6):636–643PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Jagla W, Wiede A, Hinz M, Dietzmann K, Gülicher D, Gerlach KL, Hoffmann W (1999) Secretion of TFF-peptides by human salivary glands. Cell Tissue Res 298(1):161–166PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Taichman NS, Cruchley AT, Fletcher LM, Hagi-Pavli EP, Paleolog EM, Abrams WR et al (1998) Vascular endothelial growth factor in normal human salivary glands and saliva: a possible role in the maintenance of mucosal homeostasis. Lab Invest 78(7):869–875PubMedPubMedCentralGoogle Scholar
  116. 116.
    Leclair EE (2003) Four BPI (bactericidal/permeability-increasing protein)-like genes expressed in the mouse nasal, oral, airway and digestive epithelia. Biochem Soc Trans 31(Pt 4):801–805PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Wheeler TT, Haigh BJ, McCracken JY, Wilkins RJ, Morris CA, Grigor MR (2002) The BSP30 salivary proteins from cattle, LUNX/PLUNC and von Ebner’s minor salivary gland protein are members of the PSP/LBP superfamily of proteins. Biochim Biophys Acta 1579(2–3):92–100PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wheeler TT, Hood KA, Maqbool NJ, McEwan JC, Bingle CD, Zhao S (2007) Expansion of the bactericidal/permeability increasing-like (BPI-like) protein locus in cattle. BMC Genom 8:75CrossRefGoogle Scholar
  119. 119.
    Petersen OH, Tepikin AV (2008) Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 70:273–299PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 21(4):457–461PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Chen KT, Ong HL, Liu X, Ambudkar IS (2011) Contribution of TRPC1 and Orai1 to Ca2+ entry activated by store depletion. Adv Exp Med Biol 704:435–449CrossRefGoogle Scholar
  122. 122.
    Froehlich DA, Pangborn RM, Whitaker JR (1987) The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion. Physiol Behav 41(3):209–217PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Williams JA (1981) Electrical correlates of secretion in endocrine and exocrine cells. Fed Proc 40(2):128–134PubMedPubMedCentralGoogle Scholar
  124. 124.
    Park HS, Betzenhauser MJ, Zhang Y, Yule DI (2012) Regulation of Ca2+ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol 302(1):G97–G104PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Benes C, Soltoff SP (2001) Modulation of PKCδ tyrosine phosphorylation and activity in salivary and PC-12 cells by Src kinases. Am J Physiol Cell Physiol 280(6):C1498–C1510PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Ishikawa Y, Ishida H (2000) Aquaporin water channel in salivary glands. Jpn J Pharmacol 83(2):95–101PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Putney JW Jr (1982) Inositol lipids and cell stimulation in mammalian salivary gland. Cell Calcium 3(4–5):369–383PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Turner JT, Landon LA, Gibbons SJ, Talamo BR (1999) Salivary gland P2 nucleotide receptors. Crit Rev Oral Biol Med 10(2):210–224PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Nauntofte B (1992) Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol 263(6 Pt 1):G823–G837PubMedPubMedCentralGoogle Scholar
  130. 130.
    Kim J-H, Park S-H, Moon YW, Hwang S, Kim D, Jo S-H et al (2009) Histamine H1 receptor induces cytosolic calcium increase and aquaporin translocation in human salivary gland cells. J Pharmacol Exp Ther 330(2):403–412PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ambudkar IS (2014) Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 55(6):297–305PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Beroukas D, Goodfellow R, Hiscock J, Jonsson R, Gordon TP, Waterman SA (2002) Up-regulation of M3-muscarinic receptors in labial salivary gland acini in primary Sjögren’s syndrome. Lab Invest 82:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Kajiya M, Ichimonji I, Min C, Zhu T, Jin J-O, Yu Q et al (2012) Muscarinic type 3 receptor induces cytoprotective signaling in salivary gland cells through epidermal growth factor receptor transactivation. Mol Pharmacol 82(1):115–124PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Maruyama Y, Gallacher DV, Petersen OH (1983) Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302(5911):827–829PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Catalán MA, Peña-Munzenmayer G, Melvin JE (2014) Ca2+-dependent K+ channels in exocrine salivary glands. Cell Calcium 55(6):362–368PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ishikawa T, Murakami M, Seo Y (1994) Basolateral K+ efflux is largely independent of maxi-K+ channels in rat submandibular glands during secretion. Pflugers Arch 428(5–6):516–525PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Morris AP, Gallacher DV, Fuller CM, Scott J (1987) Cholinergic receptor-regulation of potassium channels and potassium transport in human submandibular acinar cells. J Dent Res 66(2):541–546PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Frizzell RA, Hanrahan JW (2012) Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2(6):a009563PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Melvin JE (1999) Chloride channels and salivary gland function. Crit Rev Oral Biol Med 10(2):199–209PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H et al (2009) IRBIT coordinates epithelial fluid and HCO3− secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest 119(1):193–202PubMedPubMedCentralGoogle Scholar
  142. 142.
    Ando H, Kawaai K, Mikoshiba K (2014) IRBIT: a regulator of ion channels and ion transporters. Biochim Biophys Acta 1843(10):2195–2204CrossRefGoogle Scholar
  143. 143.
    Yamaguchi S, Ishikawa T (2008) The electrogenic Na+-HCO3− cotransporter NBCe1-B is regulated by intracellular Mg2+. Biochem Biophys Res Commun 376(1):100–104PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Lee S-K, Boron WF, Parker MD (2012) Relief of autoinhibition of the electrogenic Na-HCO3 cotransporter NBCe1-B: role of IRBIT vs. amino-terminal truncation. Am J Physiol Cell Physiol 302(3):C518–C526PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Jalali R, Guo J, Zandieh-Doulabi B, Bervoets TJM, Paine ML, Boron WF et al (2014) NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res 358(2):433–442PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ando H, Kawaai K, Mikoshiba K (2014) IRBIT: a regulator of ion channels and ion transporters. Biochim Biophys Acta Mol Cell Res 1843(10):2195–2204CrossRefGoogle Scholar
  147. 147.
    Castle D, Castle A (1998) Intracellular transport and secretion of salivary proteins. Crit Rev Oral Biol Med 9(1):4–22PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Castle JD, Castle AM (1993) Sorting and secretion of salivary proteins. Crit Rev Oral Biol Med 4(3–4):393–398PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Castle JD (1990) Sorting and secretory pathways in exocrine cells. Am J Respir Cell Mol Biol 2(2):119–126PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Venkatesh SG, Tan J, Gorr SU, Darling DS (2007) Isoproterenol increases sorting of parotid gland cargo proteins to the basolateral pathway. Am J Physiol Cell Physiol 293(2):C558–C565PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Fujita-Yoshigaki J, Matsuki-Fukushima M, Yokoyama M, Katsumata-Kato O (2013) Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation. Am J Physiol Gastrointest Liver Physiol 305(10):G685–G696PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    von Zastrow M, Castle JD (1987) Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol 105(6 Pt 1):2675–2684CrossRefGoogle Scholar
  153. 153.
    Carlo AS, Nykjaer A, Willnow TE (2014) Sorting receptor sortilin-a culprit in cardiovascular and neurological diseases. J Mol Med (Berl). 92(9):905–911PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Padilla BE, Cottrell GS, Roosterman D, Pikios S, Muller L, Steinhoff M, Bunnett NW (2007) Endothelin-converting enzyme-1 regulates endosomal sorting of calcitonin receptor-like receptor and beta-arrestins. J Cell Biol 179(5):981–997PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Chapman RE (1994) Vacuolar sorting: tracking down an elusive receptor. Curr Biol 4(11):1019–1022PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Varga G (2015) Physiology of the salivary glands. Surgery 33(12):581–586Google Scholar
  158. 158.
    Cannon RM, Lee CE (2013) Salivary gland physiology. In: Kountakis SE (ed) Encyclopedia of otolaryngology, head and neck surgery. Springer, HeidelbergGoogle Scholar
  159. 159.
    Hand AR (1990) The secretory process of salivary glands and pancreas. In: Riva A, Motta PM, Riva FT (eds) Ultrastructure of the extraparietal glands of the digestive tract. Springer, New YorkGoogle Scholar
  160. 160.
    Huang AY, Castle AM, Hinton BT, Castle JD (2001) Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J Biol Chem 276(25):22296–22306PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Wang J, Cawley NX, Voutetakis A, Rodriguez YM, Goldsmith CM, Nieman LK et al (2005) Partial redirection of transgenic human growth hormone secretion from rat salivary glands. Hum Gene Ther 16(5):571–583PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Proctor GB (2016) The physiology of salivary secretion. Periodontol 2000 70(1):11–25CrossRefGoogle Scholar
  163. 163.
    Okuma N, Saita M, Hoshi N, Soga T, Tomita M, Sugimoto M, Kimoto K (2017) Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile. PLoS ONE 12(8):e0183109PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Marquezin MC, Pedroni-Pereira A, Araujo DS, Rosar JV, Barbosa TS, Castelo PM (2016) Descriptive analysis of the masticatory and salivary functions and gustatory sensitivity in healthy children. Acta Odontol Scand 74(6):443–448PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Catalán MA, Nakamoto T, Melvin JE (2009) The salivary gland fluid secretion mechanism. J Med Invest 56:192–196PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Martinez JR (1987) Ion transport and water movement. J Dent Res 66:638–647PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Thaysen JH, Thorn NA, Schwartz IL (1954) Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am J Physiol 178(1):155–159PubMedPubMedCentralGoogle Scholar
  168. 168.
    Roussa E (2011) Channels and transporters in salivary glands. Cell Tissue Res 343(2):263–287PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Ohana E (2015) Transepithelial ion transport across duct cells of the salivary gland. Oral Dis 21(7):826–835PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Baker OJ (2016) Current trends in salivary gland tight junctions. Tissue Barriers 4(3):e1162348PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Alam J, Choi YS, Koh JH, Kwok S-K, Park S-H, Song YW et al (2017) Detection of autoantibodies against aquaporin-1 in the sera of patients with primary Sjögren’s syndrome. Immune Netw 17(2):103–109PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Delporte C (2014) Aquaporins in salivary glands and pancreas. Biochim Biophys Acta 1840(5):1524–1532PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Delporte C, Steinfeld S (2006) Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta 1758(8):1061–1070PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S et al (2001) Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 281(1):G247–G254PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Proctor GB, Carpenter GH (2007) Regulation of salivary gland function by autonomic nerves. Auton Neurosci 133(1):3–18PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Lai Z, Yin H, Cabrera-Pérez J, Guimaro MC, Afione S, Michael DG et al (2016) Aquaporin gene therapy corrects Sjögren’s syndrome phenotype in mice. Proc Natl Acad Sci U S A 113(20):5694–5699PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Carpenter GH (2013) The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4:267–276PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Thie NM, Kato T, Bader G, Montplaisir JY, Lavigne GJ (2002) The significance of saliva during sleep and the relevance of oromotor movements. Sleep Med Rev 6(3):213–227PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Esser D, Alvarez-Llamas G, de Vries MP, Weening D, Vonk RJ, Roelofsen H (2008) Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid. Biomark Insights 3:25–27PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    de Almeida Pdel V, Grégio AM, Machado MA, de Lima AA, Azevedo LR (2008) Saliva composition and functions: a comprehensive review. J Contemp Dent Pract 9(3):72–80Google Scholar
  181. 181.
    Damle SG, Vidya I, Yadav R, Bhattal H, Loomba A (2012) Quantitative determination of inorganic constituents in saliva and their relationship with dental caries experience in children. Dentistry 2:131CrossRefGoogle Scholar
  182. 182.
    Isenman L, Liebow C, Rothman S (1999) The endocrine secretion of mammalian digestive enzymes by exocrine glands. Am J Physiol Endocrinol Metab 276(2):E223–E232CrossRefGoogle Scholar
  183. 183.
    Zolotukhin S (2013) Metabolic hormones in saliva: origins and functions. Oral Dis 19(3):219–229PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Tiwari M (2011) Science behind human saliva. J Nat Sci Biol Med 2(1):53–58PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Granger DA, Shirtcliff EA, Booth A, Kivlighan KT, Schwartz EB (2004) The “trouble” with salivary testosterone. Psychoneuroendocrinology 29(10):1229–1240PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Mathison RD, Davison JS, Befus AD, Gingerich DA (2010) Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein. J Inflamm 7:49CrossRefGoogle Scholar
  187. 187.
    Leonora J, Tieche J-M, Celestin J (1987) Physiological factors affecting secretion of parotid hormone. Am J Physiol 252(4 Pt 1):E477–E484PubMedPubMedCentralGoogle Scholar
  188. 188.
    Gröschl M (2009) The physiological role of hormones in saliva. BioEssays 31(8):843–852PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Lindell SG, Suomi SJ, Shoaf S, Higley JD, Linnoila M (1999) Salivary prolactin as a marker for central serotonin turnover. Biol Psychiatry 46(4):568–572PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Kanno T, Asada N, Yanase H, Iwanaga T, Ozaki T, Nishikawa Y et al (1999) Salivary secretion of highly concentrated chromogranin a in response to noradrenaline and acetylcholine in isolated and perfused rat submandibular glands. Exp Physiol 84(6):1073–1083PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Gröschl M, Topf HG, Kratzsch J, Dötsch J, Rascher W, Rauh M (2005) Salivary leptin induces increased expression of growth factors in oral keratinocytes. J Mol Endocrinol 34(2):353–366PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Gröschl M, Topf HG, Bohlender J, Zenk J, Klussmann S, Dötsch J et al (2005) Identification of ghrelin in human saliva: production by the salivary glands and potential role in proliferation of oral keratinocytes. Clin Chem 51(6):997–1006PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Gröschl M, Wendler O, Topf HG, Bohlender J, Köhler H (2009) Significance of salivary adrenomedullin in the maintenance of oral health: stimulation of oral cell proliferation and antibacterial properties. Regul Pept 154(1–3):16–22PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Šimo L, Koči J, Žitňan D, Park Y (2011) Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS ONE 6(1):e16158PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Sabbadini E, Berczi I (1995) The submandibular gland: a key organ in the neuro-immuno-regulatory network? NeuroImmunoModulation 2(4):184–202PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Nederfors T, Dahlöf C (1996) Effects on salivary flow rate and composition of withdrawal of and re-exposure to the beta 1-selective antagonist metoprolol in a hypertensive patient population. Eur J Oral Sci 104(3):262–268PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Arhakis A, Karagiannis V, Kalfas S (2013) Salivary alpha-amylase activity and salivary flow rate in young adults. Open Dent J 7:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Gorr S-U, Venkatesh SG, Darling DS (2005) Parotid secretory granules: crossroads of secretory pathways and protein storage. J Dent Res 84(6):500–509PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Messenger SW, Falkowski MA, Groblewski GE (2014) Ca2+-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 55(6):369–375PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Cosen-Binker LI, Gaisano HY (2007) Recent insights into the cellular mechanisms of acute pancreatitis. Can J Gastroenterol 21(1):19–24PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Leonora J, Tieche JM, Steinman RR (1993) Further evidence for a hypothalamus-parotid gland endocrine axis in the rat. Arch Oral Biol 38(10):911–916PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Leonora J, Tieche JM, Celestin J (1987) Physiological factors affecting secretion of parotid hormone. Am J Physiol Endocrinol Metab 252(4):E477–E484CrossRefGoogle Scholar
  203. 203.
    Anderson LC (1998) Hormonal regulation of salivary glands, with particular reference to experimental diabetes. Front Oral Biol 10:200–221Google Scholar
  204. 204.
    Yagi T, Ueda H, Amitani H, Asakawa A, Miyawaki S, Inui A (2012) The role of ghrelin, salivary secretions, and dental care in eating disorders. Nutrients 4(8):967–989PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Nigro E, Piombino P, Scudiero O, Monaco ML, Schettino P, Chambery A, Daniele A (2015) Evaluation of salivary adiponectin profile in obese patients. Peptides 63:150–155PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14(11–12):741–751PubMedPubMedCentralGoogle Scholar
  207. 207.
    Mamali I, Roupas ND, Armeni AK, Theodoropoulou A, Markou KB, Georgopoulos NA (2012) Measurement of salivary resistin, visfatin and adiponectin levels. Peptides 33(1):120–124PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Antuna-Puente B, Feve B, Fellahi S, Bastard JP (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 34(1):2–11PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Cantarini L, Obici L, Simonini G, Cimaz R, Bacarelli MR, Merlini G et al (2012) Serum leptin, resistin, visfatin and adiponectin levels in tumor necrosis factor receptor-associated periodic syndrome (TRAPS). Clin Exp Rheumatol 30(3 Suppl 72):S108–S114PubMedPubMedCentralGoogle Scholar
  210. 210.
    Tabari ZA, Ghaedi FB, Azadmehr A, Nohekhan A, Tabrizi MAA, Ardakani MRT et al (2015) . Salivary visfatin concentration in response to non-surgical periodontal therapy. J Clin Diagn Res 9:ZC05–ZC08Google Scholar
  211. 211.
    Özcan E, Saygun NI, Serdar MA, Kurt N (2015) Evaluation of the salivary levels of visfatin, chemerin, and progranulin in periodontal inflammation. Clin Oral Invest 19(4):921–928CrossRefGoogle Scholar
  212. 212.
    Rao PV, Reddy AP, Lu X, Dasari S, Krishnaprasad A, Biggs E et al (2009) Proteomic identification of salivary biomarkers of type-2 diabetes. J Proteome Res 8(1):239–245PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Loo JA, Yan W, Ramachandran P, Wong DT (2010) comparative human salivary and plasma proteomes. J Dent Res 89(10):1016–1023PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Thomsson KA, Prakobphol A, Leffler H, Reddy MS, Levine MJ, Fisher SJ, Hansson GC (2002) The salivary mucin MG1 (MUC5B) carries a repertoire of unique oligosaccharides that is large and diverse. Glycobiology 12(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Zalewska A, Zwierz K, Zółkowski K, Gindzieński A (2000) Structure and biosynthesis of human salivary mucins. Acta Biochim Pol 47(4):1067–1079PubMedPubMedCentralGoogle Scholar
  216. 216.
    Mehrotra R, Thornton DJ, Sheehan JK (1998) Isolation and physical characterization of the MUC7 (MG2) mucin from saliva: evidence for self-association. Biochem J 334(Pt 2):415–422PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Liu B, Rayment SA, Gyurko C, Oppenheim FG, Offner GD, Troxler RF (2000) The recombinant N-terminal region of human salivary mucin MG2 (MUC7) contains a binding domain for oral Streptococci and exhibits candidacidal activity. Biochem J 345(3):557–564PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Liu B, Rayment S, Oppenheim FG, Troxler RF (1999) Isolation of human salivary mucin MG2 by a novel method and characterization of its interactions with oral bacteria. Arch Biochem Biophys 364(2):286–293PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Park W-K, Chung J-W, Kim Y-K, Chung S-C, Kho H-S (2006) Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces. Arch Oral Biol 51(10):861–869PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Loomis RE, Prakobphol A, Levine MJ, Reddy MS, Jones PC (1987) Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys 258(2):452–464PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Fábián TK, Fejérdy P, Nguyen MT, Sőti C, Csermely P (2007) Potential immunological functions of salivary Hsp70 in mucosal and periodontal defense mechanisms. Arch Immunol Ther Exp 55:1–8CrossRefGoogle Scholar
  222. 222.
    Soares RV, Siqueira CC, Bruno LS, Oppenheim FG, Offner GD, Troxler RF (2003) MG2 and lactoferrin form a heterotypic complex in salivary secretions. J Dent Res 82(6):471–475PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    de Sousa-Pereira P, Amado F, Abrantes J, Ferreira R, Esteves PJ, Vitorino R (2013) An evolutionary perspective of mammal salivary peptide families: cystatins, histatins, statherin and PRPs. Arch Oral Biol 58(5):451–458PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Schlesinger DH, Hay DI, Levine MJ (1989) Complete primary structure of statherin, a potent inhibitor of calcium phosphate precipitation, from the saliva of the monkey, macaca arctoides. Int J Pept Protein Res 34(5):374–380PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Schlesinger DH, Hay DI (1977) Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J Biol Chem 252:1689–1695PubMedPubMedCentralGoogle Scholar
  226. 226.
    Lamkin MS, Oppenheim FG (1993) Structural features of salivary function. Crit Rev Oral Biol Med 4(3–4):251–259PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Hay DI, Smith DJ, Schluckebier SK, Moreno EC (1984) Relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. J Dent Res 63(6):857–863PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Isola M, Cossu M, Diana M, Isola R, Loy F, Solinas P, Lantini MS (2012) Diabetes reduces statherin in human parotid: immunogold study and comparison with submandibular gland. Oral Dis 18(4):360–364PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Isola M, Lantini M, Solinas P, Diana M, Isola R, Loy F, Cossu M (2011) Diabetes affects statherin expression in human labial glands. Oral Dis 17(7):685–689PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Mednieks MI, Szczepanski A, Clark B, Hand AR (2009) Protein expression in salivary glands of rats with streptozotocin diabetes. Int J Exp Pathol 90(4):412–422PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Li J, Helmerhorst EJ, Yao Y, Nunn ME, Troxler RF, Oppenheim FG (2004) Statherin is an in vivo pellicle constituent: identification and immuno-quantification. Arch Oral Biol 49(5):379–385PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Niemi LD, Johansson I (2004) Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct. Infect Immun 72(2):782–787PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Tsai H, Bobek LA (1998) Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med 9(4):480–497PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Piludu M, Lantini MS, Cossu M, Piras M, Oppenheim FG, Helmerhorst EJ et al (2006) Salivary histatins in human deep posterior lingual glands (of von Ebner). Arch Oral Biol 51(11):967–973PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Puri S, Edgerton M (2014) How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell 13(8):958–964PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Bennick A (1982) Salivary proline-rich proteins. Mol Cell Biochem 45(2):83–99PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Carlson DM (1988) Proline-rich proteins and glycoproteins: expression of salivary gland multigene families. Biochimie 70(11):1689–1695PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Soares S, Mateus N, de Freitas V (2012) Interaction of different classes of salivary proteins with food tannins. Food Res Int 49(2):807–813CrossRefGoogle Scholar
  239. 239.
    Carlson DM (1993) Salivary proline-rich proteins: biochemistry, molecular biology, and regulation of expression. Crit Rev Oral Biol Med 4(3–4):495–502PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Rawlings ND, Barrett AJ (1990) Evolution of proteins of the cystatin superfamily. J Mol Evol 30(1):60–71PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Dickinson DP (2002) Salivary (SD-type) cystatins: over one billion years in the making–but to what purpose? Crit Rev Oral Biol Med 13(6):485–508PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Kordiš D, Turk V (2009) Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol 9:266PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Barrett AJ, Fritz H, Grubb A, Isemura S, Järvinen M, Katunuma N et al (1986) Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem J 236:312PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Abrahamson M, Alvarez-Fernandez M, Nathanson CM (2003) Cystatins. Biochem Soc Symp 70:179–199CrossRefGoogle Scholar
  246. 246.
    Devos A, De Clercq N, Vercaeren I, Heyns W, Rombauts W, Peeters B (1993) Structure of rat genes encoding androgen-regulated cystatin-related proteins (CRPs): a new member of the cystatin superfamily. Gene 125(2):159–167PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Parent AD, Cornwall GA, Liu LY, Smith CE, Hermo L (2011) Alterations in the testis and epididymis associated with loss of function of the cystatin-related epididymal spermatogenic (CRES) protein. J Androl 32(4):444–463PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Wang L, Yuan Q, Chen S, Cai H, Lu M, Liu Y, Xu C (2012) Antimicrobial activity and molecular mechanism of the CRES protein. PLoS ONE 7(11):e48368PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Lalmanach G, Naudin C, Lecaille F, Fritz H (2010) Kininogens: more than cysteine protease inhibitors and kinin precursors. Biochimie 92(11):1568–1579PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Habermann E (1970) Kininogens, bradykinin, kallidin and kallikrein. Handb Exp Pharmacol 25:250–288Google Scholar
  251. 251.
    Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nat Struct Mol Biol 9:239–241CrossRefGoogle Scholar
  252. 252.
    Ono Y, Sorimachi H (2012) Calpains—an elaborate proteolytic system. Biochim Biophys Acta Proteins Proteom 1824(1):224–236Google Scholar
  253. 253.
    Schmaier AH (2000) Plasma kallikrein/kinin system: a revised hypothesis for its activation and its physiologic contributions. Curr Opin Hematol 7(5):261–265PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Karlsrud TS, Buø L, Aasen AO, Johansen HT (1991) Characterization of kininogens in human malignant ascites. Thromb Res 63(6):641–650PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Sharma JN, Al-Banoon A (2012) The role of inflammatory mediator bradykinin in cardiovascular and renal diseases. Sci Rep 1:142Google Scholar
  256. 256.
    Hojima Y, Maranda B, Moriwaki C, Schachter M (1977) Direct evidence for the location of kallikrein in the striated ducts of the cat’s submandibular gland by the use of specific antibody. J Physiol 268(3):793–801PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Heidland A, Röckel A, Schmid G (1979) Salivary kallikrein excretion in hypertension. Klin Wochenschr 57(19):1047–1052PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Liu CY, Scott CF, Bagdasarian A, Pierce JV, Kaplan AP, Colman RW (1977) Potentiation of the function of Hageman factor fragments by high molecular weight kininogen. J Clin Invest 60(1):7–17PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Basso N, Terragno NA (2001) History about the discovery of the renin-angiotensin system. Hypertension 38(6):1246–1249PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Ian Phillips M, Schmidt-Ott KM (1999) The discovery of renin 100 years ago. Physiology 14(6):271–274CrossRefGoogle Scholar
  262. 262.
    Van Epps HL (2005) Harry Goldblatt and the discovery of renin. J Exp Med 201(9):1351PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA (2012) Emergence and evolution of the renin–angiotensin–aldosterone system. J Mol Med (Berl) 90(5):495–508CrossRefGoogle Scholar
  264. 264.
    Kon Y, Endoh D (1999) Renin in exocrine glands of different mouse strains. Anat Histol Embryol 28(4):239–242PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Poulsen K, Jacobsen J (1983) The biochemistry of aggression-provoked renin. Clin Exp Hypertens A 5(7–8):969–973PubMedPubMedCentralGoogle Scholar
  266. 266.
    Mercan R, Bıtık B, Tezcan ME, Kaya A, Tufan A, Özturk MA et al (2014) Minimally invasive minor salivary gland biopsy for the diagnosis of amyloidosis in a rheumatology clinic. ISRN Rheumatol 2014:354648PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    de Paula Eduardo F, de Mello Bezinelli L, de Carvalho DLC, Della-Guardia B, de Almeida MD, Marins LV, Corrêa L (2017) Minor salivary gland biopsy for the diagnosis of familial amyloid polyneuropathy. Neurol Sci 38(2):311–318CrossRefGoogle Scholar
  268. 268.
    Sacsaquispe SJ, Antúnez-de Mayolo EA, Vicetti R, Delgado WA (2011) Detection of AA-type amyloid protein in labial salivary glands. Med Oral Patol Oral Cir Bucal 16(2):e149–e152PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Yang GCH, Kuhel WI, Scognamiglio T (2014) Amyloid-rich low grade adenocarcinoma of the parotid: fine-needle aspiration cytology with histologic correlations. Diagn Cytopathol 42(9):798–801PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Lechapt-Zalcman E, Authier FJ, Creange A, Voisin MC, Gherardi RK (1999) Labial salivary gland biopsy for diagnosis of amyloid polyneuropathy. Muscle Nerve 22(1):105–107PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Bermejo-Pareja F, Antequera D, Vargas T, Molina JA, Carro E (2010) Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol 10:108PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Lee M, Guo JP, Kennedy K, McGeer EG, McGeer PL (2017) A method for diagnosing alzheimer’s disease based on salivary amyloid-β protein 42 levels. J Alzheimers Dis 55(3):1175–1182PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Ralhan R, Desouza LV, Matta A, Chandra Tripathi S, Ghanny S, Dattagupta S et al (2009) iTRAQ-multidimensional liquid chromatography and tandem mass spectrometry-based identification of potential biomarkers of oral epithelial dysplasia and novel networks between inflammation and premalignancy. J Proteome Res 8(1):300–309PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Gröschl M (2008) Current status of salivary hormone analysis. Clin Chem 54(11):1759–1769PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Abikshyeet P, Ramesh V, Oza N (2012) Glucose estimation in the salivary secretion of diabetes mellitus patients. Diabetes Metab Syndr Obes 5:149–154PubMedPubMedCentralGoogle Scholar
  276. 276.
    Nayak S, Bhad Patil WA, Doshi UH (2014) The relationship between salivary insulin-like growth factor I and quantitative cervical maturational stages of skeletal maturity. J Orthod 41(3):170–174PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Hassaneen M, Maron JL (2017) Salivary diagnostics in pediatrics: applicability, translatability, and limitations. Front Public Health 5:83PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Estrada-Y-Martin RM, Orlander PR (2011) Salivary cortisol can replace free serum cortisol measurements in patients with septic shock. Chest 140(5):1216–1222PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Perogamvros I, Owen LJ, Newell-Price J, Ray DW, Trainer PJ, Keevil BG (2009) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography–tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Analyt Technol Biomed Life Sci 877(29):3771–3775PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Meulenberg PM, Hofman JA (1990) Differences between concentrations of salivary cortisol and cortisone and of free cortisol and cortisone in plasma during pregnancy and postpartum. Clin Chem 36(1):70–75PubMedPubMedCentralGoogle Scholar
  281. 281.
    Malamud D, Rodriguez-Chavez IR (2011) Saliva as a diagnostic fluid. Dent Clin North Am 55(1):159–178PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Lewis JG (2006) Steroid analysis in saliva: an overview. Clin Biochem Rev 27(3):139–146PubMedPubMedCentralGoogle Scholar
  283. 283.
    Lee JM, Garon E, Wong DT (2009) Salivary diagnostics. Orthod Craniofac Res 12(3):206–211PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Kolka CM, Bergman RN (2012) The barrier within: endothelial transport of hormones. Physiology (Bethesda) 27(4):237–247Google Scholar
  285. 285.
    Ekström J (1989) Autonomic control of salivary secretion. Proc Finn Dent Soc 85(4–5):323–331; 361–363Google Scholar
  286. 286.
    Garrett JR, Kidd A (1993) The innervation of salivary glands as revealed by morphological methods. Microsc Res Tech 26(1):75–91PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Bhattacharya S, Verrill D, Giovannucci D (2011) The role of P2X4 receptors in calcium-mediated exocytosis in parotid acinar cells. Biophys J 100(3):p258aCrossRefGoogle Scholar
  288. 288.
    Ferreira JN, Hoffman MP (2013) Interactions between developing nerves and salivary glands. Organogenesis 9(3):199–205PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Eneroth CM, Hökfelt T, Norberg KA (1969) The role of the parasympathetic and sympathetic innervation for the secretion of human parotid and submandibular glands. Acta Otolaryngol 68(5):369–375PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Norberg KA, Eneroth CM, Hökfelt T (1969) The significance of the autonomic innervation for the salivary secretion in the human parotid and submandibular glands. Acta Otolaryngol Suppl 263:193–194CrossRefGoogle Scholar
  291. 291.
    Hettigoda NS, Fong AY, Badoer E, McKinley MJ, Oldfield BJ, Allen AM (2015) Identification of CNS neurons with polysynaptic connections to both the sympathetic and parasympathetic innervation of the submandibular gland. Brain Struct Funct 220(4):2103–2120PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Sadi H, Finkelman M, Rosenberg M (2013) Salivary cortisol, salivary alpha amylase, and the dental anxiety scale. Anesth Prog 60(2):46–53PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Ship JA, Fischer DJ (1997) The relationship between dehydration and parotid salivary gland function in young and older healthy adults. J Gerontol A Biol Sci Med Sci 52(5):M310–M319PubMedCrossRefPubMedCentralGoogle Scholar
  294. 294.
    Taubert M, Davies EMR, Back I (2007) Dry mouth. BMJ 334(7592):534PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y, Ishida H (2006) Water channels and zymogen granules in salivary glands. J Pharmacol Sci 100:495–512PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Emmelin N (1987) Nerve interactions in salivary glands. J Dent Res 66(2):509–517PubMedCrossRefPubMedCentralGoogle Scholar
  297. 297.
    Proctor GB, Carpenter GH (2014) Salivary secretion: mechanism and neural regulation. Monogr Oral Sci 24:14–29PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    Chopra DP, Xue-Hu IC (1993) Secretion of alpha-amylase in human parotid gland epithelial cell culture. J Cell Physiol 155(2):223–233PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Keating C (2004) The effects of dopamine agonists and antagonists on the secretory responses in the salivary glands of the locust (Locusta migratoria). J Insect Physiol 50(1):17–23PubMedCrossRefPubMedCentralGoogle Scholar
  300. 300.
    Michalek R, Templeton D (1986) The role of dopamine in salivation in the rat parotid gland. Gen Pharmacol Vascular Syst 17(4):473–476CrossRefGoogle Scholar
  301. 301.
    Evans AM, Green KL (1990) Characterization of the dopamine receptor mediating the hyperpolarization of cockroach salivary gland acinar cells in vitro. Br J Pharmacol 101(1):103–108PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Baumann O, Dames P, Kühnel D, Walz B (2002) Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana. BMC Physiol 2:9PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Just F, Walz B (1996) The effects of serotonin and dopamine on salivary secretion by isolated cockroach salivary glands. J Exp Biol 199(Pt 2):407–413PubMedPubMedCentralGoogle Scholar
  304. 304.
