Advertisement

Experimental Study of TICTOP Nozzles

  • R. StarkEmail author
  • C. Génin
Conference paper

Abstract

The new nozzle contour concept TICTOP is introduced and its experimental validation is presented. The TICTOP nozzle features a comparable performance like TOP nozzles, whereas reattached flow conditions during transient start-up and shutdown operation are avoided. A hypothesis on the formation of the cap-shock pattern in TOP nozzles is presented.

Notes

Acknowledgement

The authors would like to thank Ying Luo, University of Sydney, for supporting the test data evaluation.

References

  1. 1.
    G. Rao, Exhaust nozzle contour for optimum thrust. Jet Propulsion 28(6), 377–382 (1958)CrossRefGoogle Scholar
  2. 2.
    G. Rao, Approximation of optimum thrust nozzle contour. ARS Journal 30(6), 561 (1960)Google Scholar
  3. 3.
    R.A. Lawrence, Symmetrical and unsymmetrical flow separation in supersonic nozzles, Ph.D. Thesis, Inst. of Technology of Southern Methodist Univ., NASA CR 92587 (1967)Google Scholar
  4. 4.
    L.H. Nave and G. A. Coffey, Sea level side loads in high-area-ratio rocket engines, 9th Propulsion Conference, AIAA No. 73-1284, Las Vegas, 1973Google Scholar
  5. 5.
    M. Frey, Behandlung von Strömungsproblemen in Raketendüsen bei Überexpansion, Ph.D. Thesis, Univ. Stuttgart, Shaker Verlag, ISBN 3-8265-8806-1, 2001Google Scholar
  6. 6.
    J. Östlund, Supersonic flow separation with application to rocket engine nozzles, Technical Report 2004:07, ISNN 0348-467X, Royal Institute of Technology, Stockholm, 2004Google Scholar
  7. 7.
    P. Reijasse, Aérodynamique des tuyères propulsives en sur-détente: decollement libre et charges laterals en regime stabilise, Thèse Docteur, Université Paris VI, 2005Google Scholar
  8. 8.
    R. Stark, Beitrag zum Verständnis der Strömungsablösung in Raketendüsen, Ph.D. Thesis, RWTH Aachen, 2010Google Scholar
  9. 9.
    M. Frey, K. Makowka, T. Aichner, The TICTOP nozzle: A new nozzle contouring concept, CEAS Space Journal, published online first, doi: https://doi.org/10.1007/s12567-016-0139-z (2016)
  10. 10.
    R. Stark, C. Génin, Optimisation of a rocket nozzle side load reduction device. J. Propuls. Power 32(6), 1395–1402 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Stark, B. Wagner, Experimental study of boundary layer separation in truncated ideal contour nozzles. Shock Waves 19(3), 185–191 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Génin, R. Stark, Side loads in subscale dual bell nozzles. J. Propuls. Power 27(4), 828–837 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Frey, K. Makowka, T. Aichner, R. Stark, C. Génin, The TICTOP nozzle – first experimental results, in 7th European Conference for Aeronautics and Space Sciences, No. 359, Milan, Italy (2017)Google Scholar
  14. 14.
    C. Génin, R. Stark, S. Karl, Shock system deformation in high Mach number Rocket Nozzles, in 31st International Symposium on Shock Waves, No. 425, Nagoya, Japan (2017)Google Scholar
  15. 15.
    A. Hadjadj, M. Onofri, Nozzle flow separation. Shock Waves 19(3), 163–169 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.German Aerospace Center, DLR, Institute of Space PropulsionLampoldshausenGermany

Personalised recommendations