Advertisement

Medicinal Chemistry of A2B Adenosine Receptors

  • Christa E. Müller
  • Younis Baqi
  • Sonja Hinz
  • Vigneshwaran Namasivayam
Chapter
Part of the The Receptors book series (REC, volume 34)

Abstract

A2B adenosine receptors (A2BARs) are in the focus of interest as drug targets in (immuno)oncology since antagonists show anti-proliferative, anti-angiogenic, anti-metastatic, and immunostimulatory properties. Additional (potential) indications for A2BAR antagonists include inflammatory (pulmonary, colon) and autoimmune diseases, pain, fibrosis, infectious diseases, diabetes, and more. Agonists were found to exhibit cardioprotective properties. The A2BAR is most closely related to the A2AAR subtype. Both are Gs protein-coupled receptors, but the A2BAR is additionally coupled to Gq proteins. A2BAR expression is upregulated under pathological conditions (hypoxia, inflammation, ischemia) and on many cancer cells. A2BARs form stable heteromeric complexes with A2AARs when co-expressed, and thereby completely block A2AAR signaling. There is still a lack of potent, selective, and fully efficacious A2BAR agonists, while structurally diverse potent and selective competitive antagonists for A2BARs have become available. The first positive and negative allosteric modulators for A2BARs were recently described. For the labeling of A2BARs, antagonist radioligands have been developed, and recently the first potent and selective fluorescent ligands were reported.

Keywords

A2B adenosine receptor Agonist Antagonist Cancer Inflammation Structure 

Notes

Acknowledgments

We are grateful to the Federal Ministry of Education and Research (BMBF), Germany, for the support of a project on the development of A2BAR antagonists as diagnostics for PET imaging within the BioPharma initiative (Neuroallianz, project D11B). We thank A.C. Schiedel for the design of Fig. 6.4.

References

  1. Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A et al (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366PubMedCrossRefGoogle Scholar
  2. Aherne CM, Saeedi B, Collins CB et al (2015) Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol 8:1324–1338PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ali H, Cunha-Melo JR, Saul WF et al (1990) Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor J Biol Chem 265:745–753PubMedGoogle Scholar
  4. Allard B, Beavis PA, Darcy PK et al (2016) Immunosuppressive activities of adenosine in cancer. Curr Opinion Pharmacol 29:7–16CrossRefGoogle Scholar
  5. Allard D, Turcotte M, Stagg J (2017) Targeting A2 adenosine receptors in cancer. Immunol Cell Biol 95:333–339PubMedCrossRefGoogle Scholar
  6. Alnouri MW, Jepards S, Casari A et al (2015) Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 11:389–407PubMedPubMedCentralCrossRefGoogle Scholar
  7. Antonioli L, Pellegrini C, Fornai M et al (2017) Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors. Purinergic Signal 13:497–510PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arin RM, Vallejo AI, Rueda Y et al (2015) The A2B adenosine receptor colocalizes with adenosine deaminase in resting parietal cells from gastric mucosa. Biochemistry (Mosc) 80:120–125CrossRefGoogle Scholar
  9. Asano T, Takenaga M (2017) Adenosine A2B receptors: an optional target for the Management of Irritable Bowel Syndrome with Diarrhea? J Clin Med 6:E104PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baltos JA, Vecchio EA, Harris MA et al (2017) Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochem Pharmacol 135:79–89PubMedCrossRefGoogle Scholar
  11. Baraldi PG, Tabrizi MA, Preti D et al (2004a) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem 47:1434–1447PubMedCrossRefGoogle Scholar
  12. Baraldi PG, Tabrizi MA, Preti D et al (2004b) [3H]-MRE 2029-F20, a selective antagonist radioligand for the human A2B adenosine receptors. Bioorg Med Chem Lett 14:3607–3610PubMedCrossRefGoogle Scholar
  13. Baraldi PG, Preti D, Tabrizi MA et al (2007) Synthesis and biological evaluation of novel 1-deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]-9H-purin-9-yl]-N-ethyl-beta-D-ribofuranuronamide derivatives as useful templates for the development of A2B adenosine receptor agonists. J Med Chem 50:374–380PubMedCrossRefGoogle Scholar
  14. Baraldi PG, Tabrizi MA, Fruttarolo F et al (2009) Recent improvements in the development of A2B adenosine receptor agonists. Purinergic Signal 5:3–19PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baraldi PG, Baraldi S, Saponaro G et al (2012) Novel 1,3-dipropyl-8-(3-benzimidazol-2-yl-methoxy-1-methylpyrazol-5-yl)xanthines as potent and selective A2B adenosine receptor antagonists. J Med Chem 55:797–811PubMedCrossRefGoogle Scholar
  16. Basu S, Barawkar DA, Ramdas V et al (2017a) A2B adenosine receptor antagonists: design, synthesis and biological evaluation of novel xanthine derivatives. Eur J Med Chem 127:986–996PubMedCrossRefGoogle Scholar
  17. Basu S, Barawkar DA, Ramdas V et al (2017b) Design and synthesis of novel xanthine derivatives as potent and selective A2B adenosine receptor antagonists for the treatment of chronic inflammatory airway diseases. Eur J Med Chem 134:218–229PubMedCrossRefGoogle Scholar
  18. Bedford ST, Benwell KR, Brooks T et al (2009) Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor. Bioorg Med Chem Lett 19:5945–5949PubMedCrossRefGoogle Scholar
  19. Bertarelli DC, Diekmann M, Hayallah AM et al (2006) Characterization of human and rodent native and recombinant adenosine A2B receptors by radioligand binding studies. Purinergic Signal 2:559–571PubMedPubMedCentralCrossRefGoogle Scholar
  20. Betti M, Catarzi D, Varano F et al (2018) The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. Eur J Med Chem 150:127–139PubMedCrossRefGoogle Scholar
  21. Beukers MW, van Oppenraaij J, van der Hoorn PP et al (2004a) Random mutagenesis of the human adenosine A2B receptor followed by growth selection in yeast. Identification of constitutively active and gain of function mutations. Mol Pharmacol 65:702–710PubMedCrossRefGoogle Scholar
  22. Beukers MW, Chang LC, von Frijtag Drabbe Künzel JK et al (2004b) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47:3707–3709PubMedCrossRefGoogle Scholar
  23. Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM et al (2008) Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedeberg's Arch Pharmacol 377:65–76CrossRefGoogle Scholar
  24. Borg N, Alter C, Görldt N et al (2017) CD73 on T cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136:297–313PubMedCrossRefPubMedCentralGoogle Scholar
  25. Borrmann T, Hinz S, Bertarelli DC et al (2009) 1-Alkyl-8-(piperazine-1-sulfonyl) phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52:3994–4006PubMedCrossRefGoogle Scholar
  26. Borroto-Escuela DO, Hinz S, Navarro G et al (2018) Understanding the role of adenosine A2AR Heteroreceptor complexes in neurodegeneration and Neuroinflammation. Front Neurosci 12:43PubMedPubMedCentralCrossRefGoogle Scholar
  27. Burbiel JC, Ghattas W, Küppers P et al (2016) 2-amino[1,2,4]triazolo[1,5-c]quinazolines and derived novel heterocycles: syntheses and structure-activity relationships of potent adenosine receptor antagonists. ChemMedChem 11:2272–2286PubMedCrossRefGoogle Scholar
  28. Cagnina RE, Ramos SI, Marshall MA et al (2009) Adenosine A2B receptors are highly expressed on murine type II alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 297:L467–L474PubMedPubMedCentralCrossRefGoogle Scholar
  29. Caporarello N, Olivieri M, Cristaldi M et al (2017) Blood-brain barrier in a haemophilus influenzae type a in vitro infection: role of adenosine receptors A2A and A2B. Mol Neurobiol 55:5321–5336Google Scholar
  30. Carbajales C, Azuaje J, Oliveira A et al (2017) Enantiospecific recognition at the A2B adenosine receptor by alkyl 2-cyanoimino-4-substituted-6-methyl-1,2,3,4-tetrahydropyrimidine-5-carboxylates. J Med Chem 60:3372–3382PubMedCrossRefGoogle Scholar
  31. Carotti A, Stefanachi A, Raviña E et al (2004) 8-Substituted-9-deazaxanthines as adenosine receptor ligands: design, synthesis and structure-affinity relationships at A2B. Eur J Med Chem 39:879–887PubMedCrossRefGoogle Scholar
  32. Carotti A, Cadavid MI, Centeno NB et al (2006) Design, synthesis, and structure-activity relationships of 1-,3-,8-, and 9-substituted-9-deazaxanthines at the human A2B adenosine receptor. J Med Chem 49:282–299PubMedCrossRefGoogle Scholar
  33. Carpenter B, Lebon G (2017) Human adenosine A2A receptor: molecular mechanism of ligand binding and activation. Front Pharmacol 8:898PubMedPubMedCentralCrossRefGoogle Scholar
  34. Casadó V, Casillas T, Mallol J et al (1992) The adenosine receptors present on the plasma membrane of chromaffin cells are of the A2b subtype. J Neurochem 59:425–431PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chandrasekera PC, McIntosh VJ, Cao FX et al (2010) Differential effects of adenosine A2A and A2B receptors on cardiac contractility. Am J Physiol Heart Circ Physiol 299:H2082–H2089PubMedPubMedCentralCrossRefGoogle Scholar
  36. Charles EJ, Mehaffey JH, Sharma AK et al (2017) Lungs donated after circulatory death and prolonged warm ischemia are transplanted successfully after enhanced ex vivo lung perfusion using adenosine A2B receptor antagonism. J Thorac Cardiovasc Surg 154:1811–1820PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chen M, Liang D, Zuo A et al (2015) An A2B adenosine receptor agonist promotes Th17 autoimmune responses in experimental autoimmune uveitis (EAU) via dendritic cell ctivation. PLoS One 10:e0132348PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cheong SL, Venkatesan G, Paira P et al (2011) Pyrazolo derivatives as potent adenosine receptor antagonists: an overview on the structure-activity relationships. Int J Med Chem 2011:480652PubMedPubMedCentralGoogle Scholar
  39. Cheung AW, Brinkman J, Firooznia F et al (2010) 4-Substituted-7-N-alkyl-N-acetyl 2-aminobenzothiazole amides: drug-like and non-xanthine based A2B adenosine receptor antagonists. Bioorg Med Chem Lett 20:4140–4146PubMedCrossRefPubMedCentralGoogle Scholar
  40. Choukèr A, Ohta A, Martignoni A et al (2012) In vivo hypoxic preconditioning protects from warm liver ischemia-reperfusion injury through the adenosine A2B receptor. Transplantation 94:894–902PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chugh A, Mookhtiar KA (2017) Design and synthesis of novel xanthine derivatives as potent and selective A2B adenosine receptor antagonists for the treatment of chronic inflammatory airway diseases. Eur J Med Chem 134:218–229PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cinalli AR, Guarracino JF, Fernandez V et al (2013) Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction. Br J Pharmacol 169:1810–1823PubMedPubMedCentralCrossRefGoogle Scholar
  43. Corset V, Nguyen-Ba-Charvet KT, Forcet C et al (2000) Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 407:747–750PubMedCrossRefPubMedCentralGoogle Scholar
  44. Crespo A, El Maatougui A, Biagini P et al (2013) Discovery of 3,4-dihydropyrimidin-2(1H)-ones as a novel class of potent and selective A2B adenosine receptor antagonists. ACS Med Chem Lett 4:1031–1036PubMedPubMedCentralCrossRefGoogle Scholar
  45. Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80PubMedCrossRefPubMedCentralGoogle Scholar
  46. Daly JW, Hide I, Müller CE et al (1991) Caffeine analogs: structure-activity relationships at adenosine receptors. Pharmacology 42:309–321PubMedCrossRefGoogle Scholar
  47. De Filippo E, Namasivayam V, Zappe L, El-Tayeb A, Schiedel AC, Müller CE (2016) Role of extracellular cysteine residues in the adenosine A2A receptor. Purinergic Signal 12:313–329PubMedPubMedCentralCrossRefGoogle Scholar
  48. Doré AS, Robertson N, Errey JC et al (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293PubMedPubMedCentralCrossRefGoogle Scholar
  49. Doyle C, Cristofaro V, Sack BS et al (2017) Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A2B pathway. Sci Rep 7:44416PubMedPubMedCentralCrossRefGoogle Scholar
  50. Du X, Ou X, Song T et al (2015) Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp Biol Med 240:1472–1429CrossRefGoogle Scholar
  51. Eastwood P, Esteve C, González J et al (2010a) Discovery of LAS101057: a potent, selective, and orally efficacious A2B adenosine receptor antagonist. ACS Med Chem Lett 2:213–218PubMedPubMedCentralCrossRefGoogle Scholar
  52. Eastwood P, Gonzalez J, Paredes S et al (2010b) Discovery of potent and selective bicyclic A2B adenosine receptor antagonists via bioisosteric amide replacement. Bioorg Med Chem Lett 20:1634–1637PubMedCrossRefGoogle Scholar
  53. Eastwood P, Gonzalez J, Paredes S et al (2010c) Discovery of N-(5,6-diarylpyridin-2-yl)amide derivatives as potent and selective A2B adenosine receptor antagonists. Bioorg Med Chem Lett 20:1697–1700PubMedCrossRefGoogle Scholar
  54. Eckle T, Kewley EM, Brodsky KS et al (2014) Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J Immunol 192:1249–1256PubMedPubMedCentralCrossRefGoogle Scholar
  55. El Maatougui A, Azuaje J, González-Gómez M et al (2016) Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. J Med Chem 59:1967–1983PubMedCrossRefPubMedCentralGoogle Scholar
  56. Elmenhorst D, Meyer PT, Winz OH et al (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415PubMedCrossRefPubMedCentralGoogle Scholar
  57. Elmenhorst D, Elmenhorst EM, Hennecke E et al (2017) Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci U S A 114:4243–4248PubMedPubMedCentralCrossRefGoogle Scholar
  58. El-Tayeb A, Michael S, Abdelrahman A, Behrenswerth A, Gollos S, Nieber K, Müller CE (2011) Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2:890–895PubMedPubMedCentralCrossRefGoogle Scholar
  59. Elzein E, Kalla RV, Li X et al (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J Med Chem 51:2267–2278PubMedCrossRefPubMedCentralGoogle Scholar
  60. Field JJ, Nathan DG, Linden J (2014) The role of adenosine signaling in sickle cell therapeutics. Hematol Oncol Clin North Am 28:287–299PubMedPubMedCentralCrossRefGoogle Scholar
  61. Figueiredo AB, Souza-Testasicca MC, Mineo TWP et al (2017) Leishmania amazonensis-induced cAMP triggered by adenosine A2B receptor is important to inhibit dendritic cell activation and evade immune response in infected mice. Front Immunol 8:849PubMedPubMedCentralCrossRefGoogle Scholar
  62. Firooznia F, Cheung AW, Brinkman J et al (2011) Discovery of benzothiazole-based adenosine A2B receptor antagonists with improved A2A selectivity. Bioorg Med Chem Lett 21:1933–1936PubMedCrossRefGoogle Scholar
  63. Flaten V, Laurent C, Coelho JE et al (2014) From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease? Biochem Soc Trans 42:587–592PubMedPubMedCentralCrossRefGoogle Scholar
  64. Floris M, Sabbadin D, Ciancetta A et al (2013) Implementing the “best template searching” tool into Adenosiland platform. In Silico Pharmacol 1:25–32PubMedPubMedCentralCrossRefGoogle Scholar
  65. Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G (2016) Basic pharmacological and structural evidence for class A G-protein-coupled receptor Heteromerization. Front Pharmacol 7:76–81PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fredholm BB, AP IJ, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMedPubMedCentralGoogle Scholar
  67. Fredholm BB, AP IJ, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63:1–34PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fuxe K, Agnati LF, Jacobsen K et al (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease. Neurology 61(11 Suppl 6):S19–S23PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gao ZG, Inoue A, Jacobson KA (2018) On the G protein-coupling selectivity of the native A2B adenosine receptor. Biochem Pharmacol 151:201–213Google Scholar
  70. Gatta F, Del Giudice MR, Borioni A et al (1993) Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines and 1,2,4-triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem 28:569–576CrossRefGoogle Scholar
  71. Geldenhuys WJ, Van der Schyf CJ (2012) Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin Drug Discov 8:115–129PubMedCrossRefPubMedCentralGoogle Scholar
  72. Gewirth DT (2016) Paralog specific Hsp90 inhibitors – a brief history and a bright future. Curr Top Med Chem 16:2779–2791PubMedPubMedCentralCrossRefGoogle Scholar
  73. Giacomelli C, Daniele S, Romei C et al (2018) The A2B adenosine receptor modulates the epithelial- mesenchymal transition through the balance of cAMP/PKA and MAPK/ERK pathway activation in human epithelial lung cells. Front Pharmacol 9:54PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gnad T, Scheibler S, Kügelgen v et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399PubMedCrossRefPubMedCentralGoogle Scholar
  75. Goddard WA 3rd, Kim SK, Li Y et al (2010) Predicted 3D structures for adenosine receptors bound to ligands: comparison to the crystal structure. J Struct Biol 170:10–20PubMedCrossRefPubMedCentralGoogle Scholar
  76. Goulding J, May LT, Hill SJ (2018) Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor biosensor: evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603. Biochem Pharmacol 147:55–66PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gracia E, Farré D, Cortés A et al (2013) The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB J 27:1048–1061PubMedCrossRefGoogle Scholar
  78. Greer S, Page CW, Joshi T et al (2013) Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease. J Pharmacol Exp 346:473–485CrossRefGoogle Scholar
  79. Guidolin D, Agnati LF, Marcoli M et al (2015) G-protein-coupled receptor type a heteromers as an emerging therapeutic target. Expert Opin Ther Targets 19:265–283PubMedCrossRefGoogle Scholar
  80. Hayallah AM, Sandoval-Ramírez J, Reith U et al (2002) 1,8-Disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem 45:1500–1510PubMedCrossRefGoogle Scholar
  81. Herrera C, Casado V, Ciruela F et al (2001) Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol Pharmacol 59:127–134PubMedCrossRefGoogle Scholar
  82. Hinz S, Lacher SK, Seibt BF et al (2014) BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J Pharmacol Exp Ther 349(3):427–436PubMedCrossRefGoogle Scholar
  83. Hinz S, Navarro G, Borroto-Escuela D, Seibt BF, Ammon YC, de Filippo E, Danish A, Lacher SK, Červinková B, Rafehi M, Fuxe K, Schiedel AC, Franco R, Müller CE (2018a) Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget 9:13593–13611PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hinz S, Alnouri WM, Pleiss U, Müller CE (2018b) Tritium-labeled agonists as tools for studying adenosine A2B receptors. Purinergic Signal, in press, https://doi.org/10.1007/s11302-018-9608-5
  85. Hu X, Adebiyi MG, Luo J et al (2016) Sustained elevated adenosine via ADORA2B promotes chronic pain through neuro-immune interaction. Cell Rep 16:106–119PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hutchison KA, Nevins B, Perini F, Fox IH (1990) Soluble and membrane-associated human low-affinity adenosine binding protein (adenotin): properties and homology with mammalian and avian stress proteins. Biochemistry 29:5138–5144PubMedCrossRefPubMedCentralGoogle Scholar
  87. Iannone R, Miele L, Maiolino P et al (2013) Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15:1400–1409PubMedPubMedCentralCrossRefGoogle Scholar
  88. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, IJzerman AP, Stevens RC (2008) The 2.6 Ångstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jafari SM, Joshaghani HR, Panjehpour M et al (2018) A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation. Cell Oncol (Dordr) 41:61–72CrossRefGoogle Scholar
  90. Jespers W, Oliveira A, Prieto-Díaz R et al (2017) Structure-based design of potent and selective ligands at the four adenosine receptors. Molecules 22:E1945PubMedCrossRefPubMedCentralGoogle Scholar
  91. Jespers W, Schiedel AC, Heitman LH et al (2018) Structural mapping of adenosine receptor mutations: ligand binding and Signaling mechanisms. Trends Pharmacol Sci 39:75–89PubMedCrossRefGoogle Scholar
  92. Ji X, Kim YC, Ahern DG et al (2001) [3H]MRS 1754, a selective antagonist radioligand for A2B adenosine receptors. Biochem Pharmacol 61:657–663PubMedPubMedCentralCrossRefGoogle Scholar
  93. Johnston-Cox HA, Ravid K (2011) Adenosine and blood platelets. Purinergic Signal 7:357–365PubMedPubMedCentralCrossRefGoogle Scholar
  94. Johnston-Cox H, Koupenova M, Yang D et al (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 7:e40584PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kaji W, Tanaka S, Tsukimoto M et al (2014) Adenosine A2B receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells. J Toxicol Sci 39:191–198PubMedCrossRefGoogle Scholar
  96. Kalhan A, Gharibi B, Vazquez M et al (2012) Adenosine A2A and A2B receptor expression in neuroendocrine tumours: potential targets for therapy. Purinergic Signal 8:265–274PubMedCrossRefGoogle Scholar
  97. Kalla RV, Elzein E, Perry T et al (2008) Selective, high affinity A2B adenosine receptor antagonists: N-1 monosubstituted 8-(pyrazol-4-yl)xanthines. Bioorg Med Chem Lett 18:1397–1401PubMedCrossRefGoogle Scholar
  98. Kalla RV, Zablocki J, Tabrizi MA et al (2009) Recent developments in A2B adenosine receptor ligands. Handb Exp Pharmacol 193:99–122CrossRefGoogle Scholar
  99. Karmouty-Quintana H, Zhong H, Acero L et al (2012) The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. FASEB J 26:2546–2557PubMedPubMedCentralCrossRefGoogle Scholar
  100. Karmouty-Quintana H, Philip K, Acero LF et al (2015) Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension. FASEB J 29:50–60PubMedCrossRefGoogle Scholar
  101. Kim SA, Marshall MA, Melman N et al (2002) Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem 45:2131–2138PubMedCrossRefGoogle Scholar
  102. Konrad FM, Zwergel C, Ngamsri KC et al (2017) Anti-inflammatory effects of heme oxygenase-1 depend on adenosine A2A- and A2B-receptor signaling in acute pulmonary inflammation. Front Immunol 8:1874PubMedPubMedCentralCrossRefGoogle Scholar
  103. Koscsó B, Csóka B, Selmeczy Z et al (2012) Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J Immunol 188:445–453PubMedCrossRefGoogle Scholar
  104. Köse M, Schiedel AC (2009) Nucleoside/nucleobase transporters: drug targets of the future? Future Med Chem 1:303–326PubMedCrossRefGoogle Scholar
  105. Köse M, Gollos S, Karcz T, Fiene A, Heisig F, Behrenswerth A, Kiec-Kononowicz KJ, Namasivayam V, Müller CE (2018) Fluorescent-labeled selective adenosine A receptor antagonist enables competition binding assay by flow cytometry. J Med Chem 61(10):4301–4316Google Scholar
  106. Koupenova M, Johnston-Cox H, Vezeridis A et al (2012) A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 125:354–363PubMedCrossRefGoogle Scholar
  107. Lazarus M, Chen JF, Huang ZL et al (2017) Adenosine and sleep. Handb Exp Pharmacol. https://doi.org/10.1007/164_2017_36
  108. Lebon G, Warne T, Edwards PC et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lebon G, Edwards PC, Leslie AG et al (2015) Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 87:907–915PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li Q, Han X, Lan X et al (2017) Inhibition of tPA-induced hemorrhagic transformation involves adenosine A2b receptor activation after cerebral ischemia. Neurobiol Dis 108:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  111. Linden J, Thai T, Figler H et al (1999) Characterization of human A2B adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol 56:705–713PubMedGoogle Scholar
  112. Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  113. Liu R, Groenewoud NJ, Peeters MC et al (2014) A yeast screening method to decipher the interaction between the adenosine A2B receptor and the C-terminus of different G protein α-subunits. Purinergic Signal 10:441–453PubMedPubMedCentralCrossRefGoogle Scholar
  114. Liu R, Nahon D, le Roy B et al (2015) Scanning mutagenesis in a yeast system delineates the role of the NPxxY(x)(5,6)F motif and helix 8 of the adenosine A2B receptor in G protein coupling. Biochem Pharmacol 95:290–300PubMedCrossRefGoogle Scholar
  115. Ma DF, Kondo T, Nakazawa T, Niu DF, Mochizuki K, Kawasaki T, Yamane T, Katoh R (2010) Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells. Hum Pathol 41:1550–1557PubMedCrossRefPubMedCentralGoogle Scholar
  116. Matharu AL, Mundell SJ, Benovic JL et al (2001) Rapid agonist-induced desensitization and internalization of the a(2B) adenosine receptor is mediated by a serine residue close to the COOH terminus. J Biol Chem 276:30199–30207PubMedCrossRefGoogle Scholar
  117. McGuinness BF, Ho KK, Stauffer TM et al (2010) Discovery of novel quinolinone adenosine A2B antagonists. Bioorg Med Chem Lett 20:7414–7420PubMedCrossRefPubMedCentralGoogle Scholar
  118. Methner C, Schmidt K, Cohen MV et al (2010) Both A2a and A2b adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts. Am J Physiol Heart Circ Physiol 299:H1262–H1264PubMedPubMedCentralCrossRefGoogle Scholar
  119. Michael S, Warstat C, Michel F et al (2010) Adenosine A2A agonist and A2B antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signal 6:117–124PubMedCrossRefPubMedCentralGoogle Scholar
  120. Mittal D, Sinha D, Barkauskas D et al (2016) Adenosine 2B receptor expression on Cancer cells promotes metastasis. Cancer Res 76:4372–4382PubMedCrossRefPubMedCentralGoogle Scholar
  121. Moidunny S, Vinet J, Wesseling E et al (2012) Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 9:198–204PubMedPubMedCentralCrossRefGoogle Scholar
  122. Molck C, Ryall J, Failla LM et al (2016) The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism. Cancer Lett 383:135–143PubMedCrossRefGoogle Scholar
  123. Morello S, Pinto A, Blandizzi C et al (2016) Myeloid cells in the tumor microenvironment: role of adenosine. Oncoimmunology 5:e1108515PubMedCrossRefGoogle Scholar
  124. Moro S, Hoffmann C, Jacobson KA (1999) Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor. Biochemistry 38:3498–3507PubMedPubMedCentralCrossRefGoogle Scholar
  125. Müller CE, Jacobson KA (2011a) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta1808:1290–1308CrossRefGoogle Scholar
  126. Müller CE, Jacobson KA (2011b) Xanthines as adenosine receptor antagonists. Handb Exp Pharmacol 200:151–199CrossRefGoogle Scholar
  127. Müller CE, Scior T (1993) Adenosine receptor and their modulators. Pharm Acta Helv 68:77–111PubMedCrossRefGoogle Scholar
  128. Müller CE, Stein B (1996) Adenosine receptor antagonists: structures and potential therapeutic applications. Curr Pharm Des 2:501–530Google Scholar
  129. Mundell SJ, Matharu AL, Nisar S et al (2010) Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling. Br J Pharmacol 159:518–533PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nascimento FP, Macedo-Júnior SJ, Pamplona FA et al (2015) Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 51:1368–1378PubMedCrossRefGoogle Scholar
  131. Nieto MI, Balo MC, Brea J et al (2010) Synthesis and pharmacological evaluation of novel substituted 9-deazaxanthines as A2B receptor antagonists. Eur J Med Chem 45:2884–2892PubMedCrossRefGoogle Scholar
  132. Orozco-Gregorio H, Mota-Rojas D, Villanueva D et al (2011) Caffeine therapy for apnoea of prematurity: pharmacological treatment. African J Pharm Pharmacol 5:564–571Google Scholar
  133. Ortore G, Martinelli A (2010) A2B receptor ligands: past, present and future trends. Curr Top Med Chem 10:923–940PubMedCrossRefPubMedCentralGoogle Scholar
  134. Panjehpour M, Castro M, Klotz KN (2005) Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol 145:211–218PubMedPubMedCentralCrossRefGoogle Scholar
  135. Patel L, Thaker A (2015) The effects of A2B receptor modulators on vascular endothelial growth factor and nitric oxide axis in chronic cyclosporine nephropathy. J Pharmacol Pharmacother 6:147–153PubMedPubMedCentralCrossRefGoogle Scholar
  136. Peeters MC, van Westen GJ, Guo D et al (2011) GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A2B receptor. FASEB J 25:632–643PubMedCrossRefGoogle Scholar
  137. Peeters MC, Li Q, Elands R et al (2014) Domains for activation and inactivation in G protein-coupled receptors--a mutational analysis of constitutive activity of the adenosine A2B receptor. Biochem Pharmacol 92:348–357PubMedCrossRefPubMedCentralGoogle Scholar
  138. Pejman L, Omrani H, Mirzamohammadi Z et al (2014) The effect of adenosine A2A and A2B antagonists on tracheal responsiveness, serum levels of cytokines and lung inflammation in Guinea pig model of asthma. Adv Pharm bull 4:131–138PubMedGoogle Scholar
  139. Petroni D, Giacomelli C, Taliani S et al (2016) Toward PET imaging of A2B adenosine receptors: a carbon-11 labeled triazinobenzimidazole tracer: synthesis and imaging of a new A2B PET tracer. Nucl Med Biol 43:309–317PubMedCrossRefGoogle Scholar
  140. Philip K, Mills TW, Davies J et al (2017) HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis. FASEB J 31:4745–4758PubMedPubMedCentralCrossRefGoogle Scholar
  141. Phosri S, Arieyawong A, Bunrukchai K, Parichatikanond W, Nishimura A, Nishida M, Mangmool S (2017) Stimulation of adenosine A2B receptor inhibits endothelin-1-induced cardiac fibroblast proliferation and α-Smooth muscle actin synthesis through the cAMP/Epac/PI3K/Akt-signaling pathway. Front Pharmacol 8:428PubMedPubMedCentralCrossRefGoogle Scholar
  142. Pierce KD, Furlong TJ, Selbie LA et al (1992) Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 187:86–93PubMedCrossRefGoogle Scholar
  143. Pleli T, Mondorf A, Ferreiros N et al (2018) Activation of adenylyl cyclase causes stimulation of adenosine receptors. Cell Physiol Biochem 45:2516–2528PubMedCrossRefGoogle Scholar
  144. Raghavendra NM, Pingili D, Kadasi S et al (2018) Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 143:1277–1300PubMedCrossRefGoogle Scholar
  145. Rüsing D, Müller CE, Verspohl EJ (2006) The impact of adenosine and A2B receptors on glucose homoeostasis. J Pharm Pharmacol 58:1639–1645PubMedCrossRefPubMedCentralGoogle Scholar
  146. Ryzhov S, Biktasova A, Goldstein AE et al (2014) Role of JunB in adenosine A2B receptor-mediated vascular endothelial growth factor production. Mol Pharmacol 85:62–73PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sassi Y, Ahles A, Truong DJ et al (2014) Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J Clin Invest 124:5385–5397PubMedPubMedCentralCrossRefGoogle Scholar
  148. Schiedel AC, Hinz S, Thimm D et al (2011) The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: role in ligand binding and receptor function. Biochem Pharmacol 82:389–399PubMedCrossRefPubMedCentralGoogle Scholar
  149. Schiedel AC, Lacher SK, Linnemann C et al (2013) Antiproliferative effects of selective adenosine receptor agonists and antagonists on human lymphocytes: evidence for receptor-independent mechanisms. Purinergic Signal 9:351–365PubMedPubMedCentralCrossRefGoogle Scholar
  150. Seibt BF, Schiedel AC, Thimm D et al (2013) The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochem Pharmacol 85:1317–1329PubMedCrossRefGoogle Scholar
  151. Sepulveda C, Palomo I, Fuentes E (2016) Role of adenosine A2b receptor overexpression in tumor progression. Life Sci 166:92–99PubMedCrossRefGoogle Scholar
  152. Sherbiny FF, Schiedel AC, Maass A et al (2009) Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor. J Comput Aided Mol Des 23:807–828PubMedCrossRefGoogle Scholar
  153. Sorrentino C, Miele L, Porta A et al (2015) Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 6:27478–27489PubMedPubMedCentralCrossRefGoogle Scholar
  154. Stefanachi A, Brea JM, Cadavid MI et al (2008) 1-, 3- and 8-substituted-9-deazaxanthines as potent and selective antagonists at the human A2B adenosine receptor. Bioorg Med Chem 16:2852–2869PubMedCrossRefGoogle Scholar
  155. Stehle JH, Rivkees SA, Lee JJ et al (1992) Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol Endocrinol 6:384–393PubMedGoogle Scholar
  156. Stewart M, Steinig AG, Ma C et al (2004) [3H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A2B receptors. Biochem Pharmacol 68:305–312PubMedCrossRefGoogle Scholar
  157. Sun Y, Huang P (2016) Adenosine A2B receptor: from cell biology to human diseases. Front Chem 4:37–43PubMedPubMedCentralCrossRefGoogle Scholar
  158. Sun Y, Hu W, Yu X et al (2016) Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression. Biochem J 473:2179–2186PubMedCrossRefGoogle Scholar
  159. Taliani S, Pugliesi I, Barresi E et al (2012) 3-Aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one: a novel template for the design of highly selective A2B adenosine receptor antagonists. J Med Chem 55:1490–1499PubMedCrossRefGoogle Scholar
  160. Taliani S, Trincavelli ML, Cosimelli B et al (2013) Modulation of A2B adenosine receptor by 1-benzyl-3-ketoindole derivatives. Eur J Med Chem 69:331–337PubMedCrossRefGoogle Scholar
  161. Thimm D, Schiedel AC, Sherbiny FF et al (2013) Ligand-specific binding and activation of the human adenosine A2B receptor. Biochemistry 52:726–740PubMedCrossRefGoogle Scholar
  162. Toldo S, Zhong H, Mezzaroma E et al (2012) GS-6201, a selective blocker of the A2B adenosine receptor, attenuates cardiac remodeling after acute myocardial infarction in the mouse. J Pharmacol Exp Ther 343:587–595PubMedCrossRefPubMedCentralGoogle Scholar
  163. Trincavelli ML, Giacomelli C, Daniele S et al (2014) Allosteric modulators of human A2B adenosine receptor. Biochim Biophys Acta 1840:1194–1203PubMedCrossRefGoogle Scholar
  164. Vecchio EA, Tan CY, Gregory KJ et al (2016a) Ligand-independent adenosine A2B receptor constitutive activity as a promoter of prostate cancer cell proliferation. J Pharmacol Exp Ther 357:36–44PubMedCrossRefPubMedCentralGoogle Scholar
  165. Vecchio EA, Chuo CH, Baltos JA et al (2016b) The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochem Pharmacol 117:46–56PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wei Q, Costanzi S, Balasubramanian R et al (2013a) A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal 9:271–280PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wei W, Du C, Lv J et al (2013b) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 190:138–146PubMedCrossRefPubMedCentralGoogle Scholar
  168. Welihinda AA, Kaur M, Raveendran KS et al (2018) Enhancement of inosine-mediated A2AR signaling through positive allosteric modulatiion. Cell Signal 42:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  169. Weller J, Pose M, Protzel C et al (2015) Age-related decrease of adenosine-mediated relaxation in rat detrusor is a result of A2B receptor downregulation. Int J Urol 22:322–329PubMedCrossRefPubMedCentralGoogle Scholar
  170. Wen J, Wang B, Du C et al (2015) A2B adenosine receptor agonist improves erectile function in diabetic rats. Tohoku J Exp Med 237:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  171. Xu F, Wu H, Katritch V et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yan L, Müller CE (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: toward the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 47:1031–1043PubMedCrossRefPubMedCentralGoogle Scholar
  173. Yan L, Bertarelli DC, Hayallah AM et al (2006) A new synthesis of sulfonamides by aminolysis of p-nitrophenylsulfonates yielding potent and selective adenosine A2B receptor antagonists. J Med Chem 49:4384–4391PubMedCrossRefPubMedCentralGoogle Scholar
  174. Yang Y, Qiu Y, Wang W et al (2014) Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions. Int J Clin Exp Pathol 7:2006–2018PubMedPubMedCentralGoogle Scholar
  175. Zablocki J, Kalla R, Perry T et al (2005) The discovery of a selective, high affinity A2B adenosine receptor antagonist for the potential treatment of asthma. Bioorg Med Chem Lett 5:609–612CrossRefGoogle Scholar
  176. Zhang H, Zhong H, Everett TH 4th et al (2014) Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm 11:101–109PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhou QY, Li C, Olah ME et al (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89:7432–7436PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zhou Y, Chu X, Deng F et al (2017) The adenosine A2b receptor promotes tumor progression of bladder urothelial carcinoma by enhancing MAPK signaling pathway. Oncotarget 8:48755–48768PubMedPubMedCentralGoogle Scholar
  179. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christa E. Müller
    • 1
  • Younis Baqi
    • 2
  • Sonja Hinz
    • 1
  • Vigneshwaran Namasivayam
    • 1
  1. 1.PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of BonnBonnGermany
  2. 2.Department of Chemistry, Faculty of ScienceSultan Qaboos UniversityMuscatOman

Personalised recommendations