    Ghafoor M (2012) Sjögren’s before Sjögren: did Henrik Sjögren (1899–1986) really discover Sjögren’s disease? J Maxillofac Oral Surg 11(3):373–374PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Igoe A, Scofield RH (2013) Autoimmunity and infection in Sjögren’s syndrome. Curr Opin Rheumatol 25(4):480–487PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Baccaglini L, Baum BJ (2008) Hypothesis: Sjögren’s syndrome: a possible pathogenetic mechanism involving somatostatin. Oral Dis 6(5):264–266CrossRefGoogle Scholar
  307. 307.
    Abdulnour-Nakhoul S, Nakhoul HN, Kalliny MI, Gyftopoulos A, Rabon E, Doetjes R et al (2011) Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol 301(1):R83–R96PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Joo NS, Krouse ME, Wu JV, Saenz Y, Jayaraman S, Verkman AS, Wine JJ (2001) HCO3− transport in relation to mucus secretion from submucosal glands. JOP 2(4):280–284PubMedPubMedCentralGoogle Scholar
  309. 309.
    Orlando RC (2010) The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract Res Clin Gastroenterol 24(6):873–882PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Sugimachi K, Sumiyoshi K, Nozoe T, Yasuda M, Watanabe M, Kitamura K et al (1995) Carcinogenesis and histogenesis of esophageal carcinoma. Cancer 75(6):1440–1445PubMedCrossRefPubMedCentralGoogle Scholar
  311. 311.
    Kuwano H, Ueo H, Sugimachi K, Inokuchi K, Toyoshima S, Enjoji M (1985) Glandular or mucus-secreting components in squamous cell carcinoma of the esophagus. Cancer 56(3):514–518PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Long JD, Orlando RC (1999) Esophageal submucosal glands: structure and function. Am J Gastroenterol 94(10):2818–2824PubMedCrossRefPubMedCentralGoogle Scholar
  313. 313.
    Shafik A, Shafik AA, El Sibai O, Mostafa RM (2004) Effect of straining on diaphragmatic crura with identification of the straining-crural reflex. The “reflex theory” in gastroesophageal competence. BMC Gastroenterol 4:24PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Goyal RK, Chaudhury A (2008) Physiology of normal esophageal motility. J Clin Gastroenterol 42(5):610–619PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    Abdulnour-Nakhoul S, Nakhoul NL, Wheeler SA, Wang P, Swenson ER, Orlando RC (2005) HCO3− secretion in the esophageal submucosal glands. Am J Physiol Gastrointest Liver Physiol 288(4):G736–G744PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Kongara KR, Soffer EE (1999) Saliva and esophageal protection. Am J Gastroenterol 94(6):1446–1452PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Akiba Y, Mizumori M, Kuo M, Ham M, Guth PH, Engel E, Kaunitz JD (2008) CO2 chemosensing in rat oesophagus. Gut 57(12):1654–1664PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Zhuang L, Peng J-B, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82:1755–1764PubMedCrossRefPubMedCentralGoogle Scholar
  319. 319.
    Lord RVN, Park JM, Wickramasinghe K, DeMeester SR, Oberg S, Salonga D et al (2003) Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus. J Thorac Cardiovasc Surg 125(2):246–253PubMedCrossRefPubMedCentralGoogle Scholar
  320. 320.
    Fujiwara Y, Higuchi K, Takashima T, Hamaguchi M, Hayakawa T, Tominaga K et al (2006) Roles of epidermal growth factor and Na+/H+ exchanger-1 in esophageal epithelial defense against acid-induced injury. Am J Physiol Gastrointest Liver Physiol 290(4):G665–G673PubMedCrossRefPubMedCentralGoogle Scholar
  321. 321.
    Modlin IM, Lane G, Johnson SP, Schoenfeld PS, Allen J, Brill JV (2008) American gastroenterological association medical position statement on the management of gastroesophageal reflux disease. Gastroenterology 135:1383–1391PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Odze RD (2005) Unraveling the mystery of the gastroesophageal junction: a pathologist’s perspective. Am J Gastroenterol 100(8):1853–1867PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Chandrasoma P (2005) Controversies of the cardiac mucosa and Barrett’s oesophagus. Histopathology 46(4):361–373PubMedCrossRefPubMedCentralGoogle Scholar
  324. 324.
    Vakil N, van Zanten SV, Kahrilas P, Dent J, Jones R, Global Consensus Group (2006) The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol 101(8):1900–1920, 1943Google Scholar
  325. 325.
    Modlin IM, Hunt RH, Malfertheiner P, Moayyedi P, Quigley EM, Tytgat GNJ et al (2009) Diagnosis and management of non-erosive reflux disease—the Vevey NERD consensus group. Digestion 80(2):74–88PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Ang D, Sifrim D, Tack J (2008) Mechanisms of heartburn. Nat Rev Gastroenterol Hepatol 5:383–392CrossRefGoogle Scholar
  327. 327.
    Naini BV, Souza RF, Odze RD (2016) Barrett’s esophagus: a comprehensive and contemporary review for pathologists. Am J Surg Pathol 40(5):e45–e66PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Reid BJ, Li X, Galipeau PC, Vaughan T (2010) Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer 10(2):87–101PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Barbon C, Mungo B, Molena D, Yang SC (2015) Severe reflux-induced esophagitis. In: Pawlik TM, Maithel SK, Merchant NB (eds) Gastrointestinal surgery. Springer, New YorkGoogle Scholar
  330. 330.
    Hirano I (2011) Eosinophilic esophagitis and gastroesophageal reflux disease: there and back again. Clin Gastroenterol Hepatol 9(2):99–101PubMedCrossRefPubMedCentralGoogle Scholar
  331. 331.
    Hershcovici T, Fass R (2010) Nonerosive reflux disease (NERD)—an update. J Neurogastroenterol Motil 16(1):8–21PubMedPubMedCentralCrossRefGoogle Scholar
  332. 332.
    Gao F, Gao Y, Chen X, Qian J, Zhang J (2017) Comparison of oesophageal function tests between Chinese non-erosive reflux disease and reflux hypersensitivity patients. BMC Gastroenterol 17:67PubMedPubMedCentralCrossRefGoogle Scholar
  333. 333.
    Gindea C, Birla R, Hoara P, Caragui A, Constantinoiu S (2014) Barrett esophagus: history, definition and etiopathogeny. J Med Life 7(3):23–30PubMedPubMedCentralGoogle Scholar
  334. 334.
    Van Eyken P (2000) Definition of Barrett’s oesophagus. Acta Gastroenterol Belg 63(1):10–12PubMedPubMedCentralGoogle Scholar
  335. 335.
    Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Gastroenterology 134:1842PubMedCrossRefPubMedCentralGoogle Scholar
  336. 336.
    Rowland KJ, Choi PM, Warner BW (2013) The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin Pediatr Surg 22(2):101–111PubMedPubMedCentralCrossRefGoogle Scholar
  337. 337.
    Bimczok D, Kao JY, Zhang M, Cochrun S, Mannon P, Peter S et al (2015) Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells. Mucosal Immunol 8:533–544PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    Taupin D, Podolsky DK (2003) Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4:721–732PubMedCrossRefPubMedCentralGoogle Scholar
  339. 339.
    Pakurar AS, Bigbee JW (2004) Digital histology: an interactive CD atlas with review text. Wiley, HobokenCrossRefGoogle Scholar
  340. 340.
    Wright NA (2000) Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer. Int J Exp Path 81:117–143CrossRefGoogle Scholar
  341. 341.
    Miyake K, Tanaka T, McNeil PL (2006) Disruption-induced mucus secretion: repair and protection. PLoS Biol 4(9):e276PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Roberts NB (2006) Human pepsins—their multiplicity, function and role in reflux disease. Aliment Pharmacol Ther 24(2):2–9PubMedCrossRefPubMedCentralGoogle Scholar
  343. 343.
    Cui G, Waldum HL (2007) Physiological and clinical significance of enterochromaffin-like cell activation in the regulation of gastric acid secretion. World J Gastroenterol 28:493–496CrossRefGoogle Scholar
  344. 344.
    Liu Y, Vosmaer GDC, Tytgat GNJ, S-d Xiao, Ten Kate FJW (2005) Gastrin (G) cells and somatostatin (D) cells in patients with dyspeptic symptoms: Helicobacter pylori associated and non-associated gastritis. J Clin Pathol 58(9):927–931PubMedPubMedCentralCrossRefGoogle Scholar
  345. 345.
    Sun F-P, Song Y-G, Cheng W, Zhao T, Yao Y-L (2002) Gastrin, somatostatin, G and D cells of gastric ulcer in rats. World J Gastroenterol 8(2):375–378PubMedPubMedCentralCrossRefGoogle Scholar
  346. 346.
    Park SM, Park HS (1993) G- and D-cell populations, serum and tissue concentrations of gastrin and somatostatin in patients with peptic ulcer diseases. Korean J Intern Med 8(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  347. 347.
    Sekler I, Kobayashi S, Kopito RR (1996) A cluster of cytoplasmic histidine residues specifies pH dependence of the AE2 plasma membrane anion exchanger. Cell 86(6):929–935PubMedCrossRefPubMedCentralGoogle Scholar
  348. 348.
    Schreiber S, Garten D, Nguyen TH, Konradt M, Bücker R, Scheid P (2007) In situ measurement of pH in the secreting canaliculus of the gastric parietal cell and adjacent structures. Cell Tissue Res 329(2):313–320PubMedCrossRefPubMedCentralGoogle Scholar
  349. 349.
    Phan J, Benhammou JN, Pisegna JR (2015) Gastric hypersecretory states: investigation and management. Curr Treat Options Gastroenterol 13(4):386–397PubMedPubMedCentralCrossRefGoogle Scholar
  350. 350.
    Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368PubMedPubMedCentralCrossRefGoogle Scholar
  351. 351.
    Konturek SJ, Kwiecien N, Obtulowicz W, Mikos E, Sito E, Oleksy J, Popiela T (1979) Cephalic phase of gastric secretion in healthy subjects and duodenal ulcer patients: role of vagal innervation. Gut 20(10):875–881PubMedPubMedCentralCrossRefGoogle Scholar
  352. 352.
    Håkanson R, Hedenbro J, Liedberg G, Sundler F, Vallgren S (1980) Mechanisms of gastric acid secretion after pylorus and oesophagus ligation in the rat. J Physiol 305:139–149PubMedPubMedCentralCrossRefGoogle Scholar
  353. 353.
    Sachs G, Zeng N, Prinz C (1997) Physiology of isolated gastric endocrine cells. Annu Rev Physiol 59:243–256PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    Fokina A, Konturek SJ, Kwiecien N, Radecki T (1979) Role of gastric antrum in gastric and intestinal phases of gastric secretion in dogs. J Physiol 295:229–239PubMedPubMedCentralCrossRefGoogle Scholar
  355. 355.
    Kester RC (1975) The intestinal phase of gastric secretion. Ann R Coll Surg Engl 56(5):231–245PubMedPubMedCentralGoogle Scholar
  356. 356.
    Kelly KA, Nyhus LM, Harkins HN (1964) The vagal nerve and the intestinal phase of gastric secretion. Gastroenterology 46(2):163–166PubMedPubMedCentralGoogle Scholar
  357. 357.
    Helander HF, Keeling DJ (1993) Cell biology of gastric acid secretion. Baillieres Clin Gastroenterol 7(1):1–21CrossRefPubMedGoogle Scholar
  358. 358.
    Chew CS, Nakamura K, Ljungström M (1992) Calcium signaling mechanisms in the gastric parietal cell. Yale J Biol Med 65(6):561–623PubMedPubMedCentralGoogle Scholar
  359. 359.
    Helander HF (1988) Physiology and pharmacology of the parietal cell. Baillieres Clin Gastroenterol 2(3):539–554PubMedCrossRefPubMedCentralGoogle Scholar
  360. 360.
    Yao X, Forte JG (2003) Cell biology of acid secretion by the parietal cell. Annu Rev Physiol 65:103–131PubMedCrossRefPubMedCentralGoogle Scholar
  361. 361.
    Hamada E, Nakajima T, Hata Y, Hazama H, Iwasawa K, Takahashi M et al (1997) Effect of caffeine on mucus secretion and agonist-dependent Ca2+ mobilization in human gastric mucus secreting cells. Biochim Biophys Acta Mol Cell Res 1356(2):198–206CrossRefGoogle Scholar
  362. 362.
    Laddha SS, Wadodkar SG, Meghal SK (2009) cAMP-dependent phosphodiesterase inhibition and SAR studies on novel 6,8-disubstituted 2-phenyl-3-(substituted benzothiazole-2-yl)-4[3H]-quinazolinone. Med Chem Res 18(4):268–276CrossRefGoogle Scholar
  363. 363.
    Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase—involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534PubMedCrossRefPubMedCentralGoogle Scholar
  364. 364.
    Koertge N (ed) (2007) New dictionary of scientific biography, 1st edn. Charles Scribners & Sons, DetroitGoogle Scholar
  365. 365.
    Bourgoin SM (2012) Encyclopedia of world biography, 2nd edn. Gale Research, DetroitGoogle Scholar
  366. 366.
    Bennett MR (2000) The concept of transmitter receptors: 100 years on. Neuropharmacology 39:523–546PubMedCrossRefPubMedCentralGoogle Scholar
  367. 367.
    Maehle A-H (2004) Receptive substances: John Newport Langley (1852–1925) and his Path to a receptor theory of drug action. Med Hist 48:153–174PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Langley JN (1905) On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol 33:374–413PubMedPubMedCentralCrossRefGoogle Scholar
  369. 369.
    Rubin RP (2007) A brief history of great discoveries in pharmacology: in celebration of the centennial anniversary of the founding of the American Society of Pharmacology and Experimental Therapeutics. Pharmacol Rev 59(4):289–359PubMedCrossRefPubMedCentralGoogle Scholar
  370. 370.
    Maehle A-H (2009) A binding question: the evolution of the receptor concept. Endeavour 33(4):135–140PubMedPubMedCentralCrossRefGoogle Scholar
  371. 371.
    Boes CJ (2014) Langley, John Newport. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the neurological sciences, 2nd edn. Elsevier, MAGoogle Scholar
  372. 372.
    Sawaya AC, Costa YD, Mazzafera P (2015) Unraveling the biosynthesis of pilocarpine in Pilocarpus microphyllus. Nat Prod Commun 10(5):721–724PubMedPubMedCentralGoogle Scholar
  373. 373.
    Sawaya AC, Abreu IN, Andreazza NL, Eberlin MN, Mazzafera P (2008) HPLC-ESI-MS/MS of imidazole alkaloids in Pilocarpus microphyllus. Molecules 13(7):1518–1529PubMedCrossRefPubMedCentralGoogle Scholar
  374. 374.
    Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336PubMedPubMedCentralCrossRefGoogle Scholar
  375. 375.
    Richards D, Aronson J, Reynolds DJ, Coleman J (2011) Oxford handbook of practical drug therapy, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  376. 376.
    Lidums I, Hebbard GS, Hollowaya RH (2000) Effect of atropine on proximal gastric motor and sensory function in normal subjects. Gut 47:30–36PubMedPubMedCentralCrossRefGoogle Scholar
  377. 377.
    Moulton BC, Fryer AD (2011) Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. Br J Pharmacol 163(1):44–52PubMedPubMedCentralCrossRefGoogle Scholar
  378. 378.
    O’Brien RD (1974) Atropine. In: Simpson LL, Curtis DR (eds) Poisons of plant origin. Plenum Press, New YorkGoogle Scholar
  379. 379.
    Schwarzenberger M, Stintzing F, Meyer U, Lindequist U (2012) Biochemical, microbiological and phytochemical studies on aqueous-fermented extracts from Atropa belladonna L. Part 2—phytochemistry. Pharmazie 67(5):460–466PubMedPubMedCentralGoogle Scholar
  380. 380.
    Schwarzenberger M, Stintzing F, Meyer U, Lindequist U (2012) Biochemical, microbiological and phytochemical studies on aqueous-fermented extracts from Atropa belladonna L. Part 1—biochemistry and microbiology. Pharmazie 67(4):331–344PubMedPubMedCentralGoogle Scholar
  381. 381.
    Lee MR (2007) Solanaceae IV: Atropa belladonna, deadly nightshade. J R Coll Physicians Edinb 37(1):77–84PubMedPubMedCentralCrossRefGoogle Scholar
  382. 382.
    Rajput H (2013) Effects of Atropa belladonnas an anti-cholinergic. Nat Prod Chem Res 1:104Google Scholar
  383. 383.
    Blackshaw LA (2008) New insights in the neural regulation of the lower oesophageal sphincter. Eur Rev Med Pharmacol Sci 12(1):33–39PubMedPubMedCentralGoogle Scholar
  384. 384.
    Mittal R, Chiareli C, Liu J, Holloway R, Dixon W (1997) Atropine inhibits gastric distension and pharyngeal receptor mediated lower oesophageal sphincter relaxation. Gut 41(3):285–290PubMedPubMedCentralCrossRefGoogle Scholar
  385. 385.
    Zhang Q, Lehmann A, Rigda R, Dent J, Holloway RH (2002) Control of transient lower oesophageal sphincter relaxations and reflux by the GABAB agonist baclofen in patients with gastro-oesophageal reflux disease. Gut 50(1):19–24PubMedPubMedCentralCrossRefGoogle Scholar
  386. 386.
    Vakil N (2004) New pharmacological agents for the treatment of gastro-oesophageal reflux disease. Aliment Pharmacol Ther 19:1041–1049PubMedCrossRefPubMedCentralGoogle Scholar
  387. 387.
    Hirsch DP, Tytgat GNJ, Boeckxstaens GEE (2002) Transient lower oesophageal sphincterrelaxations—a pharmacological target for gastro-oesophageal reflux disease? Aliment Pharmacol Ther 16:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  388. 388.
    Li S, Shi S, Chen F, Lin J (2014) The effects of baclofen for the treatment of gastroesophageal reflux disease: a meta-analysis of randomized controlled trials. Gastroenterol Res Pract 2014:307805PubMedPubMedCentralGoogle Scholar
  389. 389.
    Tonini M, De Giorgio R, De Ponti F (2004) Progress with novel pharmacological strategies for gastro-oesophageal reflux disease. Drugs 64(4):347–361PubMedCrossRefPubMedCentralGoogle Scholar
  390. 390.
    Kahrilas PJ, Boeckxstaens G (2012) Failure of reflux inhibitors in clinical trials: bad drugs or wrong patients? Gut 61(10):1501–1509PubMedCrossRefPubMedCentralGoogle Scholar
  391. 391.
    Yamato S, Saha JK, Goyal RK (1992) Role of nitric oxide in lower esophageal sphincter relaxation to swallowing. Life Sci 50(17):1263–1272PubMedCrossRefPubMedCentralGoogle Scholar
  392. 392.
    Tomita R, Tanjoh K, Fujisaki S, Fukuzawa M (2003) Physiological studies on nitric oxide in the lower esophageal sphincter of patients with reflux esophagitis. Hepatogastroenterology 50(49):110–114PubMedPubMedCentralGoogle Scholar
  393. 393.
    Baker DE (2007) Loperamide: a pharmacological review. Rev Gastroenterol Disord 7(3):S11–S18PubMedPubMedCentralGoogle Scholar
  394. 394.
    Ehlert FJ, Pak KJ, Griffin MT (2012) Muscarinic agonists and antagonists: effects on gastrointestinal function. Handb Exp Pharmacol 208:343–374CrossRefGoogle Scholar
  395. 395.
    Borella TL, De Luca LA, Jr Colombari DS, Menani JV (2008) Central muscarinic receptor subtypes involved in pilocarpine-induced salivation, hypertension and water intake. Br J Pharmacol 155(8):1256–1263PubMedPubMedCentralCrossRefGoogle Scholar
  396. 396.
    Carmine AA, Brogden RN (1985) Pirenzepine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in peptic ulcer disease and other allied diseases. Drugs 30(2):85–126PubMedCrossRefPubMedCentralGoogle Scholar
  397. 397.
    Boulanger CM, Morrison KJ, Vanhoutte PM (1994) Mediation by M3-muscarinic receptors of both endothelium-dependent contraction and relaxation to acetylcholine in the aorta of the spontaneously hypertensive rat. Br J Pharmacol 112(2):519–524PubMedPubMedCentralCrossRefGoogle Scholar
  398. 398.
    Watson N, Barnes PJ, Maclagan J (1992) Actions of methoctramine, a muscarinic M2 receptor antagonist, on muscarinic and nicotinic cholinoceptors in guinea-pig airways in vivo and in vitro. Br J Pharmacol 105(1):107–112PubMedPubMedCentralCrossRefGoogle Scholar
  399. 399.
    Jakubík J, Zimčík P, Randáková A, Fuksová K, El-Fakahany EE, Doležal V (2014) Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Mol Pharmacol 86(2):180–192PubMedCrossRefPubMedCentralGoogle Scholar
  400. 400.
    Ehlert FJ (1996) The interaction of 4-DAMP mustard with subtypes of the muscarinic receptor. Life Sci 58(22):1971–1978PubMedCrossRefPubMedCentralGoogle Scholar
  401. 401.
    Holzer P (2009) Opioid receptors in the gastrointestinal tract. Regul Pept 155(1–3):11–17PubMedPubMedCentralCrossRefGoogle Scholar
  402. 402.
    Leppert W (2012) The impact of opioid analgesics on the gastrointestinal tract function and the current management possibilities. Contemp Oncol (Pozn) 16(2):125–131Google Scholar
  403. 403.
    Leppert W (2014) Oxycodone/naloxone in the management of patients with pain and opioid-induced bowel dysfunction. Curr Drug Targets 15(1):124–135PubMedCrossRefPubMedCentralGoogle Scholar
  404. 404.
    Gotfried J, Kataria R, Schey R (2017) The role of cannabinoids on esophageal function—what we know thus far. Cannabis Cannabinoid Res 2(1):252–258PubMedPubMedCentralCrossRefGoogle Scholar
  405. 405.
    Franklin JM, Carrasco GA (2012) Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT(2A) and dopamine D2 receptors in rat prefrontal cortex. J Psychopharmacol 26(10):1333–1347PubMedPubMedCentralCrossRefGoogle Scholar
  406. 406.
    Franklin JM, Carrasco GA (2013) Cannabinoid receptor agonists upregulate and enhance serotonin 2A (5-HT(2A)) receptor activity via ERK1/2 signaling. Synapse 67(3):145–159PubMedCrossRefPubMedCentralGoogle Scholar
  407. 407.
    Vandenberg RJ, Frencht CR, Barry PH, Shine J, Schofield PR (1992) Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor a subunit form the strychnine-binding site. Proc Natl Acad Sci U S A 89:1765–1769PubMedPubMedCentralCrossRefGoogle Scholar
  408. 408.
    Zhang M, Aguilera D, Das C, Vasquez H, Zage P, Gopalakrishnan V, Wolff J (2007) Measuring cytotoxicity: a new perspective on LC50. Anticancer Res 27(1A):35–38PubMedPubMedCentralGoogle Scholar
  409. 409.
    Guo R, Wang T, Zhou G, Xu M, Yu X, Zhang X et al (2018) Botany, phytochemistry, pharmacology and toxicity of Strychnos nux-vomica L.: a review. Am J Chin Med 46(1):1–23PubMedCrossRefPubMedCentralGoogle Scholar
  410. 410.
    Gaddum JH (1957) John William Trevan, 1887-1956. Biogr Mem Fellows R Soc 3:273–288CrossRefGoogle Scholar
  411. 411.
    Born S, Levit A, Niv MY, Meyerhof W, Behrens M (2013) The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands. J Neurosci 33(1):201–213PubMedCrossRefPubMedCentralGoogle Scholar
  412. 412.
    Rajendra S, Lynch JW, Schofield PR (1997) The glycine receptor. Pharmacol Ther 73(2):121–146PubMedCrossRefPubMedCentralGoogle Scholar
  413. 413.
    Duan L, Yang J, Slaughter MM (2009) Caffeine inhibition of ionotropic glycine receptors. J Physiol 587(16):4063–4075PubMedPubMedCentralCrossRefGoogle Scholar
  414. 414.
    Kuijpers GA, Vergara LA, Calvo S, Yadid G (1994) Inhibitory effect of strychnine on acetylcholine receptor activation in bovine adrenal medullary chromaffin cells. Br J Pharmacol 113(2):471–478PubMedPubMedCentralCrossRefGoogle Scholar
  415. 415.
    Maehle AH, Prüll CR, Halliwell RF (2002) The emergence of the drug receptor theory. Nat Rev Drug Discov 1(8):637–641PubMedCrossRefPubMedCentralGoogle Scholar
  416. 416.
    Ehrlich P (1908) Nobel lecture on partial functions of the cell. In: Himmelweit F, Marquardt M, Dale HH (eds) The collected papers of P. Ehrlich, vol III. Pergamon Press, OxfordGoogle Scholar
  417. 417.
    Langley JN (1906) On nerve endings and on special excitable substances in cells. Proc R Soc B Biol Sci 70:170–194CrossRefGoogle Scholar
  418. 418.
    Clark AJ (1926) The reaction between acetylcholine and muscle cells. J Physiol 61:530–547PubMedPubMedCentralCrossRefGoogle Scholar
  419. 419.
    Clark AJ (1926) The antagonism of acetylcholine by atropine. J Physiol 61:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  420. 420.
    Clark AJ, Raventos J (1937) The antagonism of acetylcholine and of quaternary ammonium salts. Q J Exp Physiol 26:375–392CrossRefGoogle Scholar
  421. 421.
    Verney EB, Barcroft J (1941) Alfred Joseph Clark. 1885–1941. Obit Not Fell R Soc 3(10):969–984CrossRefGoogle Scholar
  422. 422.
    Lees GM (1998) A tribute to the late Hans W. Kosterlitz: ploughing the lone furrow. Can J Physiol Pharmacol 76(3):244–251PubMedCrossRefPubMedCentralGoogle Scholar
  423. 423.
    Prüll CR (2006) Caught between the old and the new—Walther Straub (1874–1944), the question of drug receptors, and the rise of modern pharmacology. Bull Hist Med 80(3):465–489PubMedCrossRefPubMedCentralGoogle Scholar
  424. 424.
    Dale HH, Feldberg W, Vogt M (1936) Release of acetylcholine at voluntary motor nerve endings. J Physiol 86:353–380PubMedPubMedCentralCrossRefGoogle Scholar
  425. 425.
    Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. I.Mittei-lung (About humoral transmissibility of the cardiac nervous system) Pflügers Arch Ges Physiol 189:239–242CrossRefGoogle Scholar
  426. 426.
    Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. II. Mittei-lung. Pflügers Arch Ges Physiol 193:201–213CrossRefGoogle Scholar
  427. 427.
    Rang HP (2006) The receptor concept: pharmacology’s big idea. Br J Pharmacol 147(S1):S9–S16PubMedPubMedCentralCrossRefGoogle Scholar
  428. 428.
    Limbird LE (2004) The receptor concept: a continuing evolution. Mol Interv 4(6):326–336PubMedCrossRefPubMedCentralGoogle Scholar
  429. 429.
    Ahlquist RP (1948) A study of the adrenotrophic receptors. Am J Physiol 155:586–600Google Scholar
  430. 430.
    Segal I, Yaakov Y, Adler SN, Blau H, Broide E, Santo M et al (2008) Cystic fibrosis transmembrane conductance regulator ion channel function testing in recurrent acute pancreatitis. J Clin Gastroenterol 42(7):810–814PubMedCrossRefPubMedCentralGoogle Scholar
  431. 431.
    Ashlock MA, Olson ER (2011) Therapeutics development for cystic fibrosis: a successful model for a multisystem genetic disease. Annu Rev Med 62:107–125PubMedCrossRefPubMedCentralGoogle Scholar
  432. 432.
    Elborn JS (2007) How can we prevent multisystem complications of cystic fibrosis? Semin Respir Crit Care Med 28(3):303–311PubMedCrossRefPubMedCentralGoogle Scholar
  433. 433.
    Larsen EH (2002) Hans H. Ussing—scientific work: contemporary significance and perspectives. Biochim Biophys Acta Biomembr 1566(1–2):2–15CrossRefGoogle Scholar
  434. 434.
    Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147(1):S127–S135PubMedPubMedCentralGoogle Scholar
  435. 435.
    Fogel WA (2015) Histamine. In: Parnham M (ed) Encyclopedia of inflammatory diseases. Springer Basel, SwitzerlandGoogle Scholar
  436. 436.
    Petersen H (1991) Histamine and the stomach: introduction. Scand J Gastroenterol 26(180):2–3CrossRefGoogle Scholar
  437. 437.
    Ganellin CR (2011) Personal reflections on Sir James Black (1924–2010) and histamine. Inflamm Res 60(1):103–110PubMedCrossRefPubMedCentralGoogle Scholar
  438. 438.
    Konturek SJ, Konturek PC, Konturek JW, Plonka M, Czesnikiewicz-Guzik M, Brzozowski T, Bielanski W (2006) Helicobacter pylori and its involvement in gastritis and peptic ulcer formation. J Physiol Pharmacol 57(3):29–50PubMedPubMedCentralGoogle Scholar
  439. 439.
    Black RB, Hole D, Rhodes J (1971) Bile damage to the gastric mucosal barrier: the influence of pH and bile acid concentration. Gastroenterology 61(2):178–184PubMedPubMedCentralGoogle Scholar
  440. 440.
    Black RB, Rhodes J, Hole D (1973) Measurement of bile damage to the gastric mucosa. The relation between the electrical potential difference and transmucosal movement of hydrogen and sodium ion. Am J Dig Dis 18(5):411–415PubMedCrossRefPubMedCentralGoogle Scholar
  441. 441.
    Black JW, Duncan WA, Durant CJ, Ganellin CR, Parsons EM (1972) Definition and antagonism of histamine H2-receptors. Nature 236:385–390PubMedCrossRefPubMedCentralGoogle Scholar
  442. 442.
    Black JW, Owen DA, Parsons ME (1975) An analysis of the depressor responses to histamine in the cat and dog: involvement of both H1- and H2-receptors. Br J Pharmacol 54(3):319–324PubMedPubMedCentralCrossRefGoogle Scholar
  443. 443.
    Ganser AL, Forte JG (1973) K+-stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim Biophys Acta 307:169–180PubMedCrossRefPubMedCentralGoogle Scholar
  444. 444.
    Ganser AL, Forte JG (1973) Ionophoretic stimulation of K+-ATPase of oxyntic cell microsomes. Biochem Biophys Res Commun 54(2):690–696PubMedCrossRefPubMedCentralGoogle Scholar
  445. 445.
    Inocente C, Arnulf I, Bastuji H, Thibault-Stoll A, Raoux A, Reimão R et al (2012) Pitolisant, an inverse agonist of the histamine H3 receptor: an alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clin Neuropharmacol 35(2):55–60PubMedCrossRefPubMedCentralGoogle Scholar
  446. 446.
    Black J (1988) Drugs from emasculated hormones: the principles of syntopic antagonism. In: Nobel lecture, physiology or medicineGoogle Scholar
  447. 447.
    Marx JL (1988) The 1988 nobel prize for physiology or medicine. Science 242(4878):516–517PubMedCrossRefPubMedCentralGoogle Scholar
  448. 448.
    Prinz C, Kajimura M, Scott D, Helander H, Shin J, Besancon M et al (1992) Acid secretion and the H, K ATPase of stomach. Yale J Biol Med 65(6):577–596PubMedPubMedCentralGoogle Scholar
  449. 449.
    Shin JM, Munson K, Vagin O, Sachs G (2009) The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch 457(3):609–622PubMedCrossRefPubMedCentralGoogle Scholar
  450. 450.
    Soumarmon A, Lewin MJ (1986) Gastric (H+, K+)-ATPase. Biochimie 68(12):1287–1291PubMedCrossRefPubMedCentralGoogle Scholar
  451. 451.
    Sachs G, Shin JM, Vagin O, Lambrecht N, Yakubov I, Munson K (2007) The gastric H, K ATPase as a drug target: past, present, and future. J Clin Gastroenterol 41(2):S226–S242PubMedPubMedCentralCrossRefGoogle Scholar
  452. 452.
    Song P, Groos S, Riederer B, Feng Z, Krabbenhöft A, Smolka A, Seidler U (2009) KCNQ1 is the luminal K+ recycling channel during stimulation of gastric acid secretion. J Physiol 587(15):3955–3965PubMedPubMedCentralCrossRefGoogle Scholar
  453. 453.
    Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88(3):1119–1182PubMedCrossRefPubMedCentralGoogle Scholar
  454. 454.
    Julio-Kalajzić F, Villanueva S, Burgos J, Ojeda M, Cid LP, Jentsch TJ, Sepúlveda FV (2018) K2P TASK-2 and KCNQ1-KCNE3K+ channels are major players contributing to intestinal anion and fluid secretion. J Physiol 596(3):393–407PubMedCrossRefPubMedCentralGoogle Scholar
  455. 455.
    Fujii T, Takahashi Y, Ikari A, Morii M, Tabuchi Y, Tsukada K et al (2009) Functional Association between K+-Cl Cotransporter-4 and H+, K+-ATPase in the apical canalicular membrane of gastric parietal cells. J Biol Chem 284:619–629PubMedCrossRefPubMedCentralGoogle Scholar
  456. 456.
    Shamburek RD, Schubert ML (1993) Pharmacology of gastric acid inhibition. Baillieres Clin Gastroenterol 7(1):23–54PubMedCrossRefPubMedCentralGoogle Scholar
  457. 457.
