3D Printing Technologies, Implementation and Regulation: An Overview

  • Christine M. MadlaEmail author
  • Sarah J. Trenfield
  • Alvaro Goyanes
  • Simon Gaisford
  • Abdul W. Basit
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 31)


The rise in three-dimensional (3D) printing in design and manufacturing, like any other, is the product of vision and implementation, pioneered by those who were brave enough to make it happen. In this chapter, the advancements of exponential developments driven by 3D printers themselves and its application in almost all areas of manufacturing and personalisation, namely; aeronautics, engineering, architecture and pharmaceutics are discussed. This chapter further serves to provide an introduction to the different 3D printing technologies, their respective histories, potential benefits, limitations and regulatory requirements, and a thorough description of the new and exciting possibilities that can arise by simply acknowledging the capabilities of 3D printing in healthcare.


Additive manufacturing Medical devices Drug delivery systems Personalized pharmaceuticals Digital pharmacy Bioprinting 


  1. 1.
    Barnatt C. 3D printing. In: Explaining the future and create space independent publishing platform. 3rd ed. London; 2016.Google Scholar
  2. 2.
    Markillie P. A third industrial revolution: the economist. 2012. Available from:
  3. 3.
    ASTM. Standard terminology for additive manufacturing technologies. F2792 − 12a. 2012.Google Scholar
  4. 4.
    Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1–2):33–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005.CrossRefPubMedGoogle Scholar
  6. 6.
    Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Goyanes A, Wang J, Buanz A, Martinez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1–2):71–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355–63.CrossRefPubMedGoogle Scholar
  14. 14.
    Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a Shell-Core delayed release tablet using dual FDM 3D printing for patient-Centred therapy. Pharm Res. 2017;34(2):427–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1–2):659–68.CrossRefPubMedGoogle Scholar
  16. 16.
    Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, Basit AW, Gaisford S. 3D printed tablets loaded with polymeric nanocapsules: An innovtive approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1):268–79.Google Scholar
  17. 17.
    Goyanes A, Fernández-Ferreiro A, Majeed A, Gomez-Lado N, Awad A, Luaces-Rodríguez A, Gaisford S, Aguiar P, Basit AW. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm. 2018;536(1):158–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1–2):21–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1–2):161–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.CrossRefPubMedGoogle Scholar
  22. 22.
    SolidProducts. SLA-2500 product pag: laser innovations; 2012. Available from:
  23. 23.
    3DPrinterClassified. DTM sinterstation 2000 SLS Machine. 2015. Available from:
  24. 24.
    Smith S. Evolution of rapid technologies: digital engineering. 2010. Available from:
  25. 25.
    RPMI. RPMI equipment: major laboratory equipment: rapid prototyping and manufacturing institute. 2003. Available from:
  26. 26.
    Millsaps BB. Three wheels & two seats: will the 3D printed Urbee 2 be your car of the future?:; 2016.Available from:
  27. 27.
    Loubriel A. Scientists can now 3D print working blood vessels: guardian liberty voice. 2014. Available from:
  28. 28.
    Aprecia Pharmaceutials. FDA approves the first 3D printed drug product: aprecia pharmaceuticals. 2015. Available from:
  29. 29.
    Sachs EM, Haggerty J, Cima MJ, Williams PA. inventorsthree-dimensional printing techniques. US5204055.1993.Google Scholar
  30. 30.
    Wu B, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40:77–87.CrossRefGoogle Scholar
  31. 31.
    Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009;61(3):323–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang CC, Tejwani Motwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev Ind Pharm. 2006;32(3):367–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing. J Control Release. 2000;66:1–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Pharmaceutials A. Manufactured using 3D printing. 2015. Available from:
  35. 35.
    Yu DG, Zhu LM, Branford-White CJ, Yang XL. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Yu DG, Branford-White C, Yang YC, Zhu LM, Welbeck EW, Yang XL. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–30.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Melchels FP, Feijen J, Grijpma DW. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009;30(23–24):3801–9.CrossRefGoogle Scholar
  39. 39.
    Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppala JV. Preparation of poly(epsilon-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater. 2011;7(11):3850–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Scalera F, Esposito Corcione C, Montagna F, Sannino A, Maffezzoli A. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram Int. 2014;40(10):15455–62.CrossRefGoogle Scholar
  41. 41.
    Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1–2):207–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D printed tablets. AAPS PharmSciTech. 2018;
  44. 44.
    Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng. 2006;34(9):1429–41.CrossRefPubMedGoogle Scholar
  45. 45.
    Lee J-Y, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–33.CrossRefGoogle Scholar
  46. 46.
    Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495–505.CrossRefPubMedGoogle Scholar
  47. 47.
    Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials. 2017;137:37–48.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leong KF, Chua CK, Gui WS, Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol. 2006;31(5–6):483–9.CrossRefGoogle Scholar
  49. 49.
    Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1–2):285–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, Patel P, Gaisford S, Basit AW. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;
  52. 52.
    Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage fors fabricated by three dimensional printing. J Control Release. 2000;66:11–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Crump SS. Apparatus and method for creating three-dimensional objects US 5121329 A. 1992.Google Scholar
  55. 55.
    Additively. Fused Deposition Modeling (FDM):; 2015. Available from: modeling.
  56. 56.
    Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1–2):88–92.CrossRefPubMedGoogle Scholar
  57. 57.
    Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.Google Scholar
  58. 58.
    Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164–71.CrossRefGoogle Scholar
  60. 60.
    Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, et al. 3D printed orodispersible films with aripiprazole. Int J Pharm. 2017;533(2):413–20.CrossRefPubMedGoogle Scholar
  61. 61.
    Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1–2):255–63.CrossRefPubMedGoogle Scholar
  62. 62.
    Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing ofthermolabile drugs. Int J Pharm. 2018;545(1–2):144–52.CrossRefPubMedGoogle Scholar
  63. 63.
    Lipson H. Fab@Home model 1 3D printer: Wikipedia. 2016. Available from:
  64. 64.
    Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1):105–11.CrossRefPubMedGoogle Scholar
  65. 65.
    Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:23.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to front-line care. Trends Pharmacol Sci. 2018;39(5):440–51.Google Scholar
  67. 67.
    Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;
  68. 68.
    Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77.Google Scholar
  69. 69.
    Kommanaboyina B, Rhodes CT. Trends in stability testing, with emphasis on stability during distribution and storage. Drug Dev Ind Pharm. 1999;25(7):857–68.CrossRefPubMedGoogle Scholar
  70. 70.
    FDA. Emerging technology program maryland, US: food and drug administration. 2017. Available from:
  71. 71.
    Markarian J. FDA and the emerging technology of 3D printing. Pharm Technol. 2016;40(8). Available from: emerging-technology-3d-printing.
  72. 72.
    FDA. Technical considerations for additive manufactured devices: food and drug administration. 2017. Available from:
  73. 73.
    Yu LX, Akseli I, Allen B, Amidon G, Bizjak GT, Boam A, Caulk M, Doleski D, Famulare J, Fisher AC, Furness S, Hasselbalch B, Havel H, Hoag SW, Iser R, Johnson BD, Ju R, Katz P, Lacana E, Lee SL, Lostritto R, McNally G, Mehta M, Mohan G, Nasr M, Nosal R, Oates M, O’Connor T, Potti J, Raju GK, Ramanadham M, Randazzo G, Rosencrance S, Schwendeman A, Selen A, Seo P, Shah V, Sood R, Thien MP, Tong T, Trout BL, Tyner K, Vaithiyalingam S, VanTrieste M, Walsh F, Wesdyk R, Woodcock J, Wu G, Wu L, Yu L, Zezza D. Advancing product quality: a summary of the second FDA/PQRI conference. AAPS J. 2016;18(2):528–43.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Christine M. Madla
    • 1
    Email author
  • Sarah J. Trenfield
    • 1
  • Alvaro Goyanes
    • 2
  • Simon Gaisford
    • 1
    • 2
  • Abdul W. Basit
    • 1
    • 2
  1. 1.Department of Pharmaceutics, UCL School of PharmacyUniversity College LondonLondonUK
  2. 2.FabRx Ltd.AshfordUK

Personalised recommendations