Advertisement

Are We Closer to “Freeze-All” for ART?

  • Daniel J. Kaser
  • Jason Franasiak
Chapter

Abstract

Embryo cryopreservation is critical to the success of any in vitro fertilization (IVF) program. With a conventional approach to IVF, the top-quality embryo(s) is transferred in a fresh cycle, and the remaining supernumerary embryos are cryopreserved. A freeze-all is performed only in cases of preimplantation genetic testing (PGT) for single-gene conditions or aneuploidy screening, fertility preservation, or concern for ovarian hyperstimulation syndrome (OHSS). Over the last 10 years, though, a different strategy has emerged, in which the IVF cycle is intentionally segmented into two phases: (1) controlled ovarian stimulation (COS) with planned cryopreservation of all suitable embryos and (2) frozen embryo transfer (FET) after at least one intervening menses. With increasingly compelling data, it has become apparent that not only are implantation rates higher with a planned freeze-all strategy, but also pregnancy and neonatal outcomes may likewise be improved. Indeed, the incidence of adverse events such as OHSS, miscarriage, ectopic pregnancy, and low birth weight may all be reduced following FET (Acharya et al. Fertil Steril 104 (4):873–878, 2015; Chen et al. N Engl J Med 375(6):523–533; Kalra et al. Obstet Gynecol 118(4):863–871). This chapter reviews the effect of COS on endometrial development, indications for, and evidence supporting a planned freeze-all strategy including premature progesterone elevation (PPE) and delayed embryo development, the optimal developmental stage and method for cryopreservation, and programmatic changes to consider when transitioning to a freeze-all program.

Keywords

Frozen embryo transfer Endometrial receptivity Implantation Premature progesterone elevation Embryo endometrial dyssynchrony Vitrification 

Abbreviations

COS

Controlled ovarian stimulation

FET

Frozen embryo transfer

PPE

Premature progesterone elevation

WOR

Window of receptivity

References

  1. 1.
    Acharya KS, Acharya CR, Provost MP, Yeh JS, Steward RG, Eaton JL, Muasher SJ. Ectopic pregnancy rate increases with the number of retrieved oocytes in autologous in vitro fertilization with non-tubal infertility but not donor/recipient cycles: an analysis of 109,140 clinical pregnancies from the Society for Assisted Reproductive Technology registry. Fertil Steril. 2015;104(4):873–8.  https://doi.org/10.1016/j.fertnstert.2015.06.025.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, Yang J, Liu J, Wei D, Weng N, Tian L, Hao C, Yang D, Zhou F, Shi J, Xu Y, Li J, Yan J, Qin Y, Zhao H, Zhang H, Legro RS. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33.  https://doi.org/10.1056/NEJMoa1513873.CrossRefPubMedGoogle Scholar
  3. 3.
    Kalra SK, Ratcliffe SJ, Coutifaris C, Molinaro T, Barnhart KT. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;118(4):863–71.  https://doi.org/10.1097/AOG.0b013e31822be65f.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, De Vos J, Hamamah S. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24(6):1436–45.  https://doi.org/10.1093/humrep/dep039.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Haouzi D, Assou S, Dechanet C, Anahory T, Dechaud H, De Vos J, Hamamah S. Controlled ovarian hyperstimulation for in vitro fertilization alters endometrial receptivity in humans: protocol effects. Biol Reprod. 2010;82(4):679–86.  https://doi.org/10.1095/biolreprod.109.081299.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaser D, Racowsky C. Should we eliminate fresh embryo transfer from ART. In: Schlegel P, Fauser B, Carrell D, Racowsky C, editors. Biennial review of infertility, vol. 3. New York: Springer; 2013. p. 201–14.Google Scholar
  7. 7.
    Young S, Lessey B, Balthazar U, Zaino R, Jin J, Sherwin J, Fritz M. Defining the relationship between progesterone dose, endometrial histology and gene expression using an in vivo luteal phase defect model. Reprod Sci. 2011;18(4 (Suppl)):273A.Google Scholar
  8. 8.
    Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, Simon C. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60.e51–15.  https://doi.org/10.1016/j.fertnstert.2010.04.063.CrossRefPubMedGoogle Scholar
  9. 9.
    Bermejo A, Cerrillo M, Ruiz-Alonso M, Blesa D, Simon C, Pellicer A, Garcia-Velasco JA. Impact of final oocyte maturation using gonadotropin-releasing hormone agonist triggering and different luteal support protocols on endometrial gene expression. Fertil Steril. 2014;101(1):138–146.e133.  https://doi.org/10.1016/j.fertnstert.2013.09.033.CrossRefPubMedGoogle Scholar
  10. 10.
    Lessey B. The use of biomarkers for the assessment of uterine receptivity. In: Gardner D, Weissman A, Howles C, Shoham Z, editors. Textbook of assisted reproductive techniques: laboratory and clinical perspectives. London: Martin Dunitz; 2001.Google Scholar
  11. 11.
    Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–8.  https://doi.org/10.1056/NEJMra000763.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiong Y, Wang J, Liu L, Chen X, Xu H, Li TC, Wang CC, Zhang S. Effects of high progesterone level on the day of human chorionic gonadotrophin administration in in vitro fertilization cycles on epigenetic modification of endometrium in the peri-implantation period. Fertil Steril. 2017;108(2):269–276.e261.  https://doi.org/10.1016/j.fertnstert.2017.06.004.CrossRefPubMedGoogle Scholar
  13. 13.
    Venetis CA, Kolibianakis EM, Bosdou JK, Tarlatzis BC. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update. 2013;19(5):433–57.  https://doi.org/10.1093/humupd/dmt014.CrossRefPubMedGoogle Scholar
  14. 14.
    Healy MW, Yamasaki M, Patounakis G, Richter KS, Devine K, DeCherney AH, Hill MJ. The slow growing embryo and premature progesterone elevation: compounding factors for embryo-endometrial asynchrony. Hum Reprod. 2017;32(2):362–7.  https://doi.org/10.1093/humrep/dew296.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang A, Santistevan A, Hunter Cohn K, Copperman A, Nulsen J, Miller BT, Widra E, Westphal LM, Yurttas Beim P. Freeze-only versus fresh embryo transfer in a multicenter matched cohort study: contribution of progesterone and maternal age to success rates. Fertil Steril. 2017;108(2):254–261.e254.  https://doi.org/10.1016/j.fertnstert.2017.05.007.CrossRefPubMedGoogle Scholar
  16. 16.
    Werner MD, Forman EJ, Hong KH, Franasiak JM, Molinaro TA, Scott RT Jr. Defining the “sweet spot” for administered luteinizing hormone-to-follicle-stimulating hormone gonadotropin ratios during ovarian stimulation to protect against a clinically significant late follicular increase in progesterone: an analysis of 10,280 first in vitro fertilization cycles. Fertil Steril. 2014;102(5):1312–7.  https://doi.org/10.1016/j.fertnstert.2014.07.766.CrossRefPubMedGoogle Scholar
  17. 17.
    Franasiak JM, Thomas S, Ng S, Fano M, Ruiz A, Scott RT Jr, Forman EJ. Dehydroepiandrosterone (DHEA) supplementation results in supraphysiologic DHEA-S serum levels and progesterone assay interference that may impact clinical management in IVF. J Assist Reprod Genet. 2016;33(3):387–91.  https://doi.org/10.1007/s10815-016-0650-3.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gardner D, Schoolcraft W. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond. Carnforth: Parthenon Press; 1999.Google Scholar
  19. 19.
    Shapiro BS, Harris DC, Richter KS. Predictive value of 72-hour blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertil Steril. 2000;73(3):582–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Racowsky C, Combelles CM, Nureddin A, Pan Y, Finn A, Miles L, Gale S, O'Leary T, Jackson KV. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6(3):323–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, Royere D. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22(7):1973–81.  https://doi.org/10.1093/humrep/dem100.CrossRefPubMedGoogle Scholar
  22. 22.
    Van den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJ, Klein BM, Helmgaard L, Arce JC. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod Biomed Online. 2013;27(4):353–61.  https://doi.org/10.1016/j.rbmo.2013.07.006.CrossRefPubMedGoogle Scholar
  23. 23.
    Hill MJ, Richter KS, Heitmann RJ, Graham JR, Tucker MJ, DeCherney AH, Browne PE, Levens ED. Trophectoderm grade predicts outcomes of single-blastocyst transfers. Fertil Steril. 2013;99(5):1283–1289.e1281.  https://doi.org/10.1016/j.fertnstert.2012.12.003.CrossRefPubMedGoogle Scholar
  24. 24.
    Wirleitner B, Schuff M, Stecher A, Murtinger M, Vanderzwalmen P. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum Reprod. 2016;31(8):1685–95.  https://doi.org/10.1093/humrep/dew127.CrossRefPubMedGoogle Scholar
  25. 25.
    Shapiro BS, Richter KS, Harris DC, Daneshmand ST. A comparison of day 5 and day 6 blastocyst transfers. Fertil Steril. 2001;75(6):1126–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013;27(2):140–6.  https://doi.org/10.1016/j.rbmo.2013.04.013.CrossRefPubMedGoogle Scholar
  27. 27.
    Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–285.e210.  https://doi.org/10.1016/j.fertnstert.2015.10.013.CrossRefPubMedGoogle Scholar
  28. 28.
    Richter KS, Shipley SK, McVearry I, Tucker MJ, Widra EA. Cryopreserved embryo transfers suggest that endometrial receptivity may contribute to reduced success rates of later developing embryos. Fertil Steril. 2006;86(4):862–6.  https://doi.org/10.1016/j.fertnstert.2006.02.114.CrossRefPubMedGoogle Scholar
  29. 29.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89(1):20–6.  https://doi.org/10.1016/j.fertnstert.2006.08.092.CrossRefPubMedGoogle Scholar
  30. 30.
    Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99(2):389–92.  https://doi.org/10.1016/j.fertnstert.2012.09.044.CrossRefPubMedGoogle Scholar
  31. 31.
    Centers for Disease Control and Prevention ASRM SfART. 2014 assisted reproductive technology national summary report. Atlanta, GA: US Dept of Health and Human Services; 2016.Google Scholar
  32. 32.
    Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27(7):357–63.  https://doi.org/10.1007/s10815-010-9412-9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8.  https://doi.org/10.1016/j.fertnstert.2011.05.050.CrossRefPubMedGoogle Scholar
  34. 34.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011;96(2):516–8.  https://doi.org/10.1016/j.fertnstert.2011.02.059.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen G, Zhang H, Ma Q, Zhao J, Zhang Y, Fan Q, Ma B. Fresh-frozen complete extensor mechanism allograft versus autograft reconstruction in rabbits. Sci Rep. 2016;6:22106.  https://doi.org/10.1038/srep22106.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shapiro BS, Daneshmand ST, De Leon L, Garner FC, Aguirre M, Hudson C. Frozen-thawed embryo transfer is associated with a significantly reduced incidence of ectopic pregnancy. Fertil Steril. 2012;98(6):1490–4.  https://doi.org/10.1016/j.fertnstert.2012.07.1136.CrossRefPubMedGoogle Scholar
  37. 37.
    Huang B, Hu D, Qian K, Ai J, Li Y, Jin L, Zhu G, Zhang H. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles. Fertil Steril. 2014;102(5):1345–9.  https://doi.org/10.1016/j.fertnstert.2014.07.1245.CrossRefPubMedGoogle Scholar
  38. 38.
    Huang TH, Chung SY, Chua S, Chai HT, Sheu JJ, Chen YL, Chen CH, Chang HW, Tong MS, Sung PH, Sun CK, Lu HI, Yip HK. Effect of early administration of lower dose versus high dose of fresh mitochondria on reducing monocrotaline-induced pulmonary artery hypertension in rat. Am J Transl Res. 2016;8(12):5151–68.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Pelkonen S, Koivunen R, Gissler M, Nuojua-Huttunen S, Suikkari AM, Hyden-Granskog C, Martikainen H, Tiitinen A, Hartikainen AL. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006. Hum Reprod. 2010;25(4):914–23.  https://doi.org/10.1093/humrep/dep477.CrossRefPubMedGoogle Scholar
  40. 40.
    Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. Fertil Steril. 2010;94(4):1320–7.  https://doi.org/10.1016/j.fertnstert.2009.05.091.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao J, Xu B, Zhang Q, Li YP. Which one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2016;14(1):51.  https://doi.org/10.1186/s12958-016-0188-3.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    VerMilyea M, Liebermann J, Tucker M. Embryo cryopreservation. In: Ginsburg E, Racowsky C, editors. In vitro fertilization: a comprehensive guide. New York: Springer; 2012. p. 145–60.CrossRefGoogle Scholar
  43. 43.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized clinical trial. Fertil Steril. 2015;104(5):1138–44.  https://doi.org/10.1016/j.fertnstert.2015.07.1141.CrossRefPubMedGoogle Scholar
  44. 44.
    Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55.  https://doi.org/10.1093/humupd/dmw038.CrossRefPubMedGoogle Scholar
  45. 45.
    Casper RF, Yanushpolsky EH. Optimal endometrial preparation for frozen embryo transfer cycles: window of implantation and progesterone support. Fertil Steril. 2016;105(4):867–72.  https://doi.org/10.1016/j.fertnstert.2016.01.006.CrossRefPubMedGoogle Scholar
  46. 46.
    Yarali H, Polat M, Mumusoglu S, Yarali I, Bozdag G. Preparation of endometrium for frozen embryo replacement cycles: a systematic review and meta-analysis. J Assist Reprod Genet. 2016;33(10):1287–304.  https://doi.org/10.1007/s10815-016-0787-0.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Santos-Ribeiro S, Polyzos NP, Lan VT, Siffain J, Mackens S, Van Landuyt L, Tournaye H, Blockeel C. The effect of an immediate frozen embryo transfer following a freeze-all protocol: a retrospective analysis from two centres. Hum Reprod. 2016;31(11):2541–8.  https://doi.org/10.1093/humrep/dew194.CrossRefPubMedGoogle Scholar
  48. 48.
    Blockeel C, Drakopoulos P, Santos-Ribeiro S, Polyzos NP, Tournaye H. A fresh look at the freeze-all protocol: a SWOT analysis. Hum Reprod. 2016;31(3):491–7.  https://doi.org/10.1093/humrep/dev339.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel J. Kaser
    • 1
  • Jason Franasiak
    • 2
  1. 1.IVI-RMA New JerseyBasking RidgeUSA
  2. 2.Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations