Advertisement

Systematic Neuro-urological Pathology

  • Helmut Madersbacher
Chapter

Abstract

Nervous lesions affecting the innervation of the lower urinary tract (LUT) cause different dysfunctions depending mainly on the location of the lesion, its extent, the underlying neurological pathology and the changes in the LUT occurring during the course of the neurological disease. Lesions are categorized into (1) cerebral, suprapontine and pontine lesions; (2) spinal suprasacral lesions; and (3) subsacral, peripheral nerve lesions.

The net effect of the suprapontine areas of the brain on the micturition reflex is inhibitory. Lesions in the relevant areas cause symptoms of the overactive bladder. If the lesion is localized above the pontine micturition center (PMC)/periaqueductal grey (PAG), voiding remains coordinated.

A spinal cord lesion above the lumbosacral level, depending on completeness of the lesion, may eliminate (complete lesions) or at least reduce (incomplete lesions) voluntary control of micturition leading to neurogenic spinal detrusor overactivity mediated by spinal reflex pathways with important disadvantages.

Patients with complete conus/cauda equina or pelvic plexus injury are neurologically decentralized but may not be completely denervated as afferent and efferent neuron interconnections at the level of the intramural ganglia in the detrusor muscle are possible.

Therefore, lesions of the innervation of the LUT, detrusor and sphincter may become overactive or underactive (acontractile) depending on the location and extent of the lesion. Mostly the detrusor and sphincter are affected, mostly of the same type, but also differently, even normal function of the counterpart is possible. The same urodynamic pattern may have different clinical implications.

Keywords

Cerebral lesions and LUTS Spinal cord lesions and LUTS Peripheral nerve lesions and LUTS Neuropathology of LUTS 

References

  1. 1.
    Bors E, Comarr AE. Neurological urology. Basek, München, Paris, New York: S. Karger; 1971. p. 166.Google Scholar
  2. 2.
    Blok B. Central pathways controlling micturition and urinary continence. Urology. 2002;59:13–7.CrossRefPubMedGoogle Scholar
  3. 3.
    De Groat W, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5:327–96.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Barrington F. The effect of lesion of the hind- and mid-brain on micturition in the cat. Quart J Exp Physiol. 1925;15:81–102.CrossRefGoogle Scholar
  5. 5.
    Blanco L, Yuste J, Carillo-de Sauvage M. Critical evaluation of the anatomical location of the Barrington nucleus: relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus. Neuroscience. 2013;247:351–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Holstege G, Griffiths D, de Wall H, Dalm E. Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol. 1986;250:449–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Blok B, de Weerd H, Holstege G. The pontine micturition center projects to sacral cord GABA immunoreactive neurons in the cat. Neurosci Lett. 1997;233:109–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Blok B, Willemsen A, Holstege G. A PET study on brain control of micturition in humans. Brain. 1997;120:111–21.CrossRefGoogle Scholar
  9. 9.
    Michels L, Blok B, Gregorini F, Kurz M, Schurch B, Kessler T, Kollias S, Mehnert U. Supraspinal control of urine storage and micturition in men: an fMRI study. Cereb Cortex. 2015;25:3369–80.CrossRefGoogle Scholar
  10. 10.
    Andrew J, Nathan P. Lesions of the anterior frontal lobes and disturbances of micturition and defaecation. Brain. 1964;87:233–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Blok B, Sturms L, Holstege G. Brain activation during micturition in women. Brain. 1998;121:2033–42.CrossRefGoogle Scholar
  12. 12.
    Zago T, Pea U, Fumagalli G, Areta L, MArzorati G, Bianchi F. Cerebellar pathology and micturitional disorders: anatomotopographic and functional considerations. Arch Ital Urol Androl. 2010;82:177–80.PubMedGoogle Scholar
  13. 13.
    Sakakibara R, Kishi M, Ogawa E, Tateno F, Uchiyama T, Yamamoto T, Yamanishi T. Bladder, bowel, and sexual dysfunction in Parkinson’s disease. Parkinsons Dis. 2011;2011:924605.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Yamamoto T, Sakakibara R, Hashimoto K, Nakazawa K, Uchiyama T, Liu Z, Ito T, Hattori T. Striatal dopamine level increases in the urinary storage phase in cats: an in vivo microdialysis study. Neuroscience. 2005;135:299–303.CrossRefPubMedGoogle Scholar
  15. 15.
    Nathan P, Smith M. The centripetal pathway from the bladder and urethra within the spinal cord. J Neurol Neurosurg Psychiatry. 1951;14:262–80.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    White J, Smitzwick R, Simeone F. The autonomic nervous system. Anatomy, physiology and surgical application. New York: MacMillan Co; 1952.Google Scholar
  17. 17.
    de Groat W, Ryall R. The identification and characteristics of sacral parasympathetic preganglionic neurones. J Physiol. 1968;196:563–77.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nadelhaft I, de Groat W, Morgan C. Location and morphology of parasympathetic preganglionic neurons in the sacral spinal cord of the cat revealed by retrograde axonal transport of horseradish peroxidase. J Comp Neurol. 1980;193:265–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Nathan P, Smith M. The centrifugal pathway for micturition within the spinal cord. J Neurol Neurosurg Psychiatry. 1958;21:177–89.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fry C, Kanai A, Roosen A, Takeda M, Wood D. Cell biology. In: Incontinence. 4th ed. Paris: Health Lublications Ltd; 2009. p. 113–66.Google Scholar
  21. 21.
    de Groat W, Saum W. Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J Physiol. 1972;220:297–314.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Groat W, Theobald R. Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J Physiol. 1976;259:223–37.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Keast J, Kawatani M, de Groat W. Sympathetic modulation of cholinergic transmission in cat vesical ganglia is mediated by alpha 1- and alpha 2-adrenoceptors. Am J Phys. 1990;258:R44–50.Google Scholar
  24. 24.
    Schneider R, Cherry G, Pantek H. The syndrome of acute central cervical spinal cord injury with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J Neurosurg. 1954;11:546–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Schneider R. The syndrome of acute anterior spinal cord injury. J Neurosurg. 1955;12:95–122.CrossRefPubMedGoogle Scholar
  26. 26.
    Molliqaj G, Payer M, Schaller K, et al. Acute traumatic central cord syndrome: a comprehensive review. Neurochirurgie. 2014;60:5–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Smith C, Kraus S, Nickell K, et al. Video urodynamic findings in men with the central cord syndrome. J Urol. 2000;164:2014–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Nath M, Wheeler J, Walter J. Urological aspects of tramatic central cord syndrome. J Am Paraplegia Soc. 1993;16:160–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Sakakibara R, Hattori T, Uchiyama T, et al. Urinary dysfunction in Brown_Sequard syndrome. Neurourol Urodyn. 2001;20:661–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Morgan C, Nadelhaft I, de Groat W. The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol. 1981;201:415–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Kuo D, Hisamitsu T, de Groat W. A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J Comp Neurol. 1984;226:76–86.CrossRefPubMedGoogle Scholar
  32. 32.
    Thor K, de Groat W. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am J Phys Regul Integr Comp Phys. 2010;299:R416–38.Google Scholar
  33. 33.
    Dyck P, Low P, Stevens J. Diseases of peripheral nerves. In: Clinical neurology. Phildelphia: JB Lippincott; 1990. p. 1–126.Google Scholar
  34. 34.
    Adams RD, Vicotr M, Ropper A. Principles of neurology. 6th ed. New York: McGraw-Hil; 1997.Google Scholar
  35. 35.
    Thomas P, Tomlinson D. Diabetic and hypoglycemic neuropathy. In: Peripheral neuropathy. 3rd ed. Philadelphia: WB Saunders; 1993. p. 1219–50.Google Scholar
  36. 36.
    Madersbacher H. The various types of neurogenic bladder dysfunction: an update of current therapeutic concepts. Paraplegia. 1990;28(4):217–29.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.c/o Univ-Klinik Innsbruck/Tirol KlinikenInnsbruckAustria

Personalised recommendations