Advertisement

Binder Jet Printing in Pharmaceutical Manufacturing

  • Sarah J. Trenfield
  • Christine M. Madla
  • Abdul W. Basit
  • Simon Gaisford
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 31)

Abstract

Binder jet printing is arguably the most successful three-dimensional printing (3DP) technology in the pharmaceutical industry to date. In 2015, the binder jet process was adapted as an alternative mass manufacturing technique to enable the production of Spritam® (the first 3D printed tablet) approved by the Food and Drug Administration (FDA). Binder jet printing is expected to continue making a widespread impact to formulation manufacture over the next decade. In particular, binder jet printing offers benefits of producing oral dosage forms with unique release characteristics ranging from fast-dissolving through to controlled-release platforms. This chapter aims to discuss the history and methodology of binder jet printing, pharmaceutical and medical applications, considerations for formulations development and advantages and disadvantages of such processes in the pharmaceutical space.

Keywords

3D printing Additive manufacturing Printing medicines Personalized medications Drug delivery systems Digital healthcare 

References

  1. 1.
    Sachs EM, Haggerty J, Cima MJ, Williams PA. InventorsThree-dimensional Printing Techniques. US5204055.1993.Google Scholar
  2. 2.
    Aprecia Pharmaceuticals. 3D printing - ZipDose technology. 2015. Available from: https://aprecia.com/zipdose-platform/3d-printing.php.
  3. 3.
    Day SP, Shufflebottom L. Evidential value from inkjet printers. Probl Forensic Sci. 2001;XLVI:356–74.Google Scholar
  4. 4.
    Buanz AB, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Vuddanda PR, Alomari M, Dodoo CC, Trenfield SJ, Velga S, Basit AW, Gaisford S. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Noguera R, Lejeune M, Chartier T. 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc. 2005;25(12):2055–9.CrossRefGoogle Scholar
  7. 7.
    Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics – a review of research and manufacturing. Int J Pharm. 2015;494(2):554–67.CrossRefPubMedGoogle Scholar
  9. 9.
    Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77.Google Scholar
  10. 10.
    Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann. 1990;39(1):201–4.CrossRefGoogle Scholar
  11. 11.
    Lu K, Reynolds WT. 3DP process for fine mesh structure printing. Powder Technol. 2008;187(1):11–8.CrossRefGoogle Scholar
  12. 12.
    Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47(Supplement C):237–47.CrossRefGoogle Scholar
  13. 13.
    Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495–505.CrossRefPubMedGoogle Scholar
  14. 14.
    Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16(12):1121–4.CrossRefGoogle Scholar
  15. 15.
    Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013;9(3):5521–30.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hsiao W-K, Lorber B, Reitsamer H, Khinast J. 3D printing of oral drugs: a new reality or hype? Expert Opin Drug Deliv. 2017;15(1):1–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.Google Scholar
  18. 18.
    Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40(1):77–87.CrossRefGoogle Scholar
  19. 19.
    Yu D-G, Branford-White C, Yang Y-C, Zhu L-M, Welbeck EW, Yang X-L. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang CC, Tejwani Motwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev Ind Pharm. 2006;32(3):367–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):1–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm. 2009;370(1–2):160–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee K-J, Kang A, Delfino JJ, West TG, Chetty D, Monkhouse DC, et al. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm. 2003;29(9):967–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Jung J-Y, Yoo SD, Lee S-H, Kim K-H, Yoon D-S, Lee K-H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int J Pharm. 1999;187(2):209–18.CrossRefPubMedGoogle Scholar
  26. 26.
    Pawar PK, Gautam C. Design, optimization and evaluation of mesalamine matrix tablet for colon drug delivery system. J Pharm Investig. 2016;46(1):67–78.CrossRefGoogle Scholar
  27. 27.
    Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):11–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Danckwerts MP, Watt JGVD, Moodley I. Zero-order release of theophylline from a Core-in-cup tablet in sequenced simulated gastric and intestinal fluid. Drug Dev Ind Pharm. 1998;24(2):163–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Sundy E, Danckwerts MP. A novel compression-coated doughnut-shaped tablet design for zero-order sustained release. Eur J Pharm Sci. 2004;22(5):477–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Mishra DS, Yalkowsky SH. A flat circular hole device for zero-order release of drugs: characterization of the moving dissolution boundary. Pharm Res. 1990;7(11):1195–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Narasimhan B, Langer R. Zero-order release of micro- and macromolecules from polymeric devices: the role of the burst effect. J Control Release. 1997;47(1):13–20.CrossRefGoogle Scholar
  32. 32.
    Bayomi MA. Geometric approach for zero-order release of drugs dispersed in an inert matrix. Pharm Res. 1994;11(6):914–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Cleave JP. Some geometrical considerations concerning the design of tablets. J Pharm Pharmacol. 1965;17(11):698–702.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009;61(3):323–9.CrossRefPubMedGoogle Scholar
  35. 35.
    FDA. Keppra XR (Levetiracetam) extended-release tablets. 2009. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/022285s000_TOC.cfm.
  36. 36.
    Boudriau S, Hanzel C, Massicotte J, Sayegh L, Wang J, Lefebvre M. Randomized comparative bioavailability of a novel three-dimensional printed fast-melt formulation of Levetiracetam following the Administration of a single 1000-mg dose to healthy human volunteers under fasting and fed conditions. Drugs R&D. 2016;16(2):229–38.CrossRefGoogle Scholar
  37. 37.
    Yu DG, Zhu L-M, Branford-White CJ, Yang XL. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Kalaskar D. 3D printing in medicine. 1st ed. Duxford: Woodhead Publishing; 2017.Google Scholar
  39. 39.
    Monkhouse D, Kumar S, Rowe C, Yoo J. Rapid prototyping and manufacturing process. 2003. Available from: http://www.google.com/patents/US20030173695.
  40. 40.
    Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;  https://doi.org/10.1016/j.drudis.2018.05.025.
  42. 42.
    Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011;7(3):907–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Vaezi M, Yang S. 2 – Freeform fabrication of nanobiomaterials using 3D printing. Rapid prototyping of biomaterials: Woodhead Publishing; 2014. p. 16–74.Google Scholar
  44. 44.
    Raijada D, Genina N, Fors D, Wisaeus E, Peltonen J, Rantanen J, et al. A step toward development of printable dosage forms for poorly soluble drugs. J Pharm Sci. 2013;102(10):3694–704.CrossRefPubMedGoogle Scholar
  45. 45.
    Krantz M, Zhang H, Zhu J. Characterization of powder flow: static and dynamic testing. Powder Technol. 2009;194(3):239–45.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Sarah J. Trenfield
    • 1
  • Christine M. Madla
    • 1
  • Abdul W. Basit
    • 1
    • 2
  • Simon Gaisford
    • 1
    • 2
  1. 1.Department of Pharmaceutics, UCL School of PharmacyUniversity College LondonLondonUK
  2. 2.FabRx Ltd.AshfordUK

Personalised recommendations