Advertisement

Pneumoperitoneum for Laparoscopic Surgery During Pregnancy

  • Douglas E. Ott
Chapter

Abstract

Creating a pneumoperitoneum for laparoscopic surgery is safe during pregnancy. However, attention to detail is paramount because the margins of error are smaller and the physiology more temperamental than for a nonpregnant patient. Furthermore, two persons—mother and fetus—are involved in the surgical event. The gas should be preconditioned by humidifying and warming to physiologic conditions to reduce hypothermia, decrease peritoneal damage, and improve outcomes. There should be continuous end-tidal CO2 monitoring. The patient should be in the left lateral decubitus position. Intra-abdominal pressure should not exceed 15 mmHg, but should be less if abdominal compliance warrants; the procedure can be performed safely at lower pressure without compromising the outcome. Venous thrombosis prevention should be performed using intraoperative and postoperative compression devices with early ambulation. Perioperative fetal monitoring should be done when there is a viable fetus. Tocolytic prophylaxis may be required perioperatively if there are signs of preterm labor.

Keywords

Pneumoperitoneum Laparoscopy Pregnancy Insufflation 

References

  1. 1.
    Pillay P, Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27:89–94.CrossRefGoogle Scholar
  2. 2.
    Pearl J, Price R, Richardson W, Fanelli R. Guidelines for diagnosis, treatment and use of laparoscopy for surgical problems during pregnancy. Surg Endosc. 2011;25:3479–92.  https://doi.org/10.1007/s00464-011-1927-3.CrossRefPubMedGoogle Scholar
  3. 3.
    Pearl J, Price R, Tonkin A, Richardson W. SAGES guidelines for use of laparoscopy during pregnancy. Surg Endosc. 2017;31:3767–82.CrossRefGoogle Scholar
  4. 4.
    Juhasz-Boss I, Solomayer E, Strik M, Raspe C. Abdominal surgery in pregnancy – an interdisciplinary challenge. Dtsch Arztebl Int. 2014;111:465–2.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chun R, Kirkpatrick A. Intra-abdominal pressure, intra-abdominal hypertension, and pregnancy: a review. Ann Intensive Care. 2012;2(Suppl 1):55.CrossRefGoogle Scholar
  6. 6.
    Jeong H. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol. 2010;6:689–99.  https://doi.org/10.1517/17425251003677755.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mhyre J, Bateman B, Leffert L. Influence of patient comorbidities on the risk of near-miss maternal morbidity or mortality. Anesthesiology. 2011;115:963–72.  https://doi.org/10.1097/ALN.0b013e318233042d.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fuchs F, Bruyere M, Senat M, Purenne E, Benhamou D, Fernandez H. Are standard intra-abdominal pressure values different during pregnancy? PLoS One. 2013;8(10):e77324.  https://doi.org/10.1371/journal.pone.0077324.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    DeKeulenaer B, De Waele J, Powell B, Malbrain M. What is normal intra-abdominal pressure and how it is affected by positioning, body mas and positive end-expiratory pressure? Intensive Care Med. 2009;35:969–76.CrossRefGoogle Scholar
  10. 10.
    Sawchuck D, Wittman B. Pre-eclampsia renamed and reframed: intra-abdominal hypertension in pregnancy. Med Hypotheses. 2014;83:619–32.  https://doi.org/10.1016/j.mehy.2014.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    van Ramshorst G, Salih M, Hop W, van Waes O, Kleinrensink G, Goossens R, et al. Non-invasive. measurement of intra-abdominal pressure by assessment of abdominal wall tension. J Surg Res. 2011;171:240–4.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Blaser A, Bjorck M, De Keulenaer B, Regli A. Abdominal compliance: a bench-to-bedside review. J Trauma Acute Care Surg. 2015;78:1044–53.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Becker C, Plymale M, Wennergren J, Totten C, Stigall K, Roth H. Compliance of the abdominal wall during laparoscopic insufflation. Surg Endosc. 2017;31:1947–51.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Song C, Alijani A, Frank T, Hanna G, Cuschieri A. Elasticity of the living abdominal wall in laparoscopic surgery. J Biomech. 2006;39:587–91.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Forstemann T, Trzewik J, Holste J, Batke B, Konerding MA, Wolloscheck T, et al. Forces and deformations of the abdominal wall- a mechanical and geometrical approach to the linea alba. J Biomech. 2011;44:600–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Malbrain M, De Laet I, De Waele J, Kirkpatrick A. Intra-abdominal hypertension: definitions, monitoring, interpretation and management. Best Pract Res Clin Anaesthesiol. 2013;27:249–70.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chung R, Kirkpatrick A. Intra-abdominal pressure, intra-abdominal hypertension, and pregnancy: a review. Ann Intensive Care. 2012;2(Suppl 1):85.Google Scholar
  18. 18.
    Sugerman H. Hypothesis: preeclampsia is a venous disease secondary to an increased intra-abdominal pressure. Med Hypotheses. 2011;77:841–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kirkpatrick A, Roberts D, De Waele J, Jaeschke R, Malbrain M, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the world Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39:1190–11206.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Carter J, Soper D. Operative laparoscopy in pregnancy. JSLS. 2004;8:57–60.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Jacobs V, Morrison J. The real intraabdominal pressure during laparoscopy: comparison of different insufflators. J Minim Invasive Gynecol. 2007;14:103–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Reedy M, Kim U, Thompson E, Rayburn W. Laparoscopy during pregnancy. A safe alternative to laparoscopy? Contemp Ob Gyn 1998:75–91.Google Scholar
  23. 23.
    Hunter J, Swanstrom L, Thornberg K. Carbon dioxide pneumoperitoneum induces fetal acidosis in a pregnant ewe model. Surg Endosc. 1995;9:272–9.PubMedGoogle Scholar
  24. 24.
    Ott D. Pneumoperitoneum: production, management, effects and consequences. In: Prevention and management of laparoendoscopic surgical complications. 1st ed. Society of Laparoendoscopic Surgeons: Miami; 1999.Google Scholar
  25. 25.
    Awoniyi A, Belotte J, Abuanzeh S, Fletcher N, Diamond M, Saed G. Advances in the pathogenesis of adhesion development. The role of oxidative stress. Repro Sci. 2014;21:823–36.CrossRefGoogle Scholar
  26. 26.
    Hatipoglu S, Akbultu S, Hatipoglu F, Abdullayev R. Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments. World J Gastroenerol. 2014;28:18165–76.CrossRefGoogle Scholar
  27. 27.
    Ott D. The pneumoperitoneum. In: Prevention and management of laparoendoscopic surgical complications. 3rd ed. Society of Laparoendoscopic Surgeons: Miami; 2012.Google Scholar
  28. 28.
    Binda M. Humidification during laparoscopic surgery: overview of the clinical benefits of using humidified gas during laparoscopic surgery. Arch Gynecol Obstet. 2015;292:955–71.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ott D. Laparoscopy and adhesion formation, adhesions and laparoscopy. Semin Reprod Med. 2008;26:322–30.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Balkin D, Duh Q, Kind G, Chang D, McGrath M. Failed pneumoperitoneum for laparoscopic surgery following autologous Deep Inferior Epigastric Perforator (DIEP) flap breast reconstruction: a case report. BMC Surg. 2016;27(16):28.  https://doi.org/10.1186/s12893-016-0143-4.CrossRefGoogle Scholar
  31. 31.
    Goldman J, Rose L, Morgan M, Denison D. Measurement of abdominal wall compliance in normal subjects and tetraplegic patients. Thorax. 1986;41:513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nguyen N, Wolfe BM. The physiologic effects of pneumoperitoneum in the morbidly obese. Ann Surg. 2005;241:219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Srivastava A, Niranjan A. Secrets of safe laparoscopic surgery: anaesthetic and surgical considerations. J Minim Access Surg. 2010;6:91–4.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lackey L, Ott D. Terminal gas velocity during laparoscopy. J Am Assoc Gynecolo Laparosc. 2002;9:297–305.CrossRefGoogle Scholar
  35. 35.
    Gray R, Ott D, Henderson A, Cochran S, Roth C. Severe local hypothermia from laparoscopic gas evaporative jet-cooling; a mechanism to explain clinical observations. JSLS. 1999;3:171–7.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ott D. Desertification of the peritoneum by thin-film evaporation during laparoscopy. JSLS. 2003;7:189–95.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hazebroek E, Schreve M, Visser P, De Bruin R, Marquet R, Bonjer H. Impact of temperature and humidity of carbon dioxide pneumoperitoneum on body temperature and peritoneal morphology. J Laparoendosc Adv Surg Tech A. 2002;12:355–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Peng Y, Zheng M, Ye Q, Chen X, Yu B, Liu B. Heated and humidified CO2 prevents hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged laparoscopic insufflations. J Surg Res. 2009;151:40–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Mouton W, Bessell J, Pfitzner J, Dymock R, Brealey J, Maddern G. A randomized controlled trial to determine the effects of humidified carbon dioxide insufflation during thoracoscopy. Surg Endosc. 1999;13:382–5.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Volz J, Koster S, Spacek Z, Paweletz N. Characteristic alterations of the peritoneum after carbon dioxide pneumoperitoneum. Surg Endosc. 1999;13:611–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Suematsu T, Hirabayashi Y, Shiraishi N, Adachi Y, Kitamura H, Kitano S. Morphology of the murine peritoneum after pneumoperitoneum vs laparotomy. Surg Endosc. 2001;15:954–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu Y, Hou Q. Effect of carbon dioxide pneumoperitoneum during laparoscopic surgery on morphology of peritoneum. Zhonghua Yi Xue Za Zhi. 2006;86:164–6.PubMedGoogle Scholar
  43. 43.
    Ryan G, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol. 1973;71:93–112.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Davey A, Hayward J, Marshall J, Woods A. The effects of insufflation conditions on rat mesothelium. Int J Inflam. 2013;2013:816283.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Erikoglu M, Yol S, Avunduk M, Erdemli E, Can A. Electron-microscopic alterations of the peritoneum after both cold and heated carbon dioxide pneumoperitoneum. J Surg Res. 2005;125:73–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Ott D. Laparoscopy and tribology: the effect of laparoscopic gas on peritoneal fluid. J Am Assoc Gynecol Laparosc. 2001;8:117–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Jacobs V, Keichle M, Morrison J. Carbon dioxide gas heating inside laparoscopic insufflators has no effect. JSLS. 2005;9:208–12.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Slim K, Bousquet J, Kwiatkowski F, Lescure G, Pezet D, Chipponi J. Effect of CO2 gas warming on pain after laparoscopic surgery: a randomized double-blind controlled trial. Surg Endosc. 2000;13:1110–4.CrossRefGoogle Scholar
  49. 49.
    Saad S, Minor I, Mohri T, Nagelschmidt M. The clinical impact of warmed insufflation carbon dioxide gas for laparoscopic cholecystectomy. Surg Endosc. 2000;14:787–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Wills V, Hunt D, Armstrong A. A randomized controlled trial assessing the effect of heated carbon dioxide for insufflation on pain and recovery after laparoscopic fundoplication. Surg Endosc. 2001;15:166–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Nunn J. Carbon dioxide. In: Applied respiratory physiology. London: Butterworth; 1987. p. 207–34.CrossRefGoogle Scholar
  52. 52.
    Grzegorzewska A, Antoniewicz K. Effective peritoneal blood flow and patient characteristics. In: Khanna R, editor. Advances in peritoneal dialysis, vol. 10. Toronto, ON: Peritoneal Dialysis Publications; 1994. p. 27–9.Google Scholar
  53. 53.
    Kim M, Lofthouse J, Flessner M. A method to test blood flow limitation of peritoneal-blood solute transport. J Am Soc Nephrol. 1997;8:471–4.PubMedGoogle Scholar
  54. 54.
    Pacilli M, Pierro A, Kingsley C, Curry J, Herod J, Eaton S. Absorption of carbon dioxide during laparoscopy in children measured using a novel mass spectrometric technique. BJA. 2006;97:215–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Glew P, Campher M, Pearson K, Schofield B, Davey A. The effect of warm humidified CO2 on the dissipation of residual gas following laparoscopy in piglets. J Am Assoc Gynecol Laparosc. 2004;11:204–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Raffi A. Body temperature during surgery and anesthesia. MVC Quarterly. 1972;8:135–41.Google Scholar
  57. 57.
    Gross C. Claude Bernard and the constancy of the internal environment. Neuroscientist. 1998;4:380–5.