Skip to main content

Renal Adenosine in Health and Disease

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

  • 1023 Accesses

Abstract

Adenosine-dependent regulation of renal function in healthy and diseased kidney is mediated by activation of the four types of P1 purinergic adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). The dominant effect of an elevation of plasma adenosine in the renal vasculature is an A2AAR- and A2BAR-mediated vasodilatation that increases global as well as medullary renal blood flow and is in part endothelium-dependent. In addition, a high expression of A1AR in afferent glomerular arterioles can cause a localized vasoconstriction, especially when accessed from the vessel outside, a reaction most evident in the tubuloglomerular feedback response. Effects of adenosine on tubular transport are most pronounced in the proximal tubule where the nucleoside stimulates NaCl reabsorption in the subnormal concentration range while inhibiting transport at elevated levels. Because adenosine production increases in hypoxia, the issue of a role of the nucleoside in the renal injury following ischemia reperfusion has been studied extensively. Experimental evidence supports the notion that adenosine protects against ischemia-induced acute kidney injury by directly acting on renal endothelial and tubular A1AR. Moreover, adenosine protects against renal ischemic reperfusion injury by the anti-inflammatory effect of enhancing the activity of regulatory T cell and by attenuating the inflammatory injury produced by neutrophils via A2AR activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe W, Hussain T, Olanrewaju H et al (1995) Role of nitric oxide in adenosine receptor-mediated relaxation of porcine coronary artery. Am J Phys 269:H1672–H1678

    CAS  Google Scholar 

  • Agmon Y, Dinour D, Brezis M (1993) Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. Am J Phys 265:F802–F806

    CAS  Google Scholar 

  • Aki Y, Tomohiro A, Nishiyama A et al (1997) Effects of KW-3902, a selective and potent adenosine A1 receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology 55:193–201

    Article  PubMed  CAS  Google Scholar 

  • Albinus M, Finkbeiner E, Sosath B et al (1998) Isolated superfused juxtaglomerular cells from rat kidney: a model for study of renin secretion. Am J Phys 275:F991–F997

    CAS  Google Scholar 

  • Al-Mashhadi RH, Skott O, Vanhoutte PM et al (2009) Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse. Kidney Int 75:793–799

    Article  PubMed  CAS  Google Scholar 

  • Awad AS, Huang L, Ye H et al (2006) Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol 290:F828–F837

    Article  PubMed  CAS  Google Scholar 

  • Babich V, Vadnagara K, Di Sole F (2015) Dual effect of adenosine a1 receptor activation on renal O2 consumption. J Cell Physiol 230:3093–3104

    Article  PubMed  CAS  Google Scholar 

  • Bailey MA (2004) Inhibition of bicarbonate reabsorption in the rat proximal tubule by activation of luminal P2Y1 receptors. Am J Physiol Renal Physiol 287:F789–F796

    Article  PubMed  CAS  Google Scholar 

  • Baranowski RL, Westenfelder C (1994) Estimation of renal interstitial adenosine and purine metabolites by microdialysis. Am J Phys 267:F174–F182

    CAS  Google Scholar 

  • Barrett RJ, Droppleman DA (1993) Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Am J Phys 265:F651–F659

    CAS  Google Scholar 

  • Bauerle JD, Grenz A, Kim JH et al (2011) Adenosine generation and signaling during acute kidney injury. J Am Soc Nephrol 22:14–20

    Article  PubMed  CAS  Google Scholar 

  • Beach RE, Good DW (1992) Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Phys 263:F482–F487

    CAS  Google Scholar 

  • Beach RE, Watts BA 3rd, Good DW et al (1991) Effects of graded oxygen tension on adenosine release by renal medullary and thick ascending limb suspensions. Kidney Int 39:836–842

    Article  PubMed  CAS  Google Scholar 

  • Bell PD (1985) Cyclic AMP-calcium interaction in the transmission of tubuloglomerular feedback signals. Kidney Int 28:728–732

    Article  PubMed  CAS  Google Scholar 

  • Beutler JJ, Koomans HA, Bijlsma JA et al (1990) Renal actions of theophylline and atrial natriuretic peptide in humans: a comparison by means of clearance studies. J Pharmacol Exp Ther 255:1314–1319

    PubMed  CAS  Google Scholar 

  • Boknam L, Ericson AC, Aberg B et al (1981) Flow resistance of the interlobular artery in the rat kidney. Acta Physiol Scand 111:159–163

    Article  PubMed  CAS  Google Scholar 

  • Brater DC, Kaojarern S, Chennavasin P (1983) Pharmacodynamics of the diuretic effects of aminophylline and acetazolamide alone and combined with furosemide in normal subjects. J Pharmacol Exp Ther 227:92–97

    PubMed  CAS  Google Scholar 

  • Brown NJ, Ryder D, Nadeau J (1993) Caffeine attenuates the renal vascular response to angiotensin II infusion. Hypertension 22:847–52

    Google Scholar 

  • Brown R, Ollerstam A, Johansson B et al (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362–R1367

    PubMed  CAS  Google Scholar 

  • Cai H, Batuman V, Puschett DB et al (1994) Effect of KW-3902, a novel adenosine A1 receptor antagonist, on sodium-dependent phosphate and glucose transport by the rat renal proximal tubular cell. Life Sci 55:839–845

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Puschett DB, Guan S et al (1995) Phosphate transport inhibition by KW-3902, an adenosine A1 receptor antagonist, is mediated by cyclic adenosine monophosphate. Am J Kidney Dis 26:825–830

    Article  PubMed  CAS  Google Scholar 

  • Cardenas A, Toledo C, Oyarzun C et al (2013) Adenosine A(2B) receptor-mediated VEGF induction promotes diabetic glomerulopathy. Lab Investig 93:135–144

    Article  PubMed  CAS  Google Scholar 

  • Carlstrom M, Wilcox CS, Welch WJ (2010) Adenosine A(2) receptors modulate tubuloglomerular feedback. Am J Physiol Renal Physiol 299:F412–F417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlstrom M, Wilcox CS, Welch WJ (2011) Adenosine A2A receptor activation attenuates Tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 300:F457–F464

    Article  PubMed  CAS  Google Scholar 

  • Carmines PK, Inscho EW (1994) Renal arteriolar angiotensin responses during varied adenosine receptor activation. Hypertension 23:I114–I119

    Article  PubMed  CAS  Google Scholar 

  • Castrop H, Huang Y, Hashimoto S et al (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest 114:634–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YF, Li PL, Zou AP (2002) Effect of hyperhomocysteinemia on plasma or tissue adenosine levels and renal function. Circulation 106:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370

    Article  PubMed  Google Scholar 

  • Churchill PC, Churchill MC (1985) A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther 232:589–594

    PubMed  CAS  Google Scholar 

  • Cook CB, Churchill PC (1984) Effects of renal denervation on the renal responses of anesthetized rats to cyclohexyladenosine. Can J Physiol Pharmacol 62:934–938

    Article  PubMed  CAS  Google Scholar 

  • Coulson R, Johnson RA, Olsson RA et al (1991) Adenosine stimulates phosphate and glucose transport in opossum kidney epithelial cells. Am J Phys 260:F921–F928

    CAS  Google Scholar 

  • Coulson R, Proch PS, Olsson RA et al (1996) Upregulated renal adenosine A1 receptors augment PKC and glucose transport but inhibit proliferation. Am J Phys 270:F263–F274

    CAS  Google Scholar 

  • Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80

    Article  PubMed  CAS  Google Scholar 

  • Davis JO, Shock NW (1949) The effect of theophylline ethylene diamine on renal function in control subjects and in patients with congestive heart failure. J Clin Invest 28:1459–1468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day YJ, Huang L, McDuffie MJ et al (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112:883–891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day YJ, Huang L, Ye H et al (2004) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of macrophages. Am J Physiol Renal Physiol 288:F722

    Article  PubMed  CAS  Google Scholar 

  • Day YJ, Huang L, Ye H et al (2006) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol 176:3108–3114

    Article  PubMed  CAS  Google Scholar 

  • Di Sole F (2008) Adenosine and renal tubular function. Curr Opin Nephrol Hypertens 17:399–407

    Article  PubMed  CAS  Google Scholar 

  • Di Sole F, Cerull R, Petzke S et al (2003) Bimodal acute effects of A1 adenosine receptor activation on Na+/H+ exchanger 3 in opossum kidney cells. J Am Soc Nephrol 14:1720–1730

    Article  PubMed  CAS  Google Scholar 

  • Dietrich MS, Steinhausen M (1993) Differential reactivity of cortical and juxtamedullary glomeruli to adenosine-1 and adenosine-2 receptor stimulation and angiotensin-converting enzyme inhibition. Microvasc Res 45:122–133

    Article  PubMed  CAS  Google Scholar 

  • Dietrich MS, Endlich K, Parekh N et al (1991) Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc Res 41:275–288

    Article  PubMed  CAS  Google Scholar 

  • Elsherbiny NM, Al-Gayyar MM, Abd El Galil KH (2015) Nephroprotective role of dipyridamole in diabetic nephropathy: effect on inflammation and apoptosis. Life Sci 143:8–17

    Article  PubMed  CAS  Google Scholar 

  • Feng MG, Navar LG (2010) Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation. Am J Physiol Renal Physiol 299:F310–F315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fenton RA, Poulsen SB, de la Mora Chavez S et al (2015) Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am J Physiol Renal Physiol 308:F1409–F1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fozard JR, Pfannkuche HJ, Schuurman HJ (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298:293–297

    Article  PubMed  CAS  Google Scholar 

  • Franco M, Bell PD, Navar LG (1989) Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am J Physiol Renal Physiol 257:F231–F236

    Article  CAS  Google Scholar 

  • Franco M, Bobadilla NA, Suarez J et al (1996) Participation of adenosine in the renal hemodynamic abnormalities of hypothyroidism. Am J Phys 270:F254–F262

    CAS  Google Scholar 

  • Fransen R, Koomans HA (1995) Adenosine and renal sodium handling: direct natriuresis and renal nerve-mediated antinatriuresis. J Am Soc Nephrol 6:1491–1497

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G et al (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA et al (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors - an update. Pharmacol Rev 63:1–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulgraff G (1969) Xanthinderivate als Diuretika. In: Herken H (ed) Handbuch der Experimentellen Pharmakologie, vol XXIV. Springer Verlag, Berlin, pp 596–640

    Google Scholar 

  • Gabriels G, Endlich K, Rahn KH et al (2000) In vivo effects of diadenosine polyphosphates on rat renal microcirculation. Kidney Int 57:2476–2484

    Article  PubMed  CAS  Google Scholar 

  • Grbovic L, Radenkovic M, Prostran M et al (2000) Characterization of adenosine action in isolated rat renal artery. Possible role of adenosine A(2A) receptors. Gen Pharmacol 35:29–36

    Article  PubMed  CAS  Google Scholar 

  • Grenz A, Osswald H, Eckle T et al (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grunberger C, Obermayer B, Klar J et al (2006) The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6. Circ Res 99:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Guan Z, Osmond DA, Inscho EW (2007) Purinoceptors in the kidney. Exp Biol Med (Maywood) 232:715–726

    CAS  Google Scholar 

  • Hall JE, Granger JP, Hester RL (1985) Interactions between adenosine and angiotensin II in controlling glomerular filtration. Amer J Physiol Renal Physiol 248:F340–F346

    Article  CAS  Google Scholar 

  • Hansen PB, Castrop H, Briggs J et al (2003) Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 14:2457–2465

    Article  PubMed  CAS  Google Scholar 

  • Hansen PB, Hashimoto S, Oppermann M et al (2005) Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 315:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Hansen PB, Friis UG, Uhrenholt TR et al (2007) Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine. Acta Physiol (Oxf) 191:89–97

    Article  CAS  Google Scholar 

  • Hashimoto K, Kumakura S (1965) The pharmacological features of the coronary, renal, mesenteric, and femoral arteries. Jap. J Physiol 15:540–551

    CAS  Google Scholar 

  • Hasko G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Disc 7:759–770

    Article  CAS  Google Scholar 

  • Heyeraas KJ, Aukland K (1987) Interlobular arterial resistance: influence of renal arterial pressure and angiotensin II. Kidney Int 31:1291–1298

    Article  PubMed  CAS  Google Scholar 

  • Heyeraas Tonder KJ, Aukland K (1979/80) Interlobular arterial pressure in the rat kidney. Renal Physiol 2:214–221

    Google Scholar 

  • Holz FG, Steinhausen M (1987) Renovascular effects of adenosine receptor agonists. Renal Physiol 10:272–282

    PubMed  CAS  Google Scholar 

  • Hoste EA, Kellum NM (2007) Incidence, classification, and outcomes of acute kidney injury. Contrib Nephrol 156:32038

    Google Scholar 

  • Hoste EA, Kellum JA, Katz NM et al (2010) Epidemiology of acute kidney injury. Contrib Nephrol 165:1–8

    Article  PubMed  Google Scholar 

  • Huang DY, Vallon V, Zimmermann H et al (2006) Ecto-5′-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol 291:F282–F288

    Article  PubMed  CAS  Google Scholar 

  • Ibarrola AM, Inscho EW, Vari RC et al (1991) Influence of adenosine receptor blockade on renal function and renal autoregulation. J Am Soc Nephrol 2:991–998

    Google Scholar 

  • Inscho EW, Ohishi K, Navar LG (1992) Effects of ATP on pre- and postglomerular juxtamedullary microvasculature. Am J Phys 263:F886–F893

    CAS  Google Scholar 

  • Itoh S, Carretero OA (1985) Role of the macula densa in renin release. Hypertension 7:I49–I54

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Carretero OA, Murray RD (1985) Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J Clin Invest 76:1412–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson EK (1991) Adenosine: a physiological brake on renin release. Annu Rev Pharmacol Toxicol 31:1–35

    Article  PubMed  CAS  Google Scholar 

  • Jackson EK, Zhu C, Tofovic SP (2002) Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 283:F41–F51

    Article  PubMed  CAS  Google Scholar 

  • Jackson EK, Zacharia LC, Zhang M et al (2006) cAMP-adenosine pathway in the proximal tubule. J Pharmacol Exp Ther 317:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmocol Sci 19:184–191

    Article  CAS  Google Scholar 

  • Jacobson KA, Muller CE (2016) Medicinal chemistry of adenosine, P2Y, and P2X receptors. Neuropharmacology 104:31–49

    Article  PubMed  CAS  Google Scholar 

  • Jang HR, Rabb H (2015) Immune cells in experimental acute kidney injury. Nat Rev Nephrol 11:88–101

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Lee HT (2008) Perioperative renal protection. Best Pract. Res Clin Anaesthesiol 22:193–208

    Google Scholar 

  • Joo JD, Kim M, Horst P et al (2007) Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am J Physiol Renal Physiol 293:F1847–F1857

    Article  PubMed  CAS  Google Scholar 

  • Joyner WL, Mohama RE, Myers TO et al (1988) The selective response to adenosine of renal microvessels from hamster explants. Microvasc Res 35:122–131

    Article  PubMed  Google Scholar 

  • Kim SM, Mizel D, Huang YG et al (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290:F1016–F1023

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Chen SW, Park SW et al (2009) Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int 75:809–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JY, Kim M, Ham A et al (2013) IL-11 is required for A1 adenosine receptor-mediated protection against ischemic AKI. J Am Soc Nephrol 24:1558–1570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinsey GR, Okusa MD (2014) Expanding role of T cells in acute kidney injury. Curr Opin Nephrol Hypertens 23:9–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinsey GR, Sharma R, Okusa MD (2013) Regulatory T cells in AKI. J Am Soc Nephrol 24:1720–1726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knight RJ, Bowmer CJ, Yates MS (1993) The diuretic action of 8-cyclopentyl-1,3-dipropylxanthine, a selective A1 adenosine receptor antagonist. Br J Pharmacol 109:271–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohno Y, Sei Y, Koshiba M et al (1996) Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A(3) receptor agonists. Biochem Biophys Res Comm 219:904–910

    Article  PubMed  CAS  Google Scholar 

  • Kon V, Harris RC, Ichikawa I (1990) A regulatory role for large vessels in organ circulation. Endothelial cells of the main renal artery modulate intrarenal hemodynamics in the rat. J Clin Invest 85:1728–1733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kost CK Jr, Jackson EK (1991) Effect of angiotensin II on plasma adenosine concentrations in the rat. J Cardiovasc Pharmacol 17:838–845

    Article  PubMed  CAS  Google Scholar 

  • Kost CK Jr, Herzer WA, Rominski BR et al (2000) Diuretic response to adenosine A(1) receptor blockade in normotensive and spontaneously hypertensive rats: role of pertussis toxin-sensitive G-proteins. J Pharmacol Exp Ther 292:752–760

    PubMed  CAS  Google Scholar 

  • Kreisberg MS, Silldorff EP, Pallone TL (1997) Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Amer. J. Physiol. Heart Circ. Physiol 272:H1231–H1238

    CAS  Google Scholar 

  • Kuan CJ, Wells JN, Jackson EK (1989) Endogenous adenosine restrains renin release during sodium restriction. J Pharmacol Exp Ther 249:110–116

    PubMed  CAS  Google Scholar 

  • Kuan CJ, Wells JN, Jackson EK (1990) Endogenous adenosine restrains renin release in conscious rats. Circ Res 66:637–646

    Article  PubMed  CAS  Google Scholar 

  • Kuczeriszka M, Dobrowolski L, Walkowska A et al (2013) Adenosine effects on renal function in the rat: role of sodium intake and cytochrome P450. Nephron Physiol 123:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kurtz A, Della Bruna R, Pfeilschifter J et al (1988) Role of cGMP as second messenger of adenosine in the inhibition of renin release. Kidney Int 33:798–803

    Article  PubMed  CAS  Google Scholar 

  • Lai EY, Patzak A, Steege A et al (2006) Contribution of adenosine receptors in the control of arteriolar tone and adenosine-angiotensin II interaction. Kidney Int 70:690–698

    Article  PubMed  CAS  Google Scholar 

  • Lange-Sperandio B, Forbes MS, Thornhill B et al (2005) A2A adenosine receptor agonist and PDE4 inhibition delays inflammation but fails to reduce injury in experimental obstructive nephropathy. Nephron Exp Nephrol 100:e113–e123

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Ha JH, Kim S et al (2002) Caffeine decreases the expression of Na+/K+-ATPase and the type 3 Na+/H+ exchanger in rat kidney. Clin Exp Pharmacol Physiol 29:559–63

    Google Scholar 

  • Lee HT, Ota-Setlik A, Xu H et al (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol 284:F267–F273

    Article  PubMed  CAS  Google Scholar 

  • Lee HT, Gallos G, Nasr SH et al (2004a) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 15:102–111

    Article  PubMed  CAS  Google Scholar 

  • Lee HT, Xu H, Nasr SH et al (2004b) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 286:F298–F306

    Article  PubMed  CAS  Google Scholar 

  • Lee HT, Kim M, Jan M et al (2007) Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 71:1249–1261

    Article  PubMed  CAS  Google Scholar 

  • Lee HT, Park M, Kim M et al (2012) Interleukin-11 protects against renal ischemia and reperfusion injury. Am J Physiol Renal Physiol 303:F1216–F1224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JW, Chou CL, Knepper MA (2015) Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26:2669–2677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levens N, Beil M, Schulz R (1991) Intrarenal actions of the new adenosine agonist CGS 21680A, selective for the A2 receptor. J Pharmacol Exp Ther 257:1013–1019

    PubMed  CAS  Google Scholar 

  • Li J, Fenton RA, Wheeler HB et al (1998) Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res 80:357–364

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lai EY, Huang YG et al (2012a) Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors. Am J Physiol Renal Physiol 303:F1166–F1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Huang L, Ye H et al (2012b) Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest 122:3931–3942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linden J (2006) New insights into the regulation of inflammation by adenosine. J Clin Invest 116:1835–1837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Nat Acad Sci USA 77:2551–2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu Y, Zhang R, Ge Y et al (2015) Identification and function of adenosine A3 receptor in afferent arteriole. Am J Physiol Renal Physiol 308:F1020–F1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludens JH, Willis LR, Williamson HE (1970) The effect of aminophylline on renal hemodynamics and sodium excretion. Arch Int Pharmacodyn Ther 185:274–286

    PubMed  CAS  Google Scholar 

  • Martin PL, Potts AA (1994) The endothelium of the rat renal artery plays an obligatory role in A2 adenosine receptor-mediated relaxation induced by 5'-N-ethylcarboxamidoadenosine and N6-cyclopentyladenosine. J Pharmacol Exp Ther 270:893–899

    PubMed  CAS  Google Scholar 

  • Menzies RI, Tam FW, Unwin RJ et al (2017) Purinergic signaling in kidney disease. Kidney Int 91:315–323

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto M, Yagil Y, Larson T et al (1988) Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. Am J Phys 255:F1230–F1234

    CAS  Google Scholar 

  • Mizumoto H, Karasawa A (1993) Renal tubular site of action of KW-3902, a novel adenosine A1-receptor antagonist, in anesthetized rats. Jpn J Pharmacol 61:251–253

    Article  PubMed  CAS  Google Scholar 

  • Moyer BD, McCoy DE, Lee B et al (1995) Adenosine inhibits arginine vasopressin-stimulated chloride secretion in a mouse IMCD cell line (mIMCD-K2). Am J Phys 269:F884–F891

    Article  CAS  Google Scholar 

  • Mozaffari MS, Abebe W, Warren BK (2000) Renal adenosine A3 receptors in the rat: assessment of functional role. Can J Physiol Pharmacol 78:428–432

    Article  PubMed  CAS  Google Scholar 

  • Munger KA, Jackson EK (1994) Effects of selective A1 receptor blockade on glomerular hemodynamics: involvement of renin-angiotensin system. Am J Phys 267:F783–F790

    CAS  Google Scholar 

  • Murray RD, Churchill PC (1985) Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther 232:189–193

    PubMed  CAS  Google Scholar 

  • Nees S, Herzog V, Becker BF et al (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Miyatake A, Aki Y et al (1999a) Adenosine A(1) receptor antagonist KW-3902 prevents hypoxia-induced renal vasoconstriction. J Pharmacol Exp Ther 291:988–993

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Miura K, Miyatake A et al (1999b) Renal interstitial concentration of adenosine during endotoxin shock. Eur J Pharmacol 385:209–216

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Inscho EW, Navar LG (2001a) Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol 280:F406–F414

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Kimura S, He H et al (2001b) Renal interstitial adenosine metabolism during ischemia in dogs. Am J Physiol Renal Physiol 280:F231–F238

    Article  PubMed  CAS  Google Scholar 

  • Nussberger J, Mooser V, Maridor G et al (1990) Caffeine-induced diuresis and atrial natriuretic peptides. J Cardiovasc Pharmacol 15:685–691

    Article  PubMed  CAS  Google Scholar 

  • Okumura M, Miura K, Yamashita Y et al (1992) Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. J Pharmacol Exp Ther 260:1262–1267

    PubMed  CAS  Google Scholar 

  • Okusa MD (2002) A(2A) adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal Physiol 282:F10–F18

    Article  PubMed  CAS  Google Scholar 

  • Okusa MD, Linden J, Huang L et al (2001) Enhanced protection from renal ischemia-reperfusion injury with A(2A)-adenosine receptor activation and PDE4 inhibition. Kidney Int 59:2114–2125

    Article  PubMed  CAS  Google Scholar 

  • Olanrewaju HA, Mustafa SJ (2000) Adenosine A(2A) and A(2B) receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 35:171–177

    Article  PubMed  CAS  Google Scholar 

  • Oppermann M, Friedman DJ, Faulhaber-Walter R et al (2008) Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice. Am J Physiol Renal Physiol 294:F965–F970

    Article  PubMed  CAS  Google Scholar 

  • Oppermann M, Qin Y, Lai EY et al (2009) Enhanced tubuloglomerular feedback in mice with vascular overexpression of A1 adenosine receptors. Am J Physiol Renal Physiol 297:F1256–F1264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortiz-Capisano MC, Ortiz PA, Harding P et al (2007) Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 49:162–169

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Capisano MC, Atchison DK, Harding P et al (2013) Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway. Am J Physiol Renal Physiol 305:F1209–F1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osswald H (1975) Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn-Schmiedeberg Arch Pharmacol 288:79–86

    Article  CAS  Google Scholar 

  • Osswald H, Schmitz HJ, Heidenreich O (1975) Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflugers Arch 357:323–333

    Article  PubMed  CAS  Google Scholar 

  • Osswald H, Spielman WS, Knox FG (1978) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43:465–469

    Article  PubMed  CAS  Google Scholar 

  • Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263–267

    Article  PubMed  CAS  Google Scholar 

  • Osswald H, Muhlbauer B, Vallon V (1997) Adenosine and tubuloglomerular feedback. Blood Purif 15:243–252

    Article  PubMed  CAS  Google Scholar 

  • Oyarzun C, Salinas C, Gomez D et al (2015) Increased levels of adenosine and ecto 5′-nucleotidase (CD73) activity precede renal alterations in experimental diabetic rats. Biochem Biophys Res Commun 468:354–359

    Article  PubMed  CAS  Google Scholar 

  • Passmore AP, Kondowe GB, Johnston GD (1987) Renal and cardiovascular effects of caffeine: a dose-response study. Clin Sci (Lond) 72:749–56

    Google Scholar 

  • Park SW, Kim M, Kim JY et al (2012) Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia. Kidney Int 82:878–891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel L, Thaker A (2014) The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail 36:916–924

    Article  PubMed  Google Scholar 

  • Patinha D, Fasching A, Pinho D et al (2013) Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors. Am J Physiol Renal Physiol 304:F614–F622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persson P, Hansell P, Palm F (2015a) Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration. Kidney Int 87:109–115

    Article  PubMed  CAS  Google Scholar 

  • Persson P, Friederich-Persson M, Fasching A et al (2015b) Adenosine A2 a receptor stimulation prevents proteinuria in diabetic rats by promoting an anti-inflammatory phenotype without affecting oxidative stress. Acta Physiol (Oxf) 214:311–318

    Article  CAS  Google Scholar 

  • Pflueger AC, Osswald H, Knox FG (1999a) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Am J Phys 276:F340–F346

    CAS  Google Scholar 

  • Pflueger AC, Gross JM, Knox FG (1999b) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of prostaglandins. Am J Phys 277:R1410–R1417

    CAS  Google Scholar 

  • Premen AJ, Hall JE, Mizelle HL et al (1985) Maintenance of renal autoregulation during infusion of aminophylline or adenosine. Am J Physiol 248:F366–73

    Google Scholar 

  • Pye C, Elsherbiny NM, Ibrahim AS et al (2014) Adenosine kinase inhibition protects the kidney against streptozotocin-induced diabetes through anti-inflammatory and anti-oxidant mechanisms. Pharmacol Res 85:45–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rachima-Maoz C, Peleg E, Rosenthal T (1998) The effect of caffeine on ambulatory blood pressure in hypertensive patients. Am J Hypertens 11:1426–1432

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal M, Pao AC (2010) Adenosine activates a2b receptors and enhances chloride secretion in kidney inner medullary collecting duct cells. Hypertension 55:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Rajasekeran H, Lytvyn Y, Bozovic A et al (2017) Urinary adenosine excretion in type 1 diabetes. Am J Physiol Renal Physiol 313:F184–F191

    Article  PubMed  CAS  Google Scholar 

  • Rakic V, Burke V, Beilin LJ (1999) Effects of coffee on ambulatory blood pressure in older men and women: a randomized controlled trial. Hypertension 33:869–873

    Article  PubMed  CAS  Google Scholar 

  • Reeves JJ, Jones CA, Sheehan MJ et al (1997) Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm Res 46:180–184

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Garvin JL, Carretero OA (2001) Efferent arteriole tubuloglomerular feedback in the renal nephron. Kidney Int 59:222–229

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Arima S, Carretero OA et al (2002) Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int 61:169–176

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Garvin JL, Liu R et al (2004) Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int 66:1479–1485

    Article  PubMed  CAS  Google Scholar 

  • Rieg T, Steigele H, Schnermann J et al (2005) Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 313:403–409

    Article  PubMed  CAS  Google Scholar 

  • Rump LC, Jabbari TJ, von Kugelgen I et al (1999) Adenosine mediates nitric-oxide-independent renal vasodilation by activation of A2A receptors. J Hypertens 17:1987–1993

    Article  PubMed  CAS  Google Scholar 

  • Sallstrom J, Eriksson T, Fredholm BB et al (2014) Inhibition of sodium-linked glucose reabsorption normalizes diabetes-induced glomerular hyperfiltration in conscious adenosine A(1)-receptor deficient mice. Acta Physiol (Oxf) 210:440–445

    Article  CAS  Google Scholar 

  • Schnermann J (2015) Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol 77:301–322

    Article  PubMed  CAS  Google Scholar 

  • Schnermann J, Castrop H (2013) Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Alpern RJ, Caplan MJ, Moe OW (eds) The kidney. Physiology and pathophysiology, vol 1. Elsevier Academic Press, London/Waltham/San Diego, pp 757–801

    Google Scholar 

  • Schnermann J, Osswald H, Hermle M (1977) Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat. Pflugers Arch 369:39–48

    Article  PubMed  CAS  Google Scholar 

  • Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol Renal Physiol 258:F553–F561

    Article  CAS  Google Scholar 

  • Schweda F, Wagner C, Kramer BK et al (2003) Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 284:F770–F777

    Article  PubMed  CAS  Google Scholar 

  • Shirley DG, Walter SJ, Noormohamed FH (2002) Natriuretic effect of caffeine: assessment of segmental sodium reabsorption in humans. Clin Sci (Lond) 103:461–466

    Article  CAS  Google Scholar 

  • Shneyvays V, Nawrath H, Jacobson KA et al (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243:383–397

    Article  PubMed  CAS  Google Scholar 

  • Silldorff EP, Pallone TL (2001) Adenosine signaling in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol 280:R854–R861

    Article  PubMed  CAS  Google Scholar 

  • Silldorff EP, Kreisberg MS, Pallone TL (1996) Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat. J Clin Invest 98:18–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siragy HM, Linden J (1996) Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension 27:404–407

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Sivaprasadarao A, Munsey TS et al (2001) Immunolocalisation of adenosine A(1) receptors in the rat kidney. Biochem Pharmacol 61:237–244

    Article  PubMed  CAS  Google Scholar 

  • Spielman WS, Britton SL, Fiksen-Olsen MJ (1980) Effect of adenosine on the distribution of renal blood flow in dogs. Circ Res 46:449–456

    Article  PubMed  CAS  Google Scholar 

  • Srisawat N, Hoste EE, Kellum JA (2010) Modern classification of acute kidney injury. Blood Purif 29:300–307

    Article  PubMed  Google Scholar 

  • Steinhorn RH, Morin FC 3rd, Van Wylen DG et al (1994) Endothelium-dependent relaxations to adenosine in juvenile rabbit pulmonary arteries and veins. Am J Phys 266:H2001–H2006

    CAS  Google Scholar 

  • Sun D, Samuelson LC, Yang T et al (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98:9983–9988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tagawa H, Vander AJ (1970) Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res 26:327–338

    Article  PubMed  CAS  Google Scholar 

  • Tak E, Ridyard D, Kim JH et al (2014) CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. J Am Soc Nephrol 25:547–563

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Yoshitomi K, Imai M (1993) Regulation of Na(+)-3HCO3- cotransport in rabbit proximal convoluted tubule via adenosine A1 receptor. Am J Phys 265:F511–F519

    CAS  Google Scholar 

  • Tang L, Parker M, Fei Q et al (1999) Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney. Am J Phys 277:F926–F933

    Article  CAS  Google Scholar 

  • Taskiran E, Erbas O, Yigitturk G et al (2016) Exogenously administered adenosine attenuates renal damage in streptozotocin-induced diabetic rats. Ren Fail 38:1276–1282

    Article  PubMed  CAS  Google Scholar 

  • Thompson CI, Spielman WS (1992) Renal hemodynamic effects of exogenously administered adenosine and polyadenylic acid. Am J Phys 263:F816–F823

    CAS  Google Scholar 

  • Thomson S, Bao D, Deng A et al (2000) Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106:289–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson SC, Rieg T, Miracle C et al (2011) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302:R75–R83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thurau K (1964) Renal hemodynamics. Am J Med 36:850–860

    Article  Google Scholar 

  • Vallon V, Osswald H (2009) Adenosine receptors and the kidney. Handb Exp Pharmcol 193:443–470

    Article  CAS  Google Scholar 

  • Vallon V, Richter K, Huang DY et al (2004) Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Arch 448:214–221

    Article  PubMed  CAS  Google Scholar 

  • Van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • Vitzthum H, Weiss B, Bachleitner W et al (2004) Gene expression of adenosine receptors along the nephron. Kidney Int 65:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334

    Article  PubMed  CAS  Google Scholar 

  • Weaver DR, Reppert SM (1992) Adenosine receptor gene expression in rat kidney. Am J Physiol Renal Physiol 263:F991–F995

    Article  CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Schnermann J et al (1990) Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J Clin Invest 85:1622–1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP et al (1992) Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol Renal Physiol 263:F1026–F1033

    Article  CAS  Google Scholar 

  • Wilcox CS, Welch WJ, Schreiner GF et al (1999) Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 10:714–720

    PubMed  CAS  Google Scholar 

  • Wyatt AW, Steinert JR, Wheeler-Jones CP et al (2002) Early activation of the p42/p44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells: a novel calcium-insensitive mechanism. FASEB J 16:1584–1594

    Article  PubMed  CAS  Google Scholar 

  • Yagil Y (1990) Interaction of adenosine with vasopressin in the inner medullary collecting duct. Am J Phys 259:F679–F687

    CAS  Google Scholar 

  • Yagil Y (1994) The effects of adenosine on water and sodium excretion. J Pharmacol Exp Ther 268:826–835

    PubMed  CAS  Google Scholar 

  • Yagil C, Katni G, Yagil Y (1994) The effects of adenosine on transepithelial resistance and sodium uptake in the inner medullary collecting duct. Pflugers Arch 427:225–232

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Umemura S, Tamura K et al (1995) Adenosine A1 receptor mRNA in microdissected rat nephron segments. Hypertension 26:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Yap SC, Lee HT (2012) Adenosine and protection from acute kidney injury. Curr Opin Nephrol Hypertens 21:24–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoneyama Y, Suzuki S, Sawa R et al (2000) Plasma adenosine levels increase in women with normal pregnancies. Am J Obstet Gynecol 182:1200–1203

    Article  PubMed  CAS  Google Scholar 

  • Zanzinger J, Bassenge E (1993) Coronary vasodilation to acetylcholine, adenosine and bradykinin in dogs: effects of inhibition of NO-synthesis and captopril. Eur Heart J 14(Suppl I):164–168

    PubMed  CAS  Google Scholar 

  • Zhang YL, Li T, Lautt WW (1994) Adenosine metabolism in vivo. Proc West Pharmacol Soc 37:15–16

    PubMed  CAS  Google Scholar 

  • Zhao Z, Yaar R, Ladd D et al (2002) Overexpression of A3 adenosine receptors in smooth, cardiac, and skeletal muscle is lethal to embryos. Microvasc Res 63:61–69

    Article  PubMed  CAS  Google Scholar 

  • Zou AP, Nithipatikom K, Li PL et al (1999) Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Phys 276:R790–R798

    CAS  Google Scholar 

Download references

Acknowledgments

Work by the authors cited in this review was supported by grants from the National Institutes of Health and Columbia University (HTL) and by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (JS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thomas Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, H.T., Schnermann, J. (2018). Renal Adenosine in Health and Disease. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_19

Download citation

Publish with us

Policies and ethics