Visualization in Robotic Surgery

  • Mahdi AzizianEmail author
  • Ian McDowall
  • Jonathan Sorger


Visualization can be defined as “a technique for creating images, diagrams, or animations to communicate a message” [1]. Visualization in surgical robotics involves displaying images of patient anatomy to the surgeon. Such images can be provided by optical or tomographic imaging techniques.


Endoscope Tomography Spectroscopy Fluorescence Polarized imaging Narrowband imaging Confocal microscopy MRI CT Ultrasound 


  1. 1.
    Visualization (graphics). Wikipedia, The Free Encyclopedia. Accessed 16 Sept 2016.
  2. 2.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153–60.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    RAMS: Robot assisted microsurgery. NASA JPL, NASA Office of Aeronautics and Space Technology (Code R); Project completed 1997.Google Scholar
  4. 4.
    Saraf S. Robotic assisted microsurgery (RAMS): application in plastic surgery. In: Bozovic V, editor. Medical robotics. Rijeka: InTech; 2008. ISBN: 978-3-902613-18-9.Google Scholar
  5. 5.
    Takahashi S, Uehara M, Kato S, Kidawara A, Saito K, Goto M, et al., Inventors; Olympus Optical, assignee. Stereoscopic endoscope. US Patent 5 588 948, 24 Feb 1998.Google Scholar
  6. 6.
    Hopf NJ, Kurucz P, Reisch R. Three-dimensional HD endoscopy—first experiences with the Einstein Vision system in neurosurgery. Innovative Neurosurg. 2013;1:125–31.Google Scholar
  7. 7.
    Banks MS, Read JC, Allison RS, Watt SJ. Stereoscopy and the human visual system. SMPTE Motion Imaging J. 2012;121:24–43.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared fluorescent cholangiography in single-site robotic cholecystectomy: a single-institutional prospective study. Surg Endosc. 2013;27:2156–62.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Rossi EC, Ivanova A, Boggess JF. Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study. Gynecol Oncol. 2012;124:78–82.CrossRefGoogle Scholar
  10. 10.
    Sorger J. Clinical milestones in optical imaging. In: Fong Y, Giulianotti PC, Lewis J, Koerkamp BG, Reiner T, editors. Imaging and visualization in the modern operating room: a comprehensive guide for physicians. New York: Springer; 2015. p. 133–43.CrossRefGoogle Scholar
  11. 11.
    Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21:3658–66.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Vicini C, Montevecchi F, D'Agostino G, De Vito A, Meccariello G. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery. Acta Otorhinolaryngol Ital. 2015;35:157–61.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zheng C, Lu Y, Zhong Q, Wang R, Jiang Q. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int. 2012;110:E680–7.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tateya I, Ishikawa S, Morita S, Ito H, Sakamoto T, Murayama T, et al. Magnifying endoscopy with narrow band imaging to determine the extent of resection in transoral robotic surgery of oropharyngeal cancer. Case Rep Otolaryngol. 2014;2014:604737.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hughes M, Yang GZ. High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking. Biomed Opt Express. 2015;6:1241–52.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Clancy NT, Arya S, Qi J, Stoyanov D, Hanna GB, Elson DS. Polarised stereo endoscope and narrowband detection for minimal access surgery. Biomed Opt Express. 2014;5:4108–17.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28:1695–702.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Herrell SD, Kwartowitz DM, Milhoua PM, Galloway RL. Toward image guided robotic surgery: system validation. J Urol. 2009;181:783–9. discussion 789–90CrossRefGoogle Scholar
  19. 19.
    Nakamura N, Sugano N, Nishii T, Miki H, Kakimoto A, Yamamura M. Robot-assisted primary cementless total hip arthroplasty using surface registration techniques: a short-term clinical report. Int J Comput Assist Radiol Surg. 2009;4:157–62.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mountney P, Fallert J, Nicolau S, Soler L, Mewes PW. An augmented reality framework for soft tissue surgery. Med Image Comput Comput Assist Interv. 2014;17:423–31.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hu X, Scharschmidt TJ, Ohnmeiss DD, Lieberman IH. Robotic assisted surgeries for the treatment of spine tumors. Int J Spine Surg. 2015;9. Scholar
  22. 22.
    Visible patient. Accessed 11 Oct 2015.
  23. 23.
    Velayutham V, Fuks D, Nomi T, Kawaguchi Y, Gayet B. 3D visualization reduces operating time when compared to high-definition 2D in laparoscopic liver resection: a case-matched study. Surg Endosc. 2016;30(1):147–53.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hughes-Hallett A, Pratt P, Mayer E, Clark M, Vale J, Darzi A. Using preoperative imaging for intraoperative guidance: a case of mistaken identity. Int J Med Robot. 2016;12(2):262–7.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Peters T, Cleary K, editors. Image-guided interventions: technology and applications. New York: Springer; 2008.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Image-Guided RoboticsIntuitive SurgicalSunnyvaleUSA
  2. 2.Vision EngineeringIntuitive SurgicalSunnyvaleUSA
  3. 3.ResearchIntuitive SurgicalSunnyvaleUSA

Personalised recommendations