Robot-Assisted Radical Prostatectomy

  • Bertram YuhEmail author
  • Greg Gin


Radical prostatectomy (RP) is the surgical removal of the prostate and seminal vesicles for the treatment of prostate cancer. The National Comprehensive Cancer Network (NCCN) recommends RP as an option for men in all risk groups of localized disease. With an initial series dating back to 2001, robot-assisted radical prostatectomy (RARP) was one of the earliest robotic procedures to reach clinical practice and remains one of the most commonly performed [1]. From a technical and procedural standpoint, the transperitoneal approach to RARP represents a paradigm shift away from traditional open retropubic RP. Over time, refinements to the surgical technique have evolved, although basic principles of RARP have endured. The widespread dissemination of RARP worldwide has continued despite a scarcity of high-level evidence for its superiority compared to other surgical approaches. Outcomes exceeding 10 years post RARP have now been published reporting biochemical recurrence-free survival of 73% and cancer-specific survival of 99% [2]. A systematic review of the literature showed reduced blood loss and transfusion rates with RARP with possible improvements in continence and potency recovery [3–5].


Prostate cancer Robotics Prostatectomy Lymph node dissection 


  1. 1.
    Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40:70–4.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Diaz M, Peabody JO, Kapoor V, Sammon J, Rogers CG, Stricker H, et al. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur Urol. 2015;67:1168–76.CrossRefGoogle Scholar
  3. 3.
    Novara G, Ficarra V, Rosen RC, Artibani W, Costello A, Eastham JA, et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol. 2012;62:431–52.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ficarra V, Novara G, Rosen RC, Artibani W, Carroll PR, Costello A, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62:405–17.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62:418–30.CrossRefGoogle Scholar
  6. 6.
    Raz O, Boesel TW, Arianayagam M, Lau H, Vass J, Huynh CC, et al. The effect of the modified Z Trendelenburg position on intraocular pressure during robotic assisted laparoscopic radical prostatectomy: a randomized, controlled study. J Urol. 2015;193:1213–9.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Soncin R, Mangano A, Zattoni F. Anesthesiologic effects of transperitoneal versus extraperitoneal approach during robot-assisted radical prostatectomy: results of a prospective randomized study. Int Braz J Urol. 2015;41:466–72.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lee JY, Diaz RR, Cho KS, Choi YD. Meta-analysis of transperitoneal versus extraperitoneal robot-assisted radical prostatectomy for prostate cancer. J Laparoendosc Adv Surg Tech A. 2013;23:919–25.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Uffort EE, Jensen JC. Side docking the robot for robotic laparoscopic radical prostatectomy. JSLS. 2011;15:200–2.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Secin FP, Touijer K, Mulhall J, Guillonneau B. Anatomy and preservation of accessory pudendal arteries in laparoscopic radical prostatectomy. Eur Urol. 2007;51:1229–35.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Abreu AL, Chopra S, Berger AK, Leslie S, Desai MM, Gill IS, Aron M. Management of large median and lateral intravesical lobes during robot-assisted radical prostatectomy. J Endourol. 2013;27:1389–92.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Walsh PC, Lepor H, Eggleston JC. Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations. Prostate. 1983;4:473–85.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Srivastava A, Chopra S, Pham A, Sooriakumaran P, Durand M, Chughtai B, et al. Effect of a risk-stratified grade of nerve-sparing technique on early return of continence after robot-assisted laparoscopic radical prostatectomy. Eur Urol. 2013;63:438–44.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Savera AT, Kaul S, Badani K, Stark AT, Shah NL, Menon M. Robotic radical prostatectomy with the “veil of Aphrodite” technique: histologic evidence of enhanced nerve sparing. Eur Urol. 2006;49:1065–73. discussion 1073–4.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tewari AK, Srivastava A, Huang MW, Robinson BD, Shevchuk MM, Durand M, et al. Anatomical grades of nerve sparing: a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int. 2011;108(6 Pt 2):984–92.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ko YH, Coelho RF, Sivaraman A, Schatloff O, Chauhan S, Abdul-Muhsin HM, et al. Retrograde versus antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol. 2013;63:169–77.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Beyer B, Schlomm T, Tennstedt P, Boehm K, Adam M, Schiffmann J, et al. A feasible and time-efficient adaptation of NeuroSAFE for da Vinci robot-assisted radical prostatectomy. Eur Urol. 2014;66:138–44.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Yuh BE, Ruel NH, Mejia R, Wilson CM, Wilson TG. Robotic extended pelvic lymphadenectomy for intermediate- and high-risk prostate cancer. Eur Urol. 2012;61:1004–10.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rocco B, Cozzi G, Spinelli MG, Coelho RF, Patel VR, Tewari A, et al. Posterior musculofascial reconstruction after radical prostatectomy: a systematic review of the literature. Eur Urol. 2012;62:779–90.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Van Velthoven RF, Ahlering TE, Peltier A, Skarecky DW, Clayman RV. Technique for laparoscopic running urethrovesical anastomosis: the single knot method. Urology. 2003;61:699–702.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Li H, Liu C, Zhang H, Xu W, Liu J, Chen Y, et al. The use of unidirectional barbed suture for urethrovesical anastomosis during robot-assisted radical prostatectomy: a systematic review and meta-analysis of efficacy and safety. PLoS One. 2015;10:e0131167.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bai Y, Pu C, Yuan H, Tang Y, Wang X, Li J, et al. Assessing the impact of barbed suture on vesicourethral anastomosis during minimally invasive radical prostatectomy: a systematic review and meta-analysis. Urology. 2015;85:1368–75.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ghani KR, Trinh QD, Sammon JD, Jeong W, Simone A, Dabaja A, et al. Percutaneous suprapubic tube bladder drainage after robot-assisted radical prostatectomy: a step-by-step guide. BJU Int. 2013;112(5):703.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Urology and Urologic OncologyCity of Hope Comprehensive Cancer CenterDuarteUSA
  2. 2.VA Long Beach Healthcare SystemLong BeachUSA

Personalised recommendations