Advertisement

Euler’s Work on the Surface Area of Scalene Cones

  • Daniel J. Curtin
Conference paper
Part of the Proceedings of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques book series (PCSHPM)

Abstract

Around 1746, Euler took up the problem of the surface area of scalene cones, cones in which the vertex does not lie over the center of the base circle. Calling earlier solutions by Varignon and Leibniz insightful but incomplete and extending his solution to conical bodies with noncircular bases, Euler published his results in 1750 (On the Surface Area of Scalene Cones and Other Conical Bodies: De superficie conorum scalenorum aliorumque corporum conicorum). He had not actually calculated any particular areas—not surprisingly, as they generally lead to elliptic integrals. Instead, he showed how to reduce the problem to calculating the arclength of certain curves, carefully elucidating the many ways these curves may be defined. Although the curves seem naturally to involve transcendental quantities, he showed how to adjust so only algebraic quantities are needed. Some details of Euler’s solution for the scalene cones are presented here.

References

  1. 1.
    Ronald S. Calinger, Leonhard Euler: Mathematical Genius in the Enlightenment, Princeton University Press 2015Google Scholar
  2. 2.
    Daniel J. Curtin, On the Surface Area of Scalene Cones and Other Conical Bodies: A translation of Leonhard Euler: De superficie conorum scalenorum aliorumque corporum conicorum, Euler Archives, to appear 2017Google Scholar
  3. 3.
    Leonhard Euler, De superficie conorum scalenorum aliorumque corporum conicorum, Novi Commentarii academiae scientiarum Petropolitanae 1, 1750, pp. 3–19Google Scholar
  4. 4.
    Gottfried Wilhelm Leibniz, Additio: Ostendens Explanationem superficiei conoïdalis cujuscunque; & speciatim explantionem superficiei Coni scaleni, ita ut ipsi vel ejus portioni cuicunque exhibeatur rectangulum æquale, interventu extensionis in rectam curvæ, per Geometriam ordinariam construendæ., Miscellanea Berolinensia ad incrementum scientiarum ex scriptis Societati Regiae Scientiarum exhibitis edita III, 1727, pp. 285–287Google Scholar
  5. 5.
    Pierre Varignon, Schediasma de Dimensione Superficiei Coni ad basim circularem obliqui, ope longitudinis Curvæ, cujus constructio à sola Circuli quadratura pendet, Miscellanea Berolinensia ad incrementum scientiarum ex scriptis Societati Regiae Scientiarum exhibitis edita III, 1727, pp. 280–284Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Northern Kentucky UniversityHighland HeightsUSA

Personalised recommendations