Advertisement

PLIF-Based Concentration Measurement of OH Behind the Blast Wave Emanating from an Oxyhydrogen Detonation-Driven Shock Tube

  • S. K. Karthick
  • P. R. Rajitha
  • S. Janardhanraj
  • Y. Krishna
  • G. Jagadeesh
Conference paper

Abstract

The amount of OH species behind the shock wave from detonation-driven shock tubes is of prime importance. In this paper, the flow emanating from a miniature detonation-driven shock tube (m-DDST), which uses 5 bar of in situ generated oxyhydrogen mixture, is investigated. OH-PLIF is employed to characterize the relative OH distribution in the flow. Schlieren-shadowgraph imaging is also carried out to understand the flow features and to monitor the temporal evolution of the flow. Due to multiple reflections in the detonation driver, there are two distinct flashes observed during flow evolution which are captured in the OH-PLIF experiments. Predominant amount of OH radicals is observed after the Mach disc in the evolving flow field. Future studies are planned to map the absolute concentration of the OH radicals and ultimately to obtain the temperature distribution in the flow regime.

Notes

Acknowledgment

Ministry of Human Resource Development (MHRD), India; Defence Research and Development Organization (DRDO), India; Council for Scientific and Industrial Research (CSIR), India; Science and Engineering Research Board (SERB), India.

References

  1. 1.
    S. Janardhanraj, G. Jagadeesh, Rev. Sci. Instrum. 87, 8 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Kleine et al., Shock Waves 14, 5–6 (2005)Google Scholar
  3. 3.
    J. Kashara et al., AIAA J. 46, 7 (2008)CrossRefGoogle Scholar
  4. 4.
    R. C. Ramachandran et al., Miniature shock tube actuators for flow control applications, in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1259 (2010)Google Scholar
  5. 5.
    H. Kim, T. Setoguchi, J. Sound Vib. 226, 5 (1999)Google Scholar
  6. 6.
    A. Hanssen et al., Int. J. Impact Eng. 27, 6 (2002)CrossRefGoogle Scholar
  7. 7.
    T. Mizukaki, J. Vis. 10, 2 (2007)CrossRefGoogle Scholar
  8. 8.
    G.D. Prakash et al., Anal. Biochem. 419, 2 (2011)Google Scholar
  9. 9.
    G. Jagadeesh et al., Clin. Vaccine Immunol. 18, 4 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Haupt et al., Urology 39, 6 (1992)CrossRefGoogle Scholar
  11. 11.
    S. Janardhanraj, G. Jagadeesh, Energy analysis of a small-scale combustion driven blast tube, in 29th International Symposium on Shock Waves 1, 119 (2015)Google Scholar
  12. 12.
    R.K. Hanson et al., Appl. Phys. B Lasers Opt. 50, 6 (1990)Google Scholar
  13. 13.
    M.J. Dyer, D.R. Crosley, Opt. Lett. 7, 8 (1982)CrossRefGoogle Scholar
  14. 14.
    R. Wellander et al., Exp. Fluids 55, 6 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Brieschenk et al., Combust. Flame 161, 4 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • S. K. Karthick
    • 1
  • P. R. Rajitha
    • 1
  • S. Janardhanraj
    • 1
  • Y. Krishna
    • 1
  • G. Jagadeesh
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations