History of Development of Gastrointestinal Physiology: From Antiquity to Modern Period and the Birth of Modern Digestive Physiology

  • Menizibeya Osain WelcomeEmail author


Curiosity and the quest for addressing human maladies or problems of nature are possibly the key driving forces for discoveries in science. Apart from shaping the reputation of the scientists and historically inscribing his or her name in the memorable plate, outstanding discoveries in science gain varying levels of recognition from the local to the global stage. The Nobel Prize is the most respected honor and highest level of recognition given to any individual on planet Earth for exceptional contribution to solving key problems of nature and mankind. Since 1901, this highest accolade started recognizing extraordinary endeavor of scientists in addressing glaring issues of existence and nature. Traditionally, the prize is given in literature, physics, chemistry, and physiology or medicine. Over the past years, award recipients, probably due to the interchangeability and relationship between disciplines in science, scientists who are physicians and researchers in physiology or medicine, for example, have been awarded the prize not only in physiology or medicine, but also in chemistry. Chemistry and physiology or medicine have had a close relationship as regards discoveries that have necessitated the award of the Nobel Prize. Except in rare cases where the prize was awarded to a discovery that happened by chance, most awards were made to discoveries that had solid roots in the previous works of other scientists. Therefore, it is imperative to have a basic knowledge of the historic timeline of major developmental events and achievements to allow for meaningful future investigations that could fetch the world results for the betterment of life. Since its inception, out of 211 Nobel laureates in Physiology or Medicine, awarded between 1901 and 2016 (107 times of Nobel Prize awards), five laureates have received the prestigious award in the area of the gastrointestinal physiology. All five prizes were won by scientists whose works were rooted in previous works of other scientists. The research works of the scientists whose ideas laid the basis for breakthrough studies are worth considering. The first Nobel laureate in the area of gastrointestinal (GI) physiology, Ivan Petrovich Pavlov (1849–1936), who set the stage for breakthrough discoveries in GI physiology, is a physician, physiologist, and pharmacologist. He won the prize in 1904, making him the fourth scientist in the list of Nobel Prize Winners since the inception of the award in 1901. Apart from the Nobel Prize, there are other scientific prizes with near equivalent rating to the Nobel Prize. Some of the scientific prizes are awarded specifically to young scientists. This chapter provides contemporary information on the historical timeline of events that transpired on GI physiology beginning from antiquity to the contemporary period.


Developmental history Evolution Nobel Prize Antiquity Renaissance Modern era Modern digestive physiology Gastrointestinal physiology Gastric fistula Digestion Sham feeding Pepsis Nervism Heidenhain pouch Pavlov’s pouch Translational physiology Translational medicine Translational research Reductionist Integrative Physiome project Giome Project Hippocrates Aristotle Plato Herophilus (Herofilos) of Alexandria Praxagoras Andreas Vesalius Erasistratos of Keos Susruta (Sushruta) Samhita and Charaka Samhita Claudius Galen of Pergamum Magnus of Nisibis (or Emesa) Alexandrias Byzantine physicians Caelius Aurelianus Soranus of Ephesus Avicenna Norman Guitmund Theodoric Borgognoni Guido Lanfranchi (Lanfranc of Milan) Johannes Guttenberg Alessandro Benedetti Jacopo Berengario da Carpi Leonardo da Vinci Paracelsus Johan Thölde René Descartes Giovanni Alphonso Alexander Mikhailovich Ugolev Arne Dahlqvist Borelli Herman Boerhaave Regnier de Graaf Friedrich Tiedemann Leopold Gmelin Jöns Jakob Berzelius Andrés Laguna de Segovia Christopher Columbus Jan Baptiste van Helmont Andreas Vesalius Franciscus de la Boë Sylvius Viridet William Harvey Caspar Bauhin Johann Georg Wirsung Francis Glisson Johann Conrad Peyer Johann Conrad Brunner Johann Nathanael Lieberkühn René de Réaumur Edward Stevens Johann Nepomuk Eberle Erhard Friedrich Leuchs Anselme Payen Jean-François Persoz Wilhelm Friedrich Kühne Andreas Sigismund Marggraf Jean Baptiste André Dumas Louis-Nicolas Vauquelin Pierre Jean Robiquet William Hyde Wollaston Karl Axel Hampus Mörner Jons Jakob Berzelius Gerardus Johannes Mulder Gabriel G. Valentina Apollinaire Bouchardat Claude Marie Sandras Louis Mialhe Albrecht von Haller Fredericus Bernardus Albinus Bernhard Siegfried Albinus Hermann Boerhaave Albinus Andreas Bonn Abbe Lazzaro Spallanzani John Richardson Young Guillaume Dupuytren William Prout Camillo Golgi Theodor Schwann Johannes Peter Müller John Newport Langley John Sydney Edkins John Howard Northrop Roger Moss Herriott François Magendie Sir Charles Bell Theodor Schwann Karl (Carl) Ludwig Ernst von Brücke William Bayliss Nikolai Konstantinovich Kulchitsky Karl Hugo Kronecker Samuel James Meltzer Saturnin Arloing Ivan Mikhailovich Sechenov Edwin Burket Twitmyer Sir Charles Scott Sherrington Edgar Adrian Johanes Andreas Fibiger Henry Hallet Dale George Palade James Whyte Black Robin Warren Barry Marshall Basov Vasiliy Alexandrovich Sergey Petrovich Botkin André Latarjet Lester Reynold Dragstedt William Beaumont Claude Bernard Jan Evangelista Purkyně Rudolph Heidenhain Ivan Petrovich Pavlov 



Anno Domini


Before Christ


Before Common Era

ca (syn. c., c, cir., circ., cca.)



Common Era


Deoxyribonucleic acid




Hydrochloric acid


Messenger ribonucleic acid


National Aeronautics and Space Administration








  1. 1.
    Sprung L (2001) Wundt, Wilhelm Maximilian (1832–1920). In: Smelser NJ, Baltes PB (eds) International encyclopedia of the social & behavioral sciences. Pergamon Press (Elsevier), NY, USAGoogle Scholar
  2. 2.
    Koertge N (ed) (2007) New dictionary of scientific biography, 1st edn. Charles Scribners and Sons, Detroit, MichiganGoogle Scholar
  3. 3.
    Bourgoin SM (2012) Encyclopedia of world biography, 2nd edn. Gale Research, Detroit, MichiganGoogle Scholar
  4. 4.
    Vannier J, Liu J, Lerosey-Aubril R, Vinther J, Daley AC (2014) Sophisticated digestive systems in early arthropods. Nat Comm 5:3641CrossRefGoogle Scholar
  5. 5.
    Maloof AC, Porter SM, Moore JL, Dudas FO, Bowring SA, Higgins JA, Fike DA, Eddy MP (2010) The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Am Bull 122(11–12):1731–1774CrossRefGoogle Scholar
  6. 6.
    Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126(5):851–859PubMedPubMedCentralGoogle Scholar
  7. 7.
    Graham B (2013) At the origin of animals: the revolutionary Cambrian fossil record. Curr Genom 14(6):344–354CrossRefGoogle Scholar
  8. 8.
    Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kousoulis AA, Tsoucalas G, Armenis I, Marineli F, Karamanou M, Androutsos G (2012) From the hungry acid to pepsinogen: a journey through time in quest for the stomachs secretion. Ann Gastroenterol 25(2):119–122PubMedPubMedCentralGoogle Scholar
  10. 10.
    SRódka A (2003) The short history of gastroenterology. J Physiol Pharmacol 54(S3):9–21PubMedPubMedCentralGoogle Scholar
  11. 11.
    Riva MA, Riva E, Spicci M, Strazzabosco M, Giovannini M, Cesana G (2011) “The city of Hepar”: rituals, gastronomy, and politics at the origins of the modern names for the liver. J Hepatol 55(5):1132–1136PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pelemans W, Texter EC Jr (1974) The manometric examination of the esophagus. Dis Esophagus 3:235–245CrossRefGoogle Scholar
  13. 13.