    Geibel JP, Wagner CA, Caroppo R, Qureshi I, Gloeckner J, Manuelidis L et al (2001) The stomach divalent ion-sensing receptor scar is a modulator of gastric acid secretion. J Biol Chem 276(43):39549–39552PubMedCrossRefPubMedCentralGoogle Scholar
  458. 458.
    Bakker EP (1979) Ionophore antibiotics. Mechanism of action of antibacterial agents. Antibiotics 5(1):67–97Google Scholar
  459. 459.
    Daniele RP, Holian SK (1976) A potassium ionophore (valinomycin) inhibits lymphocyte proliferation by its effects on the cell membrane. Proc Natl Acad Sci U S A 73(10):3599–3602PubMedPubMedCentralCrossRefGoogle Scholar
  460. 460.
    Shamoo AE, Goldstein DA (1977) Isolation of ionophores from ion transport systems and their role in energy transduction. Biochim Biophys Acta Rev Biomembr 472(1):13–53CrossRefGoogle Scholar
  461. 461.
    Bühlmann P, Chen LD (2012) Ion-selective electrodes with ionophore-doped sensing membranes. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials. Wiley, ChichesterGoogle Scholar
  462. 462.
    Daniele RP, Holian SK, Nowell PC (1978) A potassium ionophore (Nigericin) inhibits stimulation of human lymphocytes by mitogens. J Exp Med 147(2):571–581PubMedCrossRefPubMedCentralGoogle Scholar
  463. 463.
    Sachs G, Shin JM, Besancon M, Prinz C (1993) The continuing development of gastric acid pump inhibitors. Aliment Pharmacol Ther 7(1):4–12PubMedPubMedCentralGoogle Scholar
  464. 464.
    Banić M, Malfertheiner P, Babić Z, Ostojić R, Kujundzic M, Fatović-Ferenčić S et al (2011) Historical impact to drive research in peptic ulcer disease. Dig Dis 29(5):444–453PubMedPubMedCentralCrossRefGoogle Scholar
  465. 465.
    Wallmark B, Sachs G, Mardh S, Fellenius E (1983) Inhibition of gastric (H+-K+)-ATPase by the substituted benzimidazole, picoprazole. Biochim Biophys Acta 728:31–38PubMedCrossRefPubMedCentralGoogle Scholar
  466. 466.
    Fellenius E, Berglindh T, Sachs G, Olbe L, Elander B, Sjostrand SE, Wallmark B (1981) Substituted benzimidazoles inhibit gastric acid secretion by blocking (H++K+)ATPase. Nature 290:159–161PubMedCrossRefPubMedCentralGoogle Scholar
  467. 467.
    Khan MOF, Deimling MJ, Philip A (2011) Medicinal chemistry and the pharmacy curriculum. Am J Pharm Educ 75(8):161PubMedCrossRefPubMedCentralGoogle Scholar
  468. 468.
    Olbe L, Carlsson E, Lindberg P (2003) A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov 2:132–139PubMedCrossRefPubMedCentralGoogle Scholar
  469. 469.
    Shin JM, Vagin O, Munson K, Kidd M, Modlin IM, Sachs G (2008) Molecular mechanisms in therapy of acid-related diseases. Cell Mol Life Sci 65(2):264–281PubMedPubMedCentralCrossRefGoogle Scholar
  470. 470.
    Lindberg P, Brändström A, Wallmark B, Mattsson H, Rikner L, Hoffmann KJ (1990) Omeprazole: the first proton pump inhibitor. Med Res Rev 10(1):1–54PubMedCrossRefPubMedCentralGoogle Scholar
  471. 471.
    Munson K, Garcia R, Sachs G (2005) Inhibitor and ion binding sites on the gastric H, K-ATPase. Biochemistry 44(14):5267–5284PubMedCrossRefPubMedCentralGoogle Scholar
  472. 472.
    Gremse DA (2001) Lansoprazole: pharmacokinetics, pharmacodynamics and clinical uses. Expert Opin Pharmacother 2(10):1663–1670PubMedCrossRefPubMedCentralGoogle Scholar
  473. 473.
    Simon WA, Herrmann M, Klein T, Shin JM, Huber R, Senn-Bilfinger J, Postius S (2007) Soraprazan: setting new standards in inhibition of gastric acid secretion. J Pharmacol Exp Ther 321(3):866–874PubMedCrossRefPubMedCentralGoogle Scholar
  474. 474.
    Kim HK, Park SH, Cheung DY, Cho YS, Kim JI, Kim SS et al (2010) Clinical trial: inhibitory effect of revaprazan on gastric acid secretion in healthy male subjects. J Gastroenterol Hepatol 25(10):1618–1625PubMedCrossRefPubMedCentralGoogle Scholar
  475. 475.
    Owyang C, Green L, Rader D (1983) Colonic inhibition of pancreatic and biliary secretion. Gastroenterology 84(3):470–475PubMedPubMedCentralGoogle Scholar
  476. 476.
    Cumming JH (1975) Absorption and secretion by the colon. Gut 16(4):323–329CrossRefGoogle Scholar
  477. 477.
    Matsumoto M, Ooga T, Kibe R, Aiba Y, Koga Y, Benno Y (2017) Colonic absorption of low-molecular-weight metabolites influenced by the intestinal microbiome: a pilot study. PLoS ONE 12(1):e0169207PubMedPubMedCentralCrossRefGoogle Scholar
  478. 478.
    Kuthmann E (1957) Johann Conrad Brunner as a university professor & therapeutist. Gesnerus 14(3–4):119–140PubMedPubMedCentralGoogle Scholar
  479. 479.
    Bosmia AN, Tubbs RI, Clapp DC, Batzdorf U, Loukas M, Tubbs RS (2014) Johann Conrad Brunner (1653–1727) and the first description of syringomyelia. Childs Nerv Syst 30(2):193–196PubMedCrossRefPubMedCentralGoogle Scholar
  480. 480.
    Heitz PU, Kasper M, van Noorden S, Polak JM, Gregory H, Pearse AG (1978) Immunohistochemical localisation of urogastrone to human duodenal and submandibular glands. Gut 19(5):408–413PubMedPubMedCentralCrossRefGoogle Scholar
  481. 481.
    Kasselberg AG, Orth DN, Gray ME, Stahlman MT (1985) Immunocytochemical localization of human epidermal growth factor/urogastrone in several human tissues. J Histochem Cytochem 33(4):315–322PubMedCrossRefPubMedCentralGoogle Scholar
  482. 482.
    Hirata Y, Moore GW, Bertagana C, Orth DN (1980) Plasma concentrations of immunoreactive human epidermal growth factor (urogastrone) in man. J Clin Endocrinol Metab 50(3):440–444PubMedCrossRefPubMedCentralGoogle Scholar
  483. 483.
    Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69:2907–2917PubMedPubMedCentralCrossRefGoogle Scholar
  484. 484.
    May R, Qu D, Weygant N, Chandrakesan P, Ali N, Lightfoot SA et al (2014) Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair after radiation injury. Stem Cells 32(3):822–827PubMedPubMedCentralCrossRefGoogle Scholar
  485. 485.
    Humphries A, Wright NA (2008) Colonic crypt organization and tumorigenesis. Nat Rev Cancer 8:415–424PubMedCrossRefPubMedCentralGoogle Scholar
  486. 486.
    Potten CS (1998) Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 353(1370):821–830PubMedPubMedCentralCrossRefGoogle Scholar
  487. 487.
    Baker AM, Cereser B, Melton S, Fletcher AG, Rodriguez-Justo M, Tadrous PJ et al (2014) Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep 8(4):940–947PubMedPubMedCentralCrossRefGoogle Scholar
  488. 488.
    van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71(1):241–260PubMedCrossRefPubMedCentralGoogle Scholar
  489. 489.
    Leung PS (2010) Physiology of the pancreas. The renin-angiotensin system: current research progress in the pancreas volume 690 of the series advances in experimental medicine and biology. Springer, DordrechtCrossRefGoogle Scholar
  490. 490.
    Babu CSR, Sharma M (2014) Biliary tract anatomy and its relationship with venous drainage. J Clin Exp Hepatol 4(1):S18–S26CrossRefGoogle Scholar
  491. 491.
    Allescher HD (1989) Papilla of vater: structure and function. Endoscopy 21(1):324–329PubMedCrossRefPubMedCentralGoogle Scholar
  492. 492.
    Behar J (2013) Physiology and pathophysiology of the biliary tract: the gallbladder and sphincter of Oddi–a review. ISRN Physiol 2013:837630CrossRefGoogle Scholar
  493. 493.
    Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M et al (2012) Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci 74(1–2):1–18PubMedPubMedCentralGoogle Scholar
  494. 494.
    Chang EB, Leung PS (2014) Pancreatic physiology. In: Leung PS (ed) The gastrointestinal system. Springer, DordrechtGoogle Scholar
  495. 495.
    Adelson JW, Miller PE (1989) Heterogeneity of the exocrine pancreas. Am J Physiol Gastrointest Liver Physiol 256(5):G817–G825CrossRefGoogle Scholar
  496. 496.
    Naruse S, Kitagawa M, Ishiguro H, Hayakawa T (2002) Feedback regulation of pancreatic secretion by peptide YY. Peptides 23(2):359–365PubMedCrossRefPubMedCentralGoogle Scholar
  497. 497.
    Singer MV, Niebergall-Roth E (2009) Secretion from acinar cells of the exocrine pancreas: role of enteropancreatic reflexes and cholecystokinin. Cell Biol Int 33(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  498. 498.
    Verspohl EJ, Tacke R, Mutschler E, Lambrecht G (1990) Muscarinic receptor subtypes in rat pancreatic islets: binding and functional studies. Eur J Pharmacol 178(3):303–311PubMedCrossRefPubMedCentralGoogle Scholar
  499. 499.
    Low JT, Shukla A, Thorn P (2010) Pancreatic acinar cell: new insights into the control of secretion. Int J Biochem Cell Biol 42(10):1586–1589PubMedCrossRefPubMedCentralGoogle Scholar
  500. 500.
    Pandol SJ (2010) The exocrine pancreas. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  501. 501.
    Gray MA, Greenwell JR, Argent BE (1990) The role of ion channels in the mechanism of pancreatic bicarbonate secretion. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, HeidelbergGoogle Scholar
  502. 502.
    Cotton CU (2000) Basolateral potassium channels and epithelial ion transport. Am J Respir Cell Mol Biol 23(3):270–272PubMedCrossRefPubMedCentralGoogle Scholar
  503. 503.
    Banales JM, Gradilone SA (2009) Primers on molecular pathways—ion channels: key regulators of pancreatic physiology. Pancreatology 9(5):556–559PubMedCrossRefPubMedCentralGoogle Scholar
  504. 504.
    Thévenod F (2005) Ion channels in secretory granules of the pancreas: molecular identification and their role in regulated secretion. In: Schultz C (ed) Defects of secretion in cystic fibrosis. Advances in experimental medicine and biology. Springer, BostonGoogle Scholar
  505. 505.
    Kosters A, Karpen SJ (2008) Bile acid transporters in health and disease. Xenobiotica 38(7–8):1043PubMedPubMedCentralCrossRefGoogle Scholar
  506. 506.
    Kuipers F, Bloks VW, Groen AK (2014) Beyond intestinal soap—bile acids in metabolic control. Nat Rev Endocrinol 10:488–498PubMedCrossRefPubMedCentralGoogle Scholar
  507. 507.
    Martínez-Augustin O, de Medina FS (2008) Intestinal bile acid physiology and pathophysiology. World J Gastroenterol 14(37):5630–5640PubMedPubMedCentralCrossRefGoogle Scholar
  508. 508.
    Esteller A (2008) Physiology of bile secretion. World J Gastroenterol 14(37):5641–5649PubMedPubMedCentralCrossRefGoogle Scholar
  509. 509.
    Rao RK, Samak G (2013) Bile duct epithelial tight junctions and barrier function. Tissue Barriers 1(4):e25718PubMedPubMedCentralCrossRefGoogle Scholar
  510. 510.
    Strazzabosco M (1997) Transport systems in cholangiocytes: their role in bile formation and cholestasis. Yale J Biol Med 70(4):427–434PubMedPubMedCentralGoogle Scholar
  511. 511.
    Boyer JL (2013) Bile formation and secretion. Compr Physiol 3(3):1035–1078PubMedPubMedCentralGoogle Scholar
  512. 512.
    Kanz MF (2010) Anatomy and physiology of the biliary epithelium. In: McQueen CA (ed) Comprehensive toxicology, 2nd edn. Elsevier, MAGoogle Scholar
  513. 513.
    Nagahashi M, Shirai Y, Wakai T, Sakata J, Ajioka Y, Hatakeyama K (2007) Perimuscular connective tissue contains more and larger lymphatic vessels than the shallower layers in human gallbladders. World J Gastroenterol 13(33):4480–4483PubMedPubMedCentralCrossRefGoogle Scholar
  514. 514.
    Okada K-I, Kijima H, Imaizumi T, Hirabayashi K, Matsuyama M, Yazawa N et al (2012) Clinical significance of wall invasion pattern of subserosa-invasive gallbladder carcinoma. Oncol Rep 28(5):1531–1536PubMedPubMedCentralCrossRefGoogle Scholar
  515. 515.
    Baumann C (2015) The Physiologist Ewald Hering (1834–1918): curriculum vitae. Strabismus 23(3):135–140PubMedCrossRefPubMedCentralGoogle Scholar
  516. 516.
    Ivy AC (1934) The physiology of the gall bladder. Physiol Rev 14(1):1–102CrossRefGoogle Scholar
  517. 517.
    Tietz PS, Chen X-M, Gong A-Y, Huebert RC, Masyuk A, Masyuk T et al (2002) Experimental models to study cholangiocyte biology. World J Gastroenterol 8(1):1–4PubMedPubMedCentralCrossRefGoogle Scholar
  518. 518.
    Tanimizu N, Miyajima A, Mostov KE (2007) Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell 18(4):1472–1479PubMedPubMedCentralCrossRefGoogle Scholar
  519. 519.
    Tabibian JH, Masyuk AI, Masyuk TV, O’Hara SP, LaRusso NF (2013) Physiology of cholangiocytes. Compr Physiol 3(1):541–565PubMedPubMedCentralGoogle Scholar
  520. 520.
    Tietz P, Levine S, Holman R, Fretham C, Larusso NF (1997) Characterization of apical and basolateral plasma membrane domains derived from cultured rat cholangiocytes. Analyt Biochem 254(2):192–199PubMedCrossRefPubMedCentralGoogle Scholar
  521. 521.
    Tietz PS, Larusso NF (2006) Cholangiocyte biology. Curr Opin Gastroenterol 22(3):279–287PubMedCrossRefPubMedCentralGoogle Scholar
  522. 522.
    Baiocchi L, LeSage G, Glaser S, Alpini G (1999) Regulation of cholangiocyte bile secretion. J Hepatol 31(1):179–191PubMedCrossRefPubMedCentralGoogle Scholar
  523. 523.
    Tormey JMcD, Diamond JM (1967) The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol 50(8):2031–2060PubMedPubMedCentralCrossRefGoogle Scholar
  524. 524.
    Alrefai WA, Gill RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24(10):1803–1823PubMedCrossRefPubMedCentralGoogle Scholar
  525. 525.
    Omenetti A, Yang L, Gainetdinov RR, Guy CD, Choi SS, Chen W et al (2011) Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol 300(2):G303–G315PubMedCrossRefPubMedCentralGoogle Scholar
  526. 526.
    Syal G, Fausther M, Dranoff JA (2012) Advances in cholangiocyte immunobiology. Am J Physiol Gastrointest Liver Physiol 303(10):G1077–G1086PubMedPubMedCentralCrossRefGoogle Scholar
  527. 527.
    van Mil SWC, van Oort MM, van den Berg IET, Berger R, Houwen RHJ, Klomp LWJ (2004) D1FIC1 is expressed at apical membranes of different epithelial cells in the digestive tract and is induced in the small intestine during postnatal development of mice. Pediatr Res 56:981–987PubMedCrossRefPubMedCentralGoogle Scholar
  528. 528.
    Arrese M, Ananthananarayanan M, Suchy FJ (1998) Hepatobiliary transport: molecular mechanisms of development and cholestasis. Pediatr Res 44:141–147PubMedCrossRefPubMedCentralGoogle Scholar
  529. 529.
    Srivastava A (2014) Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 4(1):25–36PubMedCrossRefPubMedCentralGoogle Scholar
  530. 530.
    Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N et al (2008) The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 48(6):1896–1905PubMedPubMedCentralCrossRefGoogle Scholar
  531. 531.
    Suchy FJ, Ananthanarayanan M (2006) Bile salt excretory pump: biology and pathobiology. J Pediatr Gastroenterol Nutr 43(1):S10–S16PubMedCrossRefPubMedCentralGoogle Scholar
  532. 532.
    Boyer J (1996) Bile duct epithelium: frontiers in transport physiology. Am J Physiol 270(1 Pt 1):G1–G5PubMedPubMedCentralGoogle Scholar
  533. 533.
    Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol 276(1 Pt 1):G280–G286PubMedPubMedCentralGoogle Scholar
  534. 534.
    Melero S, Spirlì C, Zsembery A, Medina JF, Joplin RE, Duner E et al (2002) Defective regulation of cholangiocyte Cl/HCO3(−) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 35(6):1513–1521PubMedCrossRefPubMedCentralGoogle Scholar
  535. 535.
    Mann R, Bhathal PS, Bell C (1991) Aminergic innervation of the gall bladder in man and dog. Clin Auton Res 1(3):205–213PubMedCrossRefPubMedCentralGoogle Scholar
  536. 536.
    Nelson DK, Glasbrenner B, Dahmen G, Riepl RL, Malfertheiner P, Adler G (1996) M1 muscarinic mechanisms regulate intestinal-phase gallbladder physiology in humans. Am J Physiol Gastrointest Liver Physiol 271(5):G824–G830CrossRefGoogle Scholar
  537. 537.
    Jordan PH Jr (1964) Physiology of bile secretion. Am J Surg 107(2):367–370PubMedCrossRefPubMedCentralGoogle Scholar
  538. 538.
    Spirlì C, Fabris L, Duner E, Fiorotto R, Ballardini G, Roskams T et al (2003) Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology 124(3):737–753PubMedCrossRefPubMedCentralGoogle Scholar
  539. 539.
    Tabibian JH, Trussoni CE, O’Hara SP, Splinter PL, Heimbach JK, LaRusso NF (2014) Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Lab Invest 94(10):1126–1133PubMedPubMedCentralCrossRefGoogle Scholar
  540. 540.
    Tabibian JH, O’Hara SP, Splinter PL, Trussoni CE, LaRusso NF (2014) Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 59(6):2263–2275PubMedPubMedCentralCrossRefGoogle Scholar
  541. 541.
    Park J, Gores GJ, Patel T (1999) Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase. Hepatology 29(4):1037–1043PubMedCrossRefPubMedCentralGoogle Scholar
  542. 542.
    Okado-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N (2000) Effect of cAMP on inducible nitric oxide synthase gene expression: its dual and cell-specific functions. Antioxid Redox Signal 2(4):631–642PubMedCrossRefPubMedCentralGoogle Scholar
  543. 543.
    Utter A, Goss F (1997) Exercise and gall bladder function. Sports Med 23(4):218–227PubMedCrossRefPubMedCentralGoogle Scholar
  544. 544.
    Tierney S, Pitt HA, Lillemoe KD (1993) Physiology and pathophysiology of gallbladder motility. Surg Clin North Am 73(6):1267–1290PubMedPubMedCentralCrossRefGoogle Scholar
  545. 545.
    Hofmann AF (2007) Biliary secretion and excretion in health and disease: current concepts. Ann Hepatol 6(1):15–27PubMedPubMedCentralGoogle Scholar
  546. 546.
    Li M, Ali SM, Umm-a-OmarahGilani S, Liu J, Li Y-Q, Zuo X-L (2014) Kudo’s pit pattern classification for colorectal neoplasms: a meta-analysis. World J Gastroenterol 20(35):12649–12656PubMedPubMedCentralCrossRefGoogle Scholar
  547. 547.
    Liu HH, Kudo SE, Juch JP (2003) Pit pattern analysis by magnifying chromoendoscopy for the diagnosis of colorectal polyps. J Formos Med Assoc 102(3):178–182PubMedPubMedCentralGoogle Scholar
  548. 548.
    Gunduz-Demir C, Kandemir M, Tosun AB, Sokmensuer C (2010) Automatic segmentation of colon glands using object-graphs. Med Image Anal 14(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  549. 549.
    Binder HJ, Rajendran V, Sadasivan V, Geibel JP (2005) Bicarbonate secretion: a neglected aspect of colonic ion transport. J Clin Gastroenterol 39(4 Suppl 2):S53–S58PubMedCrossRefPubMedCentralGoogle Scholar
  550. 550.
    Macleod RJ (2013) CaSR function in the intestine: hormone secretion, electrolyte absorption and secretion, paracrine non-canonical Wnt signaling and colonic crypt cell proliferation. Best Pract Res Clin Endocrinol Metab 27(3):385–402CrossRefGoogle Scholar
  551. 551.
    Binder HJ (2010) Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72:297–313PubMedCrossRefPubMedCentralGoogle Scholar
  552. 552.
    Milla PJ (2009) Advances in understanding colonic function. J Pediatr Gastroenterol Nutr 48(2):S43–S45PubMedCrossRefPubMedCentralGoogle Scholar
  553. 553.
    Hedemann MS, Kristiansen E, Brunsgaard G (2002) Morphology of the large intestine of the pig: haustra versus taenia. Ann Anat 184(4):401–403PubMedCrossRefPubMedCentralGoogle Scholar
  554. 554.
    Tang L, Peng M, Liu L, Chang W, Binder HJ, Cheng SX (2015) Calcium-sensing receptor stimulates Cl(−)- and SCFA-dependent but inhibits cAMP-dependent HCO3(−) secretion in colon. Am J Physiol Gastrointest Liver Physiol 308(10):G874–G883PubMedPubMedCentralCrossRefGoogle Scholar
  555. 555.
    Brownlee IA, Havler ME, Dettmar PW, Allen A, Pearson JP (2003) Colonic mucus: secretion and turnover in relation to dietary fibre intake. Proc Nutr Soc 62(1):245–249PubMedCrossRefPubMedCentralGoogle Scholar
  556. 556.
    Vidyasagar S, Rajendran VM, Binder HJ (2004) Three distinct mechanisms of HCO3− secretion in rat distal colon. Am J Physiol Cell Physiol 287(3):C612–C621PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations