Advertisement

Neuro-Urology pp 181-189 | Cite as

Clinical Neuro-urophysiological Investigations

  • Hazel Ecclestone
  • Rizwan Hamid
Chapter

Abstract

A neuro-urologist’s primary aim is to prevent irreversible renal deterioration. Urodynamic studies remain a key procedure in the risk stratification of patients with neuro-urological complaints; however, there are a number of additional electrodiagnostic investigations available which can add a deeper understanding of lower urinary tract dysfunction. In this chapter, we outline uro-neurophysiological investigations that can be performed in order to better understand patients’ underlying pathology and improve patient management.

Keywords

Neuro-urological condition Uro-physiological investigations Electromyography Somatosensory potentials Bulbocavernosus reflex Guidelines 

Abbreviations

BCR

Bulbocavernosus reflex

CT

Computerised tomography

DSD

Detrusor sphincter dyssynergia

EMG

Electromyography

MRI

Magnetic resonance imaging

SEP

Somatosensory potential

References

  1. 1.
    Podner S, et al. Lower urinary tract dysfunction in patients with peripheral nervous system lesions. Handb Clin Neurol. 2015;130:203–24.CrossRefGoogle Scholar
  2. 2.
    Homma Y, Batista J, Bauer S, et al. Urodynamics. Incontinence: international consultation on incontinence. Plymouth: Health Publication Ltd.; 2002. p. 317.Google Scholar
  3. 3.
    Padilla-Fernandez B, Batista J, Bauer S, et al. Urodynamics. Incontinence: international consultation on incontinence. Plymouth: Health Publication Ltd.; 2002. p. 317.Google Scholar
  4. 4.
    Nordling J, Meyhoff HH. Dissociation of urethral and anal sphincter activity in neurogenic bladder dysfunction. J Urol. 1979;122:352–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Palace J, Chandiramani VA, Fowler CJ. Value of sphincter electromyography in the diagnosis of multiple system atrophy. Muscle Nerve. 1997;20:1396–403.CrossRefPubMedGoogle Scholar
  6. 6.
    Mahajan ST, Fitzgerald MP, Kenton K, Shott S, Brubaker L. Concentric needle electrodes are superior to perineal surface-patch electrodes for electromyographic documentation of urethral sphincter relaxation during voiding. BJU Int. 2006;97:117–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Fowler CJ, Kirby RS, Harrison MJ, Milroy EJ, Turner-Warwick R. Individual motor unit analysis in the diagnosis of disorders of urethral sphincter innervation. J Neurol Neurosurg Psychiatry. 1984;47:637–41.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kavia RB, Datta SN, Dasgupta R, Elneil S, Fowler CJ. Urinary retention in women: its causes and management. BJU Int. 2006;97(2):281–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Fowler CJ. Investigational techniques. Eur Urol. 1998;34(Suppl 1):10–2.CrossRefPubMedGoogle Scholar
  10. 10.
    Mundy AR, Borzyskowski M, Saxton HM. Videourodynamics evaluation of neuropathic vesicourethral dysfunction in children. BJU Int. 1982;54:645–9.CrossRefGoogle Scholar
  11. 11.
    Wenzel BJ, Boggs JW, Gustafson KJ, Creasey GH, Grill WM. Detection of neurogenic detrusor contractions from the activity of the external anal sphincter in cat and human. Neurourol Urodyn. 2006;25:140–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Hansen J, Borau A, Rodríguez A, Vidal J, Sinkjaer T, Rijkhoff NJ. Urethral sphincter EMG as event detector for neurogenic detrusor overactivity. IEEE Trans Biomed Eng. 2007;54:1212–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Light JK, Faganel J, Beric A. Detrusor areflexia in suprasacral spinal cord injuries. J Urol. 1985;134:295–7.CrossRefPubMedGoogle Scholar
  14. 14.
    La Joie WJ, Cosgrove MD, Jones WG. Electromyographic evaluation of human detrusor muscle activity in relation to abdominal muscle activity. Arch Phys Med Rehabil. 1976;57:382–6.PubMedGoogle Scholar
  15. 15.
    Kinder M, Gommer E, Janknegt R, van Waalwijk van Doorn E. Recording the detrusor electromyogram is still a difficult and controversial enterprise. Neurourol Urodyn. 1998;17:571–3.CrossRefPubMedGoogle Scholar
  16. 16.
    Kjolhede P, Lindehammar H. Pelvic floor neuropathy in relation to the outcome of Burch colposuspension. Int Urogynecol J Pelvic Floor Dysfunct. 1997;8:61–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Andersen JT, Bradley WE. Abnormalities of bladder innervation in diabetes mellitus. Urology. 1976;7:442–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Vereecken RL, De Meirsman J, Puers B, Van Mulders J. Electrophysiological exploration of the sacral conus. J Neurol. 1982;227:135–44.CrossRefPubMedGoogle Scholar
  19. 19.
    GLOWM- global library of women medicine. http://www.glowm.com/section_view/heading/Neurophysiologistesting. Accessed 1 Nov 2017.
  20. 20.
    Di Lazzaro V, Pilato F, Oliviero A, Saturno E, Dileone M, Tonali PA. Role of motor evoked potentials in diagnosis of cauda equina and lumbosacral cord lesions. Neurology. 2004;63:2266–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Brostrom S. Motor evoked potentials from the pelvic floor. Neurourol Urodyn. 2003;22:620–37.CrossRefPubMedGoogle Scholar
  22. 22.
    Schmid DM, Curt A, Hauri D, Schurch B. Motor evoked potentials (MEP) and evoked pressure curves (EPC) from the urethral compressive musculature (UCM) by functional magnetic stimulation in healthy volunteers and patients with neurogenic incontinence. Neurourol Urodyn. 2005;24:117–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Eardley I, Nagendran K, Lecky B, Chapple CR, Kirby RS, Fowler CJ. Neurophysiology of the striated urethral sphincter in multiple sclerosis. Br J Urol. 1991;68:81–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Badr G, Carlsson CA, Fall M, Friberg S, Lindström L, Ohlsson B. Cortical evoked potentials following stimulation of the urinary bladder in man. Electroencephalogr Clin Neurophysiol. 1982;54:494–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Galloway NT, Chisholm GD, McInnes A. Patterns and significance of the sacral evoked response (the urologist's knee jerk). Br J Urol. 1985;57:145–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Curt A, Rodic B, Schurch B, Dietz V. Recovery of bladder function in patients with acute spinal cord injury: significance of ASIA scores and somatosensory evoked potentials. Spinal Cord. 1997;35:368–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Fowler CJ, Benson JT, Craggs MD, et al. Clinical neurophysiology in 2nd international consultation on incontinence. Plymouth: Health Publication Ltd.; 2002. p. 391–424.Google Scholar
  28. 28.
    Kaiho Y, Namima T, Uchi K, Nakagawa H, Aizawa M, Orikasa S. Electromyographic study of the striated urethral sphincter by using the bulbocavernosus reflex: study of the normal voluntary voiding and the involuntary sphincter relaxation. Nippon Hinyokika Gakkai Zasshi. 1999;90:893–900.PubMedGoogle Scholar
  29. 29.
    Kaiho Y, Namima T, Uchi K, et al. Electromyographic study of the striated urethral sphincter by using the bulbocavernosus reflex: study of the normal voluntary voiding and the involuntary sphincter relaxation. Nippon Hinyokika Gakkai Zasshi. 2000;91:715–22.PubMedGoogle Scholar
  30. 30.
    Niu X, Shao B, Ni P, Wang X, Chen X, Zhu B, Wang Z, Teng H, Jin K. Bulbocavernosus reflex and pudendal nerve somatosensory-evoked potentials responses in female patients with nerve system diseases. J Clin Neurophysiol. 2010;27:207–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Niu X, Wang X, Ni P, Huang H, Zhang Y, Lin Y, Chen X, Teng H, Shao B. Bulbocavernosus reflex and pudendal nerve somatosensory evoked potential are valuable for the diagnosis of cauda equina syndrome in male patients. Int J Clin Exp Med. 2015;8:1162.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hazel Ecclestone
    • 1
  • Rizwan Hamid
    • 2
  1. 1.University College London HospitalsLondonUK
  2. 2.Department of NeurourologySpinal Injuries UnitStanmore/LondonUK

Personalised recommendations