    Zalta EN (ed) (2012) The Stanford encyclopedia of philosophy. Stanford University, Stanford, CAGoogle Scholar
  14. 14.
    Blits KC (1999) Aristotle: form, function, and comparative anatomy. Anat Record 257(2):58–63CrossRefGoogle Scholar
  15. 15.
    Bay NS-Y, Bay B-H (2010) Greek anatomist Herophilus: the father of anatomy. Anat Cell Biol 43(4):280–283PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wiltse LL, Pait TG (1998) Herophilus of Alexandria (325–255 BC). The father of anatomy. Spine (Phila Pa 1976) 23(17):1904–1914PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Imai M (2011) Herophilus of Chalcedon and the Hippocratic tradition in early Alexandrian medicine. Hist Sci (Tokyo) 21(2):103–122Google Scholar
  18. 18.
    Tomey MI, Komotar RJ, Mocco J (2007) Herophilus, Erasistratus, Aretaeus, and Galen: ancient roots of the Bell-Magendie Law. Neurosurg Focus 23(1):E12PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hong FF (2004) History of medicine in China. McGill J Med 8:79–84Google Scholar
  20. 20.
    Loukas M, Lanteri A, Ferrauiola J et al (2010) Anatomy in ancient India: a focus on the SusrutaSamhita. J Anat 217:646–650PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tipton CM (2008) Susruta of India, an unrecognized contributor to the history of exercise physiology. J Appl Physiol 104:1553–1556PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Singh J, Desai MS, Pandav CS, Desai SP (2012) Contributions of ancient Indian physicians—implications for modern times. J Postgrad Med 58:73–78PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Baas JH (1971) Outlines of the history of medicine and the medical profession. Krieger, Huntington, NYGoogle Scholar
  24. 24.
    Marcel D (1964) Larousse encyclopedia of modern history, from 1500 to the present day. Harper & Row, New YorkGoogle Scholar
  25. 25.
    Editors of the American Heritage Dictionaries (2011) The American Heritage Dictionary of the English Language, 4th edn. Houghton Mifflin Harcourt Trade, Boston, Massachusetts, USAGoogle Scholar
  26. 26.
    Vaillancourt MG (2009) On the body and blood of the Lord on the truth of the body and blood of Christ in the Eucharist. Catholic university of America press, Washington, DC, USAGoogle Scholar
  27. 27.
    West JB (2014) Galen and the beginnings of Western physiology. Am J Physiol Lung Cell Mol Physiol 307(2):L121–128PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hajdu SI (2011) A note from history: landmarks in history of cancer, part 2. Cancer 117(12):2811–2820PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Dunn PM (1997) Avicenna (AD 980–1037) and Arabic perinatal medicine. Arch Dis Child Fetal Neonatal Ed 77(1):F75–76PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Subbarayappa BV (2001) The roots of ancient medicine: an historical outline. J Biosci 26(2):135–143PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zargaran A, Mehdizadeh A, Zarshenas MM, Mohagheghzadeh A (2012) Avicenna (980–1037 AD). J Neurol 259(2):389–390PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Iorio L, Lamagna M (2011) Byzantine doctrines on uroscopy in the Liber Orinalibus of Hermogenes (codex 69 Montecassino). J Nephrol 24(S17):S103–S107PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mylonas AI, Poulakou-Rebelakou E-F, Androutsos GI, Seggas I, Skouteris CA, Papadopoulou EC (2014) Oral and cranio-maxillofacial surgery in Byzantium. J Cranio-Maxillofacial Surg 42(2):159–168CrossRefGoogle Scholar
  34. 34.
    Magiorkinis E, Sidiropoulou K, Diamantis A (2010) Hallmarks in the history of epilepsy: Epilepsy in antiquity. Epilepsy Behav 17:103–108PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Langslow D (2012) Caelius Aurelianus. In: Bagnall RS, Brodersen K, Champion CB, Erskine A, Huebner SR (eds) The encyclopedia of ancient history. Wiley-Blackwell, Hoboken, New Jersey, USAGoogle Scholar
  36. 36.
    Prioreschi P (2001) A history of medicine. Horatius Press, Omaha, Nebraska, USAGoogle Scholar
  37. 37.
    Clarke E (Reviewer) (1960) Jacopo Berengario da Carpi: a short introduction to anatomy (Isagogae breves). Med Hist 4(4): 362–364Google Scholar
  38. 38.
    Burke P (1998) The European renaissance: centre and peripheries. Wiley, Hoboken, New Jersey, USAGoogle Scholar
  39. 39.
    Strathern P (2003) The Medici: godfathers of the renaissance. Jonathan Cape, Florence, ItalyGoogle Scholar
  40. 40.
    Harris MH (1999) History of libraries in the Western world. Scarecrow Press, Lanham, Md., Maryland, USAGoogle Scholar
  41. 41.
    Houtzager HL (1981) Reinier de Graaf. Eur J Obst Gynecol Reprod Biol 12(6):385–387CrossRefGoogle Scholar
  42. 42.
    Mann RJ (1976) Regnier de Graaf, 1641–1673, investigator. Fertil Steril 27(4):466–468PubMedCrossRefGoogle Scholar
  43. 43.
    Modlin IM (2000) Regnier de Graaf: Paris, purging, and the pancreas. J Clin Gastroenterol 30(2):109–113PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Prout W (1974) On the nature of acid and saline matters usually existing in stomach of animals. Gut 15(1):45.1–49.1PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Russell GA (2013) Vesalius and the emergence of veridical representation in Renaissance anatomy. Prog Brain Res 203:3–32PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Van Gijn J (2005) René Descartes (1596–1650). J Neurol 252(2):241–242PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Jeune B (2004) Descartes and medicine. Dan Medicinhist Arbog 75–117Google Scholar
  48. 48.
    Boschiero L (ed) (2007) Giovanni Alfonso Borelli (1608–1679). Experiment and natural philosophy in seventeenth-century Tuscany: the history of the academia del Cimento. Springer, NetherlandsGoogle Scholar
  49. 49.
    Pope MH (2005) Giovanni Alfonso Borelli—the father of biomechanics. Spine (Phila Pa 1976) 30(20):2350–5235PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Clericuzio A (2012) Chemical and mechanical theories of digestion in early modern medicine. Stud Hist Philos Biol Biomed Sci 43(2):329–337PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Encyclopædia Britannica (2003) Encyclopaedia Britannica, Inc, Chicago, ILGoogle Scholar
  52. 52.
    Partington JR (1936) Joan Baptista Van Helmont. Ann Sci 1:359–384CrossRefGoogle Scholar
  53. 53.
    van Gijn J (2001) Franciscus Sylvius (1614–1672). J Neurol 248(10):915–916PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tubbs RS, Linganna S, Loukas M (2007) Franciscus Sylvius (1614–1672): a historical review. Childs Nerv Syst 23(1):1–2PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Howard JM, Hess W, Traverso W (1998) Johann Georg Wirsüng (1589–1643) and the pancreatic duct: the prosector of Padua, Italy. J Am Coll Surg 187(2):201–211 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bergmann M, Wendler D (1986) Caspar Bauhin (1560-1624). Gegenbaurs Morphol Jahrb 132(2):173–181PubMedPubMedCentralGoogle Scholar
  57. 57.
    Harvey W (2012) Lectures on the whole of anatomy: an annotated translation of prelectiones anatomiae universalis (trans: O’Malley CD, Poynter FNL). Literary Licensing, LLCGoogle Scholar
  58. 58.
    Harvey W, O’Malley CD, Poynter FNL, Russell KF (1961) Lectures on the whole of anatomy: an annotated translation of prelectiones anatomiae universalis. University of California Press, Berkeley, CAGoogle Scholar
  59. 59.
    Richmond C (1986) Two and a quarter centuries of digestive juices. Trends Biochem Sci 11(12):528–530CrossRefGoogle Scholar
  60. 60.
    von Haller A (1801) First lines of physiology. Ad Neill & Co, EdinburghGoogle Scholar
  61. 61.
    Konturek PC, Konturek SJ (2003) The history of gastrointestinal hormones and the polish contribution to elucidation of their biology and relation to nervous system. J Physiol Pharmacol 54(S3):83–98PubMedPubMedCentralGoogle Scholar
  62. 62.
    Buess H (1959) Albrecht von Haller and his ‘Elementa Physiologiae’ as the beginning of pathological physiology. Med Hist 3(2):123–131PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wong PY (1989) Secretory mechanisms of salivary glands. Ann R Australas Coll Dent Surg 10:72–83PubMedPubMedCentralGoogle Scholar
  64. 64.
    de Schipper JP, Pull ter Gunne AF, Oostvogel HJM, van Laarhoven CJHM (2009) Spontaneous rupture of the oesophagus: Boerhaave’s syndrome in 2008: literature review and treatment algorithm. Dig Surg 26:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bloch H (1995) Hermann Boerhaave (1668-1738): life, teacher, practitioner, and activator of hippocratic clinical teaching. Heart Lung 24(2):91–93PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Underwood EA (1968) Boerhaave after three hundred years. Br Med J 4(5634):820–825PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hecser L, Siklodi KP, Csiki G, Lungu MF, Jung H, Buda O (2011) Boerhaave syndrome: a case report. Rom J Leg Med 19:283–286CrossRefGoogle Scholar
  68. 68.
    Adams BD, Sebastian BM, Carter J (2006) Honoring the Admiral: Boerhaave-van Wassenaer’s syndrome. Dis Esophagus 19(3):146–151PubMedCrossRefGoogle Scholar
  69. 69.
    Fazio VW, Church JM, Wu JS (eds) (2012) Atlas of intestinal stomas. Springer, USGoogle Scholar
  70. 70.
    Kitamura N, Tanimoto A, Hondo E, Andrén A, Cottrell DF, Sasaki M, Yamada J (2001) Immunohistochemical study of the ontogeny of prochymosin—and pepsinogen-producing cells in the abomasum of sheep. Anat Histol Embryol 30(4):231–235PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Rand AG, Ernstrom CA (1968) Activation of prorennin by pepsin1 and 2. J Dairy Sci 51(11):1756–1760CrossRefGoogle Scholar
  72. 72.
    Mickelsen R, Ernstrom CA (1972) Effect of pH on the stability of rennin-porcine pepsin blends. J Dairy Sci 55(3):294–297PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kumar A, Grover S, Sharma J, Batish VK (2010) Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 30(4):243–258PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Rogelj I, Perko B, Francky A, Penca V, Pungercar J (2001) Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J Dairy Sci 84(5):1020–1026PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Roncada P, Gaviraghi A, Liberatori S, Canas B, Bini L, Greppi GF (2002) Identification of caseins in goat milk. Proteomics 2(6):723–726PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Groves ML, Kiddy CA (1970) γ-Caseins isolated from milk samples typed β-casein A1 and A3. J Diary Sci 53(7):931–933CrossRefGoogle Scholar
  77. 77.
    Garnot P, Valles E, Thapon J-L, Toullec R, Tomassone R, Ribadeau-Dumas B (1974) Influence of dietary proteins on rennin and pepsin content of preruminant calf vell. J Dairy Res 41(1):19–23PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wilde CD (1986) Pseudogenes. CRC Crit Rev Biochem 19(4):323–352PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Day SB (ed) (1968) Edward Stevens: gastric physiologist, physician and American statesman, with a complete translation of his inaugural dissertation De alimentorum concoctione and interpretive notes on gastric digestion along with certain other selected and diplomatic papers. Cultural and Educational Productions, Montreal, CincinnatiGoogle Scholar
  80. 80.
    Fruton JS (2002) A history of pepsin and related enzymes. Quart Rev Biol 77(2):127–147PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Davenport HW (1992) A history of gastric secretion and digestion: experimental studies to 1975. Springer, New YorkCrossRefGoogle Scholar
  82. 82.
    Arago F, Berthelot M, Haller A (2011) Annales de Chimie Et de Physique. Nabu Press, LLC, USAGoogle Scholar
  83. 83.
    Tipton K, Boyce S (2000) History of the enzyme nomenclature system. Bioinformatics 16(1):34–40PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Gutfreund H (1976) Wilhelm Friedrich Kühne: an appreciation. FEBS Lett 62(1):E1–E2PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sullivan MX (1926) A distinctive test for cysteine. Public Health Reports (1896–1970) 41(22):1030–1056CrossRefGoogle Scholar
  86. 86.
    Stephens AD (1989) Cystinuria and its treatment: 25 years experience at St. Bartholomew’s hospital. J Inher Metab Dis 12(2):197–209PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Torchinskii YM (1974) Introduction. Sulfhydryl and disulfide groups of proteins, Springer, USCrossRefGoogle Scholar
  88. 88.
    Arunachalam C, Woywodt A (2010) Turbid urine and beef-eating rabbits: Claude Bernard (1813–78)—a founder of modern physiology. NDT Plus 3(4):335–337PubMedPubMedCentralGoogle Scholar
  89. 89.
    Simoni RD, Hill RL, Vaughan M (2002) The discovery of the amino acid threonine: the work of William C Rose. J Biol Chem 277:e25PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wieland Theodor, Bodanszky Miklos (2012) The world of peptides: a brief history of peptide chemistry. Spinger, Berlin, GermanyGoogle Scholar
  91. 91.
    Shaheen NJ, Hansen RA, Morgan DR et al (2006) The burden of gastrointestinal and liver diseases, 2006. Am J Gastroenterol 101:2128–2138PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Howard JM, Hess WR (2012) History of the pancreas mysteries of a hidden organ. Springer, New YorkGoogle Scholar
  93. 93.
    Karamanou M, Koutsilieris M, Laios K, Marineli F, Androutsos G (2014) Apollinaire Bouchardat (1806–1886): founder of modern diabetology. Hormones 13(2):296–300PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wisniak J (2015) Louis Mialhe. Revista CENIC Ciencias Biológicas 46(1):90–101Google Scholar
  95. 95.
    Green JR (1901) The soluble ferments and fermentation. University Press, CambridgeGoogle Scholar
  96. 96.
    Lelut M (1828) Anatomical researches on the epithelium, or internal epidermis. The Lancet 9(228):556–558CrossRefGoogle Scholar
  97. 97.
    Brodman E (1964) Scientific and editorial relationships between Joseph Lovell and William Beaumont. Bull Hist Med 38:127–132PubMedPubMedCentralGoogle Scholar
  98. 98.
    Dubois A, Johnson LF (1985) William Beaumont: frontier physician and founding father of gastric physiology. J Clin Gastroenterol 7(6):472–474PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Mai FM (1988) Beaumont’s contribution to gastric psychophysiology: a reappraisal. Can J Psychiatr 33(7):650–653CrossRefGoogle Scholar
  100. 100.
    Beaumont W (1838) Experiments and observations on the gastric juice and the physiology of digestion. Maclachlan and Stewart, EdinburghGoogle Scholar
  101. 101.
    Prout W (1824) On the nature of acid saline matters usually existing in the stomach of animals. Phil Trans R Soc Lond 1:45–49CrossRefGoogle Scholar
  102. 102.
    Konturek SJ, Konturek PC, Konturek JW, Plonka M, Czesnikiewicz-Guzik M, Brzozowski T, Bielanski W (2006) Helicobacter pylori and its involvement in gastritis and peptic ulcer formation. J Physiol Pharmacol 57(3):29–50PubMedPubMedCentralGoogle Scholar
  103. 103.
    Banić M, Malfertheiner P, Babić Z, Ostojić R, Kujundzic M, Fatović-Ferenčić S et al (2011) Historical impact to drive research in peptic ulcer disease. Dig Dis 29(5):444–453PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Solcia E, Rindi G, Buffa R, Fiocca R, Capella C (2000) Gastric endocrine cells: types, function and growth. Regul Peptides 93(1–3):31–35CrossRefGoogle Scholar
  105. 105.
    Modlin IM, Kidd M, Malfertheiner MV, Gustafsson BI (2009) Gastric neuroendocrine neoplasia. In: Wang TC, Fox JG, Giraud AS (eds) Biology of gastric cancers. Springer, New YorkGoogle Scholar
  106. 106.
    Hersey SJ, Norris SH, Gibert AJ (1984) Cellular control of pepsinogen secretion. Ann Rev Physiol 46:393–402CrossRefGoogle Scholar
  107. 107.
    Ciolkowski M, Sharifi M, Tarka S, Ciszek B (2011) Median aperture of the fourth ventricle revisited. Folia Morphol 70(2):84–90Google Scholar
  108. 108.
    Cziko G (2000) A biological perspective on purpose: the physiology of Bernard and Cannon. In: The things we do: using the lessons of Bernard and Darwin to understand the what, how, and why of our behavior. MIT Press, Cambridge, MassachusettsGoogle Scholar
  109. 109.
    Miller F, Sherrington C (1916) Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Q J Exp Physiol 9:147–186CrossRefGoogle Scholar
  110. 110.
    Meltzer A (2000) Samuel James Meltzer, M.D. March 22, 1851—November 7, 1920. Proc Soc Exp Biol Med 223:114–117CrossRefGoogle Scholar
  111. 111.
    Texter EC Jr (1963) Motility in the gastrointestinal tract. JAMA 184(8):640–647PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Benison S, Barger AC, Wolfe EL (1987) Walter B. Cannon: the life and times of a young scientist. Belknap Press of Harvard University Press, MassachusettsGoogle Scholar
  113. 113.
    Dale HH (1947) Walter Bradford Cannon. 1871–1945. Obituary notices of fellows of the royal society 5(15):407–426CrossRefGoogle Scholar
  114. 114.
    Popov MM, Klymov KP (1963) An X-ray kymograph as a method for studying the physiology of the gastro-intestinal tract. Bull Exp Biol Med 53(3):352–355Google Scholar
  115. 115.
    Kulchitsky N (Emeritus Professor) (1925) Br Med J 1(3346):340Google Scholar
  116. 116.
    Lange KA, Ovsiannikov VI (1996) I. P. Pavlov at the Imperial Institute of Experimental Medicine and his contribution to digestive physiology. Vestn Ross Akad Med Nauk 1:11–16Google Scholar
  117. 117.
    Todes DP (1997) Pavlov’s physiology factory. Isis 88(2):204–246PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Dunsmoor JE, Mitroff SR, LaBar KS (2009) Generalization of conditioned fear along a dimension of increasing fear intensity. Learn Mem 16(7):460–469PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Baeyens F, Vansteenwegen D, Beckers T, Hermans D, Kerkhof I, De Ceulaer A (2005) Extinction and renewal of Pavlovian modulation in human sequential feature positive discrimination learning. Learn. Mem 12:178–192PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Clark RE (2004) The classical origins of Pavlov’s conditioning. Integr Physiol Behav Sci 39(4):279–294PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Mackintosh NJ (2003) Pavlov and associationism. Span J Psychol 6(2):177–184PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    García-Hoz V (2003) Signalization and stimulus-substitution in Pavlov’s theory of conditioning. Span J Psychol 6(2):168–176PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Rescorla RA (2003) Contemporary study of Pavlovian conditioning. Span J Psychol 6(2):185–195PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Coon DJ (1982) Eponymy, obscurity, Twitmyer, and Pavlov. J Hist Behav Sci 18(3):255–262PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Lectures Nobel (1965) Physiology or Medicine 1922–1941. Elsevier Publishing Company, AmsterdamGoogle Scholar
  126. 126.
