Advertisement

Power Series Transform in Cryptology and ASCII

  • Muharrem Tuncay Gençoğlu
  • Dumitru Baleanu
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 24)

Abstract

This chapter introduces a different cryptographic method that uses power series transform and ASCII codes. We produce a new algorithm for cryptology, use an expanded Laplace transformation of the exponential function for encrypting plain text, and use ASCII codes to support the confidentiality of the cipher text. We also show the corresponding inverse of the power series transform for decryption.

Keywords

Cryptology Encryption Decryption Laplace transform ASCII 

References

  1. 1.
    Koç, Ç.K.: Cryptographic Engineering, pp. 125–128. Springer, New York (2009)CrossRefGoogle Scholar
  2. 2.
    Martin, K.M.: Everyday Cryptography Fundamental Principles and Applications. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  3. 3.
    Delfs, H., Knebl, H.: Introduction to Cryptography Principles and Applications. Springer, Berlin (2007)CrossRefGoogle Scholar
  4. 4.
    Raman, B.V.: Higher Engineering Mathematics. Teta McGraw Hills, New Delhi (2007)Google Scholar
  5. 5.
    Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Berlin (2010)CrossRefGoogle Scholar
  6. 6.
    Williams, L.C.A.: Discussion of the Importance of Key Length in Symmetric and Asymmetric Cryptography. SANS İnstitu (2001)Google Scholar
  7. 7.
    Aydın, M., Gökmen, G., Kuryel, B., Gündüz, G.: Diferansiyel Denklemler ve Uygulamaları. Barış Yayınları. SS. 332–349, (1990)Google Scholar
  8. 8.
    Belgacem, F.B.M., Karaballi, A.A., Kalla, L.S.: Analytical investigations of the Sumudu transform and applications to integral productions equations. Math. Probl. Eng. 3, 103–118 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gençoğlu, M.T.: Use of İntegral transform in cryptology. Science and Eng. J of Fırat Univ. 28(2), 217–220 (2016)., (2003)Google Scholar
  10. 10.
  11. 11.
    Koshiba, T., Cheong, K.Y.: More on security of public-key cryptosystems based on Chebyshev polynomials. IEEE Trans Circuits Syst II. 54(9), 795–799 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Muharrem Tuncay Gençoğlu
    • 1
  • Dumitru Baleanu
    • 2
  1. 1.Vocational School of Technical SciencesFirat UniversityElazigTurkey
  2. 2.Department of MathematicsÇankya UniversityAnkaraTurkey

Personalised recommendations