Advertisement

Adenosine Receptors in Gestational Diabetes Mellitus and Maternal Obesity in Pregnancy

  • Fabián Pardo
  • Luis Sobrevia
Chapter
Part of the The Receptors book series (REC, volume 34)

Abstract

Regulation of blood flow depends on the systemic and local release of vasoactive molecules including the endogenous nucleoside adenosine. Vasodilation caused by adenosine results from the activation of adenosine receptors (ARs) at the vascular endothelium and smooth muscle. Adenosine receptors are four subtypes, i.e. A1AR, A2AAR, A2BAR and A3AR, of which A2AAR and A2BAR activation in the endothelium lead to increased generation of nitric oxide and relaxation of the underlying smooth muscle cell layer. Adenosine also causes vasoconstriction via a mechanism involving A1AR activation by increasing the release of vasoconstrictors. Adenosine increases the sensitivity of vascular tissues from diseases coursing with insulin resistance, including gestational diabetes mellitus (GDM) and obesity. ARs also play a role in obesity since they modulate D-glucose homeostasis, inflammation and adipogenesis. Agonists and/or antagonists of high selectivity for ARs may result in reversing the obesity state since normalises lipolysis and insulin sensitivity. A considerable fraction of pregnant women with GDM show with pregestational obesity and/or supraphysiological gestational weight gain. These conditions associated with reduced vascular responsiveness to adenosine and insulin. However, it is unclear whether GDM plus obesity in pregnancy could worsen these alterations in the foetoplacental vascular function. This chapter summarises available findings that address the potential involvement of ARs to modulate human foetoplacental vasculature in GDM and obesity in pregnancy.

Keywords

Adenosine Diabetes Obesity Vascular Human endothelium Smooth muscle 

Notes

Acknowledgements

Authors thank Mrs. Amparo Pacheco from CMPL, PUC, for technical and secretarial assistance. This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) (grant numbers 1150377 and 11150083), Chile.

References

  1. American Diabetes Association (ADA) (2017) Classification and diagnosis of diabetes. Diabetes Care 40:S11–S24CrossRefGoogle Scholar
  2. Antonioli L, Blandizzi C, Csóka B et al (2015) Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations. Nat Rev Endocrinol 11:228–241CrossRefPubMedGoogle Scholar
  3. Badillo P, Salgado P, Bravo P et al (2017) High plasma adenosine levels in overweight/obese pregnant women. Purinergic Signal 13:479–488CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown MA, North L, Hargood J (1990) Uteroplacental Doppler ultrasound in routine antenatal care. Aust N Z J Obstet Gynaecol 30:303–307CrossRefPubMedGoogle Scholar
  5. Brown J, Grzeskowiak L, Williamson K et al (2017a) Insulin for the treatment of women with gestational diabetes. Cochrane Database Syst Rev 11:CD012037PubMedGoogle Scholar
  6. Brown J, Alwan NA, West J et al (2017b) Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database Syst Rev 5:CD011970PubMedGoogle Scholar
  7. Brown J, Martis R, Hughes B et al (2017c) Oral anti-diabetic pharmacological therapies for the treatment of women with gestational diabetes. Cochrane Database Syst Rev 1:CD011967PubMedGoogle Scholar
  8. Budohoski L, Challiss RA, McManus B et al (1984) Effects of analogues of adenosine and methyl xanthines on insulin sensitivity in soleus muscle of the rat. FEBS Lett 167:1–4CrossRefPubMedGoogle Scholar
  9. Burnstock G (2016) Purinergic signalling and endothelium. Curr Vasc Pharmacol 14:130–145CrossRefPubMedGoogle Scholar
  10. Burnstock G (2017) The involvement of purinergic signalling in obesity. Purinergic Signal 14:97–108Google Scholar
  11. Buscariollo DL, Fang X, Greenwood V et al (2014) Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice. PLoS One 9:e87547CrossRefPubMedPubMedCentralGoogle Scholar
  12. Challiss RA, Richards SJ, Budohoski L (1992) Characterization of the adenosine receptor modulating insulin action in rat skeletal muscle. Eur J Pharmacol 226:121–128CrossRefPubMedGoogle Scholar
  13. Chiarello DI, Salsoso R, Toledo F et al (2018) Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med 60:69–80Google Scholar
  14. Ciaraldi TP (1988) The role of adenosine in insulin action coupling in rat adipocytes. Mol Cell Endocrinol 60:31–41CrossRefPubMedGoogle Scholar
  15. Crist G, Xu B, LaNoue L et al (1998) Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J 12:1301–1308CrossRefPubMedGoogle Scholar
  16. Crist G, Xu B, Berkich D et al (2001) Effects of adenosine receptor antagonism on protein tyrosine phosphatase in rat skeletal muscle. Int J Biochem Cell Biol 33:817–830CrossRefPubMedGoogle Scholar
  17. Dhalla A, Wong M, Voshol P et al (2007) A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab 292:E1358–E1363CrossRefPubMedGoogle Scholar
  18. Escudero C, Casanello P, Sobrevia L (2008) Human equilibrative nucleoside transporters 1 and 2 may be differentially modulated by A2B adenosine receptors in placenta microvascular endothelial cells from pre-eclampsia. Placenta 29:816–825CrossRefPubMedGoogle Scholar
  19. Farías M, Puebla C, Westermeier F et al (2010) Nitric oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription factor complex hCHOP-C/EBPalpha in human umbilical vein endothelial cells from gestational diabetes. Cardiovasc Res 86:45–54CrossRefPubMedGoogle Scholar
  20. Figler R, Wang G, Srinivasan S et al (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806CrossRefPubMedGoogle Scholar
  22. Fredholm BB (2010) Adenosine receptors as drug targets. Exp Cell Res 316:1284–1288CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fredholm BB (2014) Adenosine-a physiological or pathophysiological agent? J Mol Med (Berl) 92:201–206CrossRefGoogle Scholar
  24. Fredholm BB, Ijzerman AP, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63:1–34CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fredholm BB, Yang J, Wang Y (2017) Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol Aspects Med 55:20–25Google Scholar
  26. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH et al (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27Google Scholar
  27. Gharibi B, Abraham A, Ham J et al (2012) Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes 36:397–406CrossRefGoogle Scholar
  28. Gnad T, Scheibler S, von Kügelgen I (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399CrossRefPubMedGoogle Scholar
  29. Guzmán-Gutiérrez E, Westermeier F, Salomón C et al (2012) Insulin-increased L-arginine transport requires A(2A) adenosine receptors activation in human umbilical vein endothelium. PLoS One 7:e41705CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guzmán-Gutiérrez E, Armella A, Toledo F et al (2016) Insulin requires A1 adenosine receptors expression to reverse gestational diabetes-increased L-arginine transport in human umbilical vein endothelium. Purinergic Signal 12:175–190CrossRefPubMedGoogle Scholar
  31. Headrick JP, Ashton KJ, Rose'meyer RB et al (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140:92–111CrossRefPubMedGoogle Scholar
  32. Henriksson P, Eriksson B, Forsum E et al (2014) Gestational weight gain according to Institute of Medicine recommendations in relation to infant size and body composition. Pediatr Obes 10:388–394CrossRefPubMedGoogle Scholar
  33. Holness MJ, Zariwala G, Walker CG et al (2012) Adipocyte pyruvate dehydrogenase kinase 4 expression is associated with augmented PPARγ upregulation in early-life programming of later obesity. FEBS Open Bio 2:32–36CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaartinen J, Hreniuk S, Martin L et al (1991) Attenuated adenosine-sensitivity and decreased adenosine-receptor number in adipocyte plasma membranes in human obesity. Biochem J 279:17–22CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kurlak LO, Williams PJ, Bulmer JN et al (2015) Placental expression of adenosine A(2A) receptor and hypoxia inducible factor-1 alpha in early pregnancy, term and pre-eclamptic pregnancies: interactions with placental renin-angiotensin system. Placenta 36:611–613CrossRefPubMedGoogle Scholar
  36. Lewis RM, Desoye G (2017) Placental lipid and fatty acid transfer in maternal overnutrition. Ann Nutr Metab 70:228–231CrossRefPubMedGoogle Scholar
  37. Lönnroth P, Appell KC, Wesslau C et al (1988) Insulin-induced subcellular redistribution of insulin-like growth factor II receptors in the rat adipose cell. Counterregulatory effects of isoproterenol, adenosine, and cAMP analogues. J Biol Chem 263:15386–15391PubMedGoogle Scholar
  38. Maguire MH, Szabó I, Valkó IE et al (1998) Simultaneous measurement of adenosine and hypoxanthine in human umbilical cord plasma using reversed-phase highperformance liquid chromatography with photodiode-array detection and on-line validation of peak purity. J Chromatogr B Biomed Sci Appl 707:33–41CrossRefPubMedGoogle Scholar
  39. Pandolfi A, Di Pietro N (2010) High glucose, nitric oxide, and adenosine: a vicious circle in chronic hyperglycaemia? Cardiovasc Res 86:9–11CrossRefPubMedGoogle Scholar
  40. Pardo F, Silva L, Sáez T et al (2015) Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes 39:1264–1273CrossRefGoogle Scholar
  41. Pardo F, Villalobos-Labra R, Chiarello DI et al (2017) Molecular implications of adenosine in obesity. Mol Asp Med 55:90–101CrossRefGoogle Scholar
  42. Pardo F, Villalobos-Labra R, Sobrevia B et al (2018) Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med In Press. https://doi.org/10.1016/j.mam.2017.11.010
  43. Peleli M, Fredholm B, Sobrevia L et al (2017) Pharmacological targeting of adenosine receptor signalling. Mol Asp Med 55:4–8CrossRefGoogle Scholar
  44. Pietryga M, Brazert J, Wender-Ozegowska E et al (2006) Placental Doppler velocimetry in gestational diabetes mellitus. J Perinat Med 34:108–110CrossRefPubMedGoogle Scholar
  45. Sáez T, De Vos P, Sobrevia L et al (2018a) Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus? Placenta 61:48–54CrossRefPubMedGoogle Scholar
  46. Sáez T, Salsoso R, Leiva A et al (2018b) Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta 1864:499–508CrossRefPubMedGoogle Scholar
  47. Salomón C, Westermeier F, Puebla C et al (2012) Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin. PLoS One 7:e40578CrossRefPubMedPubMedCentralGoogle Scholar
  48. Salsoso R, Guzmán-Gutiérrez E, Sáez T et al (2015) Insulin restores L-arginine transport requiring adenosine receptors activation in umbilical vein endothelium from late-onset preeclampsia. Placenta 36:287–296CrossRefPubMedGoogle Scholar
  49. Salsoso R, Farías M, Gutiérrez J et al (2017) Adenosine and preeclampsia. Mol Asp Med 55:126–139CrossRefGoogle Scholar
  50. San Martín R, Sobrevia L (2006) Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta 27:1–10CrossRefPubMedGoogle Scholar
  51. Schoelch C, Kuhlmann J, Gossel M et al (2004) Characterization of adenosine-A1 receptor-mediated antilipolysis in rats by tissue microdialysis, 1H-spectroscopy, and glucose clamp studies. Diabetes 53:1920–1926CrossRefPubMedGoogle Scholar
  52. Silva L, Subiabre M, Araos J et al (2017) Insulin/adenosine axis linked signaling. Mol Asp Med 55:45–61CrossRefGoogle Scholar
  53. Sobrevia L, Abarzúa F, Nien JK et al (2011) Review: Differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes. Placenta 32:S159–S164Google Scholar
  54. Sobrevia L, Salsoso R, Sáez T et al (2015) Insulin therapy and fetoplacental vascular function in gestational diabetes mellitus. Exp Physiol 100:231–238CrossRefPubMedGoogle Scholar
  55. Sobrevia L, Salsoso R, Fuenzalida B et al (2016) Insulin is a key modulator of fetoplacental endothelium metabolic disturbances in gestational diabetes mellitus. Front Physiol 7:119CrossRefPubMedPubMedCentralGoogle Scholar
  56. Subiabre M, Silva L, Villalobos-Labra R et al (2017) Maternal insulin therapy does not restore foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol basis Dis 1863:2987–2998CrossRefGoogle Scholar
  57. Subiabre M, Silva L, Toledo F et al (2018) Insulin therapy and its consequences for the mother, foetus, and newborn in gestational diabetes mellitus. Biochim Biophys Acta doi: https://doi.org/10.1016/j.bbadis.2018.06.005Google Scholar
  58. Tieu J, Shepherd E, Middleton P et al (2017) Dietary advice interventions in pregnancy for preventing gestational diabetes mellitus. Cochrane Database Syst Rev 1:CD006674PubMedGoogle Scholar
  59. Trojner Bregar A, Tul N, Fabjan Vodušek V et al (2017) A dose-response relation exists between different classes of pre-gravid obesity and selected perinatal outcomes. Arch Gynecol Obstet 296:465–468Google Scholar
  60. United Nations General Assembly (2015) Transforming our world: The 2030 agenda for sustainable development http://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact
  61. Vásquez G, Sanhueza F, Vásquez R et al (2004) Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol 560:111–122CrossRefPubMedPubMedCentralGoogle Scholar
  62. Villalobos-Labra R, Silva L, Subiabre M et al (2017) Akt/mTOR role in human foetoplacental vascular insulin resistance in diseases of pregnancy. J Diabetes Res 2017:5947859CrossRefPubMedPubMedCentralGoogle Scholar
  63. von Versen-Höynck F, Rajakumar A, Bainbridge SA et al (2009) Human placental adenosine receptor expression is elevated in preeclampsia and hypoxia increases expression of the A2A receptor. Placenta 30:434–442CrossRefGoogle Scholar
  64. Westermeier F, Salomón C, González M et al (2011) Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium. Diabetes 60:1677–1687CrossRefPubMedPubMedCentralGoogle Scholar
  65. Westermeier F, Salomón C, Farías M et al (2015) Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium. FASEB J 29(1):37–49Google Scholar
  66. World Health Organization (2017) Obesity and overweight. Fact sheet http://www.who.int/mediacentre/factsheets/fs311/en/Google Scholar
  67. Wu L, Meng J, Shen Q et al (2017) Caffeine inhibits hypothalamic A(1)R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat Commun 8:15904CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wyatt AW, Steinert JR, Wheeler-Jones CP et al (2002) Early activation of the p42/44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells: a novel calcium-insensitive mechanism. FASEB J 16:1584–1594CrossRefPubMedGoogle Scholar
  69. Xu B, Berkich D, Crist G et al (1998) A1 adenosine receptor antagonism improves glucose tolerance in Zucker rats. Am J Phys 274:E271–E279Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
  2. 2.Metabolic Diseases Research Laboratory, Center of Research, Development and Innovation in Health – Aconcagua Valley, San Felipe Campus, School of Medicine, Faculty of MedicineUniversidad de ValparaísoSan FelipeChile
  3. 3.Department of Physiology, Faculty of PharmacyUniversidad de SevillaSevilleSpain
  4. 4.University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical SciencesUniversity of QueenslandHerstonAustralia

Personalised recommendations