    Pavlov IP, Thompson WH (1902, 2007) The work of the digestive glands: lectures. Griffin, LondonGoogle Scholar
  127. 127.
    Sapin MR, Nikitiuk DB, Shadlinsky VB (2001) Small glands of the digestive and respiratory systems. Dzhangar, Elista, RussiaGoogle Scholar
  128. 128.
    Feldman M, Richardson CT, Fordtran JS (1980) Experience with sham feeding as a test for vagotomy. Gastroenterology 79(5 Pt 1):792–795PubMedPubMedCentralGoogle Scholar
  129. 129.
    Barshteyn V (2011) Physiology of digestion: pages of history. Probl Nutr 22(5):75–81Google Scholar
  130. 130.
    Halsey WD (ed) (1979) Great Soviet Encyclopedia. Gale, Michigan, USAGoogle Scholar
  131. 131.
    Gurevich ES, Figurina MM (1957) Research and service activities of S. P. Botkin’s hospital in Leningrad; 125th anniversary of S. P. Botkin’s birth. Klin Med (Mosk) 35(8):74–81Google Scholar
  132. 132.
    Beliaeva VS (2007) Sergeĭ Petrovich Botkin—founder of physiological school in Russian medicine (to 175th anniversary of birthday). Exp Clin Gastroenterol 5:152–154CrossRefGoogle Scholar
  133. 133.
    Konturek SJ (2003) Gastric secretion—from Pavlov’s nervism to Popielski’s histamine as direct secretagogue of oxyntic glands. J Physiol Pharmacol 54(S3):43–68PubMedPubMedCentralGoogle Scholar
  134. 134.
    Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6:a018200PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Woodward ER (1987) The history of vagotomy. Am J Surg 153(1):9–17PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Modlin IM, Darr U (1994) The centenary of Lester Dragstedt—fifty years of therapeutic vagotomy. Yale J Biol Med 67(3–4):63–80PubMedPubMedCentralGoogle Scholar
  138. 138.
    Lagoo J, Pappas TN, Perez A (2014) A relic or still relevant: the narrowing role for vagotomy in the treatment of peptic ulcer disease. Am J Surg 207(1):120–126PubMedCrossRefGoogle Scholar
  139. 139.
    Alessio AM, Butterworth E, Caldwell JH, Bassingthwaighte JB (2010) Quantitative imaging of coronary blood flow. Nano Rev 1(5110):1–13Google Scholar
  140. 140.
    Hunter JP, Borg TK (2003) Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 4(3):237–243PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Bassingthwaighte JB (2000) Strategies for the Physiome Project. Ann Biomed Eng 28(8):1043–1058PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bassingthwaighte JB, Raymond GM, Butterworth E, Alessio A, Caldwell JH (2010) Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann New York Acad Sci 1188:111–120CrossRefGoogle Scholar
  143. 143.
    Beard DA, Neal ML, Tabesh-Saleki N, Thompson CT, Bassingthwaighte JB, Shimoyama M, Carlson BE (2012) Multi-scale modeling and data integration in the Virtual Physiological Rat Project. Ann Biomed Eng 40(11):2365–2378PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gregersen H (2006) The Giome project. Neurogastroenterol Motil 18(5):401–402PubMedCrossRefGoogle Scholar
  145. 145.
    Thomas S, Wolstencroft K, de Bono B, Hunter PJ (2016) A physiome interoperability roadmap for personalized drug development. Interface Focus 6(2):20150094PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Woolf SH (2008) The meaning of translational research and why it matters. JAMA 299:211–213PubMedPubMedCentralGoogle Scholar
  147. 147.
    Hall JE (2002) The promise of translational physiology. Am J Physiol Lung Cell Mol Physiol 283:235–236CrossRefGoogle Scholar
  148. 148.
    Seals DR (2013) Translational physiology: from molecules to public health. J Physiol 591(14):3457–3469PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations