Advertisement

Adenosine Receptors: The Status of the Art

  • Stefania Gessi
  • Stefania Merighi
  • Katia Varani
Chapter
Part of the The Receptors book series (REC, volume 34)

Abstract

Adenosine is an ubiquitous molecule which is involved in the regulation of the function of every tissue and organ. This nucleoside mediates its effects through activation of a family of four G-protein-coupled adenosine receptors, namely, A1, A2A, A2B, and A3. Adenosine plays a significant role in the protection against cellular damage in the regions with high metabolism and prevents the subsequent dysfunction of the affected organs. Its levels rise during conditions concerning increased metabolic demand and/or lack of oxygen occurring in several pathological states like ischemia, stress, seizures, pain, diabetes, inflammation, cancer, and trauma, where it may behave like a guardian angel against cellular damage or may show its bad side in conditions deriving from its long-lasting increases responsible for chronic inflammation, fibrosis, and organ damage. The aim of this chapter is to offer an overview on the status of the art of the current drugs, agonists and antagonists, in clinical development.

Keywords

Adenosine receptors Agonists Antagonists Clinical trials Human diseases 

References

  1. Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263CrossRefPubMedGoogle Scholar
  2. Bar-Yehuda S, Stemmer SM, Madi L et al (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33:287–295PubMedGoogle Scholar
  3. Borea PA, Varani K, Vincenzi F et al (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67:74–102CrossRefPubMedGoogle Scholar
  4. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-Signalling Guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434CrossRefPubMedGoogle Scholar
  5. Borea PA, Gessi S, Merighi S et al (2017) Pathological overproduction: the bad side of adenosine. Br J Pharmacol 174:1945–1960CrossRefPubMedGoogle Scholar
  6. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO et al (2010) Characterization of the A2AR–D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem Biophys Res Commun 402:801–807CrossRefPubMedGoogle Scholar
  7. Canals M, Marcellino D, Fanelli F et al (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749CrossRefPubMedGoogle Scholar
  8. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 12:265–286CrossRefPubMedPubMedCentralGoogle Scholar
  9. David M, Akerman L, Ziv M et al (2012) Treatment of plaque-type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J Eur Acad Dermatol Venereol 26:361–367CrossRefPubMedGoogle Scholar
  10. David M, Gospodinov DK, Gheorghe N et al (2016) Treatment of plaque-type psoriasis with oral CF101: data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol 15:931–938PubMedGoogle Scholar
  11. Ferre S, von Euler G, Johansson B et al (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88:7238–7241CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fishman P, Cohen S (2016) The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis. Clin Rheumatol 35:2359–2362CrossRefPubMedGoogle Scholar
  13. Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002) A3 adenosine receptor as a target for cancer therapy. Anti-Cancer Drugs 13:437–443CrossRefPubMedGoogle Scholar
  14. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17:359–366CrossRefPubMedGoogle Scholar
  15. Fuxe K, Agnati LF, Jacobsen K et al (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23CrossRefPubMedGoogle Scholar
  16. Fuxe K, Guidolin D, Agnati LF, Borroto-Escuela DO (2015) Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin Ther Targets 19:377–398CrossRefPubMedGoogle Scholar
  17. Gao Z-G, Jacobson KA (2017) Purinergic signaling in mast cell degranulation and asthma. Front Pharmacol 8:947CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gessi S, Cattabriga E, Avitabile A et al (2004) Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 10:5895–5901CrossRefPubMedGoogle Scholar
  19. Gessi S, Merighi S, Varani K et al (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140Google Scholar
  20. Gessi S, Merighi S, Fazzi D et al (2011) Adenosine receptor targeting in health and disease. Expert Opin Investig Drugs 20:1591–1609CrossRefPubMedGoogle Scholar
  21. Greene SJ, Sabbah HN, Butler J et al (2016) Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail Rev 21:95–102CrossRefPubMedGoogle Scholar
  22. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 259:H820–H826CrossRefGoogle Scholar
  23. Lukashev D, Sitkovsky M, Ohta A (2007) From Hellstrom paradox–to anti-adenosinergic cancer immunotherapy. Purinergic Signal 3:129–134CrossRefPubMedPubMedCentralGoogle Scholar
  24. Madi L, Ochaion A, Rath-Wolfson L et al (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10:4472–4479CrossRefPubMedGoogle Scholar
  25. Meibom D, Albrecht-Küpper B, Diedrichs N et al (2017) Neladenoson Bialanate hydrochloride: a prodrug of a partial adenosine a 1 receptor agonist for the chronic treatment of heart diseases. ChemMedChem 12:728–737CrossRefPubMedGoogle Scholar
  26. Merighi S, Mirandola P, Varani K et al (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48CrossRefPubMedGoogle Scholar
  27. Navarro G, Borroto-Escuela DO, Fuxe K, Franco R (2016) Purinergic signaling in Parkinson’s disease. Relevance for treatment. Neuropharmacology 104:161–168CrossRefPubMedGoogle Scholar
  28. Newby AC (1984) Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sci 9:42–44CrossRefGoogle Scholar
  29. Ochaion A, Bar-Yehuda S, Cohen S et al (2008) The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochem Pharmacol 76:482–494CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ochaion A, Bar-Yehuda S, Cohen S et al (2009) The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol 258:115–122CrossRefPubMedGoogle Scholar
  31. Peleli M, Fredholm BB, Sobrevia L, Carlström M (2017) Pharmacological targeting of adenosine receptor signaling. Mol Asp Med 55:4–8CrossRefGoogle Scholar
  32. Preti D, Baraldi PG, Moorman AR et al (2015) History and perspectives of a 2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 35:790–848CrossRefPubMedGoogle Scholar
  33. Stemmer SM, Benjaminov O, Medalia G et al (2013) CF102 for the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist 18:25–26CrossRefPubMedPubMedCentralGoogle Scholar
  34. van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005CrossRefPubMedGoogle Scholar
  35. Varani K, Caramori G, Vincenzi F et al (2006) Alteration of adenosine receptors in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:398–406CrossRefPubMedGoogle Scholar
  36. Varani K, Vincenzi F, Merighi S et al (2017) Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy. Adv Exp Med Biol 1051:193–232CrossRefPubMedGoogle Scholar
  37. Yuan K, Cao C, Han JH et al (2005) Adenosine-stimulated atrial natriuretic peptide release through A1 receptor subtype. Hypertension 46:1381–1387CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefania Gessi
    • 1
  • Stefania Merighi
    • 1
  • Katia Varani
    • 1
  1. 1.Department of Medical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations