Advertisement

Phase Transitions of Titanium Under Dynamic Loading

  • M. V. Zhernokletov
  • O. N. Aprelkov
  • A. E. KovalevEmail author
  • M. G. Novikov
  • L. I. Kanunova
  • D. N. Zamotaev
  • A. N. Malyshev
  • E. V. Koshatova
  • D. V. Kryuchkov
  • A. M. Ivin
  • V. I. Skokov
  • А. M. Podurets
  • M. I. Tkachenko
  • S. N. Ulanov
  • S. I. Kirshanov
  • A. B. Mezhevov
  • O. V. Myasoedov
Conference paper
  • 439 Downloads

Abstract

The authors present results of sound velocity measurement in shock-compressed samples of VT1-0 titanium and VT-20. The measurements were accomplished by the rarefaction overtake technique with use of indicator liquids and by the reverse impact method with use of laser interferometer. In titanium, kinks were recorded at the dependence of sound velocity on pressure at the pressures of 20–40 and 60–90 GPa. These kinks can be explained by phase transitions. X-ray structural analysis revealed presence of the ω-phase in the samples, which had been recovered after loading by pressures in steel ampoules in the range from 9 to 23 GPa. Beginning of VT-20 alloy melting relates to pressure of 130 GPa at shock adiabat.

References

  1. 1.
    A.R. Kutsar, M.N. Pavlovskiy, V.V. Komissarov, Observation of two-wave configuration of shock wave in titanium. Lett. ZhETF. 35(3), 91–94 (1982)Google Scholar
  2. 2.
    A. Jayraman, W. Klement, G. Kennedy, Phys. Revue. 131, 2 (1963). p. 644Google Scholar
  3. 3.
    F. Bandi, in coll.-book “New materials and methods or investigation of metals and alloys”, M.: Metallurgy (1966)Google Scholar
  4. 4.
    R.F. Trunin, G.V. Simakov, A.B. Medvedev, Compression of titanium in shock waves. TVT 37(6), 881–886 (1999)Google Scholar
  5. 5.
    V.A. Borisenok, M.V. Zhernokletov, A.E. Kovalev, A.M. Podurets, V.G. Simakov, M.I. Tkachenko, Phase transitions in titanium in shock waves in pressure range up to 150 GPa. Phys. Combust. Explosion 50(3), 1–9 (2014)Google Scholar
  6. 6.
    C.W. Greeff, D.R. Trinkle, R.C. Albers, Shock-induced α-ω transition in titanium. J. Appl. Phys. 90(5), 2221–2226 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Cerreta, G.T. Gray III, A.C. Lawson, et al., The influence of oxygen content on the α to ω phase transformation and shock hardening of titanium. J. Appl. Phys. 100, 013530 (2006)CrossRefGoogle Scholar
  8. 8.
    R. McQueen, J. Hixson, L. Fritz, Optical technique for determining rarefaction wave velocities at very high pressures. Rev. Sci. Instrum. 53(2), 245–250 (1982)CrossRefGoogle Scholar
  9. 9.
    R.F. Trunin, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances (RFNC-VNIIEF, Sarov, 2001), pp. 168–169Google Scholar
  10. 10.
    Y.K. Vohra, P.T. Spencer, Novel γ-phase of titanium metal at megabar pressures. Phys. Rev. Lett. 86, 3068–3071 (2001)CrossRefGoogle Scholar
  11. 11.
    Y. Akahama, H. Kawamura, T. Le Bihan, New δ (distorted – bcc) titanium to 220 Gpa. Phys. Rev. Lett. 87, 275503 (2001)CrossRefGoogle Scholar
  12. 12.
    A.M. Molodets, A.A. Golyshev, Electric conductivity and polymorphous phase transition of titanium in megabar area of pressures of shock compression. FTT 56(12), 2435–2439 (2014)Google Scholar
  13. 13.
    S.P. Marsh, LASL Shock Hugoniot Data (University of California Press, Berkeley, 1980), p. 143Google Scholar
  14. 14.
    G.S. Bezruchko, S.V. Razorenov, G.I. Kanel, V.E. Fortov, Influence of temperature upon the α→ω transition in titanium, in Shock Compression of Condensed Matter, ed. by M. Furnish (Ed), (Mellville, New York, 2006), pp. 92–195Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Zhernokletov
    • 1
  • O. N. Aprelkov
    • 1
  • A. E. Kovalev
    • 1
    Email author
  • M. G. Novikov
    • 1
  • L. I. Kanunova
    • 1
  • D. N. Zamotaev
    • 1
  • A. N. Malyshev
    • 1
  • E. V. Koshatova
    • 1
  • D. V. Kryuchkov
    • 1
  • A. M. Ivin
    • 1
  • V. I. Skokov
    • 1
  • А. M. Podurets
    • 1
  • M. I. Tkachenko
    • 1
  • S. N. Ulanov
    • 1
  • S. I. Kirshanov
    • 1
  • A. B. Mezhevov
    • 1
  • O. V. Myasoedov
    • 1
  1. 1.Russian Federal Nuclear Center – All-Russia Research Institute of Experimental PhysicsInstitute of Physics of ExplosionSarovRussia

Personalised recommendations