Principles of NMR Spectroscopy

  • Sławomir SzymańskiEmail author
  • Piotr Bernatowicz


Elements of the quantum mechanics of spin and of the quantum statistics are reviewed. These are further used to justify the vector model of NMR spectroscopy. In terms of this model, basic principles of the modern PFT NMR are exposed. Then, multi-spin systems are considered, using both the standard Hilbert space formalism and the Liouville representation of quantum mechanics. This is followed by introduction to solid state NMR. Finally, the idea of two-dimensional spectroscopy is outlined.


  1. 1.
    W.G. Proctor, F.C. Yu, Phys. Rev. 77, 717 (1950)ADSCrossRefGoogle Scholar
  2. 2.
    N.F. Ramsey, Phys. Rev. 78, 699 (1950)ADSCrossRefGoogle Scholar
  3. 3.
    R.M. Gregory, A.D. Bain, Concepts Magn. Reson. A 34, 305 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Szymański, H. Dodziuk, M. Pietrzak, J. Jaźwiński, T.B. Demissie, H. Hopf, J. Phys. Org. Chem. 26, 596 (2013)CrossRefGoogle Scholar
  5. 5.
    D.S. Stephenson, G. Binsch, J. Magn. Reson. 37, 409 (1980)ADSGoogle Scholar
  6. 6.
    P.L. Corio, Structure of High Resolution NMR Spectra (Academic Press, New York, 1966)Google Scholar
  7. 7.
    L. Jansen, M. Boon, Theory of Finite Groups (Applications in Physics (North-Holland, Amsterdam, 1967)zbMATHGoogle Scholar
  8. 8.
    R.C. Ferguson, D.W. Marquardt, J. Chem. Phys. 41, 2087 (1964)ADSCrossRefGoogle Scholar
  9. 9.
    T.H. Siddall III, R.L. Flurry Jr., in Recent Advances, in Group Theory and Their Applications, ed. by J.C. Donini (Plenum, New York, 1979), pp. 267–269Google Scholar
  10. 10.
    S. Szymański, J. Magn. Reson. 77, 320 (1988)ADSGoogle Scholar
  11. 11.
    C.N. Banwell, H. Primas, Mol. Phys. 6, 225 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    I. Kuprov, N. Wagner-Rundell, P.J. Hore, J. Magn. Reson. 189, 241 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    H.J. Hogben, M. Krzystyniak, G.T.P. Charnock, R.J. Hore, I. Kuprov, J. Magn. Reson. 208, 179 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    U. Fano, in Lectures on the Many-Body Problem, vol. 2, ed. by E.R. Caianiello (Academic Press, New York, 1964), p. 217CrossRefGoogle Scholar
  15. 15.
    D.M. Brink, G.R. Satchler, Angular Momentum (Oxford University Press (Clarendon), London/New York, 1968)zbMATHGoogle Scholar
  16. 16.
    U. Haeberlen, Adv. Magn. Reson. Suppl. 1, ed. by J.S. Waugh (Academic Press, New York, 1976)Google Scholar
  17. 17.
    L.G. Werbelow, in Nuclear Magnetic Resonance Probes of Molecular Dynamics, ed. by R. Tycko (Kluwer Academic, Dordrecht, 1994)Google Scholar
  18. 18.
    C.P. Slichter, in Principles of Magnetic Resonance, vol. 1, 2nd edn., Solid-State Sciences, ed. by M. Cardoua, P. Fulde, H.J. Queisser (Springer, Berlin, 1978)Google Scholar
  19. 19.
    Wikipedia contributors, Convolution theorem, Wikipedia, the free encyclopedia; 29 Dec 2017, 17:00 UTC,
  20. 20.
    E.W. Weisstein, Convolution theorem, MathWorld–A Wolfram Web Resource; 3 Jan 2018, 15:00 UTC,
  21. 21.
    D.C. Apperley, R.K. Harris, P. Hodgkinson, Solid-State NMR: Basic Principles and Practice (Momentum Press, LLC, New York, 2012), p. 207CrossRefGoogle Scholar
  22. 22.
    P. Bernatowicz, T. Ratajczyk, A. Shkurenko, B. Kamieński, S. Szymański, J. Phys. Chem. C 119, 3725 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Eden, Concepts Magn. Reson. A 17, 117 (2003)CrossRefGoogle Scholar
  24. 24.
    T. Iwaniec, R. Kopiecki, S. Szymański, Solid State Nucl. Magn. Reson. 69–69, 25 (2015)CrossRefGoogle Scholar
  25. 25.
    G.E. Pake, J. Chem. Phys. 16, 327 (1948)ADSCrossRefGoogle Scholar
  26. 26.
    E.R. Andrew, A. Bradbury, R.G. Eades, Nature 182, 1659 (1958)ADSCrossRefGoogle Scholar
  27. 27.
    I.J. Lowe, Phys. Rev. Lett. 2, 285 (1959)ADSCrossRefGoogle Scholar
  28. 28.
    M. Eden, Concepts Magn. Reson. A 18, 1 (2003)Google Scholar
  29. 29.
    M. Eden, Concepts Magn. Reson. A 18, 24 (2003)CrossRefGoogle Scholar
  30. 30.
    M. Bak, J.T. Rasmussen, N.C. Nielsen, J. Magn. Reson. 147, 296 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)ADSCrossRefGoogle Scholar
  32. 32.
    J. Jeener, Lecture Notes from Ampere Summer School in Basko Polje (Yugoslavia, 1971)Google Scholar

Further Reading

  1. 33.
    N.F. Ramsey, Phys. Rev. 91, 303 (1953)ADSCrossRefGoogle Scholar
  2. 34.
    E.L. Hahn, Phys. Rev. 80, 580 (1950)ADSCrossRefGoogle Scholar
  3. 35.
    H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630 (1954)ADSCrossRefGoogle Scholar
  4. 36.
    M.H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, Chichester, 2005)Google Scholar
  5. 37.
    R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987)Google Scholar
  6. 38.
    D.C. Apperley, R.K. Harris, P. Hodginson, Solid-State NMR: Basic Principles and Practice (Momentum Press, LLC, New York, 2012)CrossRefGoogle Scholar
  7. 39.
    A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Organic ChemistryPolish Academy of SciencesWarsawPoland
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations