Advertisement

Powder Bed Fusion: The Working Process, Current Applications and Opportunities

  • Fabrizio Fina
  • Simon Gaisford
  • Abdul W. Basit
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 31)

Abstract

Powder bed fusion (PBF) is an umbrella term for three separate three-dimensional (3D) printing technologies; selective laser sintering (SLS), direct metal laser sintering (DMLS) and selective laser melting (SLM). These processes share the same printing procedure where powder particles are selectively fused by a local thermal process generated from a laser in a layer-by-layer manner. However, they differ in the materials used and energy transmitted. Thermoplastic polymers are often employed by SLS whereby a laser superficially connects the powder particles together by a process known as sintering. DMLS and SLM is still a sintering process although metals and powders are most often used. DMLS and SLM are mainly used in the aerospace, maritime and automotive industries although SLS has been successfully introduced into the medical arena for its applications in tissue engineering. In this chapter, we further explore how the SLS technology has proven its amenability in the printing and manufacture of pharmaceuticals.

Keywords

Additive manufacturing Personalized medicines Bioprinting Drug product manufacturing Drug delivery systems Pharmaceutics 

References

  1. 1.
    Shellabear M, Nyrhilä O. DMLS – Development history and state of the art. 2004.Google Scholar
  2. 2.
    Beaman JJ, Deckard CR. Selective laser sintering with assisted powder handling. US 4938816 A. 1990.Google Scholar
  3. 3.
    Geiger M, Vollertsen F. Laser assisted net shape engineering. Proceedings of the LANE ‘94 conference, Erlangen, Oct 12–14, 1994.Google Scholar
  4. 4.
    Meiners, Wissenbach, Gasser. Selective laser sintering at melting temperature. German patent DE 19649865, filed December 2nd, 1996, Published Feb 12, 1998. 1996.Google Scholar
  5. 5.
    Kruth JP, Wang X, TL FL. Lasers and materials in selective laser sintering. Assem Autom. 2003;23(4):357–71.CrossRefGoogle Scholar
  6. 6.
    Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. J Mater Process Technol. 2011;211(2):275–84.CrossRefGoogle Scholar
  7. 7.
    Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1):285–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24(13):2363–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Gibson I, Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp J. 1997;3(4):129–36.CrossRefGoogle Scholar
  10. 10.
    Tolochko NK, Laoui T, Khlopkov YV, Mozzaharov SE, Titov VI, Ignatiev MB. Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J. 2000;6(3):155–61.CrossRefGoogle Scholar
  11. 11.
    Formlabs. Fuse 1 Tech Specs. https://formlabs.com/3d-printers/fuse-1-tech-specs/. 2017.
  12. 12.
  13. 13.
    Sintratec. Sintratec Kit SLS printer. http://sintratec.com/products/kit. 2017.
  14. 14.
    Leong KF, Chua CK, Gui WS. Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol. 2006;31(5–6):483–9.CrossRefGoogle Scholar
  15. 15.
    Schulze D. Powders and bulk solids: behavior, characterization, storage and flow. Berlin Heidelberg New York: Springer; 2008.Google Scholar
  16. 16.
    Kruth J-P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26–36.CrossRefGoogle Scholar
  17. 17.
    Sing SL, Yeong WY. Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyp J. 2017;23(3):611–23.CrossRefGoogle Scholar
  18. 18.
    Mercelis P, Kruth J-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12(5):254–65.CrossRefGoogle Scholar
  19. 19.
    Gebhardt A, Schmidt F-M, Hötter J-S, Sokalla W, Sokalla P. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia. 2010;5(Part B):543–9.CrossRefGoogle Scholar
  20. 20.
    Stratasys. Selective laser sintering materials. https://wwwstratasysdirect.com/materials/laser-sintering/. 2017.
  21. 21.
    Salmoria GV, Lauth VR, Cardenuto MR, Magnago RF. Characterization of PA12/PBT specimens prepared by selective laser sintering. Opt Laser Technol. 2018;98:92–6.CrossRefGoogle Scholar
  22. 22.
    Salmoria GV, Leite JL, Paggi RA. The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering. Polym Test. 2009;28(7):746–51.CrossRefGoogle Scholar
  23. 23.
    Salmoria GV, Vieira FE, Ghizoni GB, Marques MS, Kanis LA. 3D Printing of PCLFluorouracil tablets by selective laser. 2017.Google Scholar
  24. 24.
    Leong KF, Wiria FE, Chua CK, Li SH. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng. 2007;17(3):147–57.PubMedGoogle Scholar
  25. 25.
    Salmoria GV, Klauss P, Zepon K, Kanis LA, Roesler CRM, Vieira LF. Development of functionally-graded reservoir of PCL/PG by selective laser sintering for drug delivery devices. Virtual Phys Prototyp. 2012;7(2):107–15.CrossRefGoogle Scholar
  26. 26.
    Salmoria GV, Klauss P, Roesler CRM, Kanis LA. Structure and mechanical properties of PCL/PG devices prepared by selective laser sintering for drug delivery applications. 2013 (55607):V01AT20A016.Google Scholar
  27. 27.
    Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med. 2004;15(10):1113–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Stratasys. Direct metal laser sintering materials. https://wwwstratasysdirect.com/materials/direct-metal-laser-sintering/. 2017.
  29. 29.
    Novakov T, Jackson MJ, Robinson GM, Ahmed W, Phoenix DA. Laser sintering of metallic medical materials—a review. Int J Adv Manuf Technol. 2017;93:2723.CrossRefGoogle Scholar
  30. 30.
    Dutta S. Fracture toughness and reliability in high-temperature structural ceramics and composites: prospects and challenges for the 21st century. Bull Mater Sci. 2001;24(2):117–20.CrossRefGoogle Scholar
  31. 31.
    Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I. Ceramic components manufacturing by selective laser sintering. Appl Surf Sci. 2007;254(4):989–92.CrossRefGoogle Scholar
  32. 32.
    Yves-Christian H, Jan W, Wilhelm M, Konrad W, Reinhart P. Net shaped high performance oxide ceramic parts by selective laser melting. Phys Procedia. 2010;5(Part B):587–94.CrossRefGoogle Scholar
  33. 33.
    Tang Y, Fuh JYH, Loh HT, Wong YS, Lu L. Direct laser sintering of a silica sand. Mater Des. 2003;24(8):623–9.CrossRefGoogle Scholar
  34. 34.
    3DSystems. Metal printers. https://uk3dsystems.com/3d-printers#metal-printers. 2017.
  35. 35.
    Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol. 2001;111(1):210–3.CrossRefGoogle Scholar
  36. 36.
    NASA. NASA Tests Limits of 3-D Printing with Powerful Rocket Engine Check. https://www.nasa.gov/press/2013/august/nasa-tests-limits-of-3-d-printing-with-powerful-rocket-engine-check/#WcjOmciGNPZ. 2013.
  37. 37.
  38. 38.
    FDA. Technical considerations for additive manufactured devices: food and drug administration; 2017. Available from: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM499809.pdf.
  39. 39.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.CrossRefGoogle Scholar
  40. 40.
    Partee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA[sup ®] 6501 Polycaprolactone bone tissue engineering scaffolds. J Manuf Sci Eng. 2006;128(2):531.CrossRefGoogle Scholar
  41. 41.
    Cima LG, Cima MJ. Patent preparation of medical devices by solid free-form fabrication methods. 1996.Google Scholar
  42. 42.
    Berry E, Brown JM, Connell M, Craven CM, Efford ND, Radjenovic A, et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys. 1997;19(1):90–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, et al. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials. 2003;24(18):3115–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Tan KH, Chua KC, Leong KF, Cheah CM, Gui WS, Tan WS, Wiria FE. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng. 2005;15(1):11–124.Google Scholar
  45. 45.
    Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater. 2010;6(7):2511–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6(6):2028–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495–505.CrossRefPubMedGoogle Scholar
  48. 48.
    Duan B, Cheung WL, Wang M. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication. 2011;3(1):015001.CrossRefPubMedGoogle Scholar
  49. 49.
    Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Leong KF, Phua KKS, Chua CK, Du ZH, Teo KOM. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H J Eng Med. 2001;215(2):191–2.CrossRefGoogle Scholar
  51. 51.
    Leong K. Characterization of SLS parts for drug delivery devices. Rapid Prototyp J. 2001;7(5):262–8.CrossRefGoogle Scholar
  52. 52.
    Cheah CM, Leong KF, Chua CK, Low KH, Quek HS. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H J Eng Med. 2002;216(6):369–83.CrossRefGoogle Scholar
  53. 53.
    Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Salmoria GV, Klauss P, Zepon KM, Kanis LA. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: morphology and drug release. Int J Adv Manuf Technol. 2012;66(5–8):1113–8.Google Scholar
  55. 55.
    Salmoria GV, Cardenuto MR, Roesler CRM, Zepon KM, Kanis LA. PCL/ibuprofen implants fabricated by selective laser sintering for orbital repair. Procedia CIRP. 2016;49:188–92.CrossRefGoogle Scholar
  56. 56.
    Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.CrossRefPubMedGoogle Scholar
  57. 57.
    Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, Patel P, Gaisford S, Basit AW. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;  https://doi.org/10.1016/j.ijpharm.2018.05.044.
  59. 59.
    Lepowsky E, Tasoglu S. 3D printing for drug manufacturing: a perspective on the future of pharmaceuticals. Int J Bioprint. 2018;4(1):119.CrossRefGoogle Scholar
  60. 60.
    Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. 2018;548(1):586–596.Google Scholar
  61. 61.
    Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;  https://doi.org/10.1016/j.drudis.2018.05.025.

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Fabrizio Fina
    • 1
  • Simon Gaisford
    • 1
    • 2
  • Abdul W. Basit
    • 1
    • 2
  1. 1.Department of Pharmaceutics, UCL School of PharmacyUniversity College LondonLondonUK
  2. 2.FabRx Ltd.Ashford, KentUK

Personalised recommendations