Advertisement

Splitting of Strain Solitons upon Their Interaction in the Auxetic Rod

  • Vladimir I. ErofeevEmail author
  • Vladimir V. Kazhaev
  • Igor S. Pavlov
Chapter

Abstract

The problem of longitudinal wave propagation in a rod made from an auxetic material is considered. It is shown that a negative Poisson’s ratio leads to a qualitatively different (anomalous) dispersion behavior of linear waves. Accounting for geometric and physical elastic nonlinearities leads to the possibility of generating in a rod of stationary strain waves of a substantially non-sinusoidal profile—solitons and their periodic analogues. By means of numerical simulation it is shown that qualitatively different scenarios of interaction of solitons depend on the relative collision velocity.

Notes

Acknowledgement

The research was carried out under the financial support of the Russian Scientific Foundation (Project No. 14-19-01637).

References

  1. 1.
    Lim, T.-C.: Auxetic Materials and Structures. Engineering Materials. Springer, Singapore (2015)Google Scholar
  2. 2.
    Bilski, M., Wojciechowski, K.W.: Tailoring Poisson’s ratio by introducing auxetic layers. Phys. Status Solidi B 253, 1318–1323 (2016)Google Scholar
  3. 3.
    Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)Google Scholar
  4. 4.
    Friis, E.A., Lakes, R.S., Parks, J.B.: Negative Poisson’s ratio polymeric and metal foams. J. Mater. Sci. 23, 4406–4414 (1988)Google Scholar
  5. 5.
    Alderson, K.L., Simkins, V.R., Coenen, V.L., Davies, P.J., Alderson, A., Evans, K.E.: How to make auxetic fibre reinforced composites. Phys. Status Solidi B 242, 509–518 (2005)Google Scholar
  6. 6.
    Krasavin, V.V., Krasavin, A.V.: Auxetic properties of cubic metal single crystals. Phys. Status Solidi B 251, 2314–2320 (2014)Google Scholar
  7. 7.
    Koenders, M.A.: Wave propagation through elastic granular and granular auxetic materials. Phys. Status Solidi B 246, 2083–2088 (2009)Google Scholar
  8. 8.
    Kolat, P., Maruszewski, B.T., Wojciechowski, K.W.: Solitary waves in auxetic plates. J. Non-Cryst. Solids 356, 2001–2009 (2010)Google Scholar
  9. 9.
    Kolat, P., Maruszewski, B.T., Tretiakov, K.V., Wojciechowski, K.W.: Solitary waves in auxetic rods. Phys. Status Solidi B 248, 148–157 (2011)Google Scholar
  10. 10.
    Malischewski, P.G., Lorato, A., Scarpa, F., Ruzzene, M.: Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics. Phys. Status Solidi B 249, 1339–1346 (2012)Google Scholar
  11. 11.
    Dinh, T.B., Long, V.C., Xuan, K.D., Wojciechowski, K.W.: Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities. Phys. Status Solidi B 249, 1386–1392 (2012)Google Scholar
  12. 12.
    Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Rayleigh and Love surface waves in isotropic media with negative Poisson’s ratio. Mech. Solids 49, 422–434 (2014)Google Scholar
  13. 13.
    Sobieszczyk, P., Majka, M., Kuźma, M., Lim, T.-C., Zieliński, P.: Effect of longitudinal stress on wave propagation in width-constrained elastic plates with arbitrary Poisson’s ratio. Phys. Status Solidi B 252, 1615–1619 (2015)Google Scholar
  14. 14.
    Erofeev, V.I., Klyueva, N.V.: Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review). Acoust. Phys. 48, 643–655 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir I. Erofeev
    • 1
    Email author
  • Vladimir V. Kazhaev
    • 1
  • Igor S. Pavlov
    • 1
  1. 1.Mechanical Engineering Research Institute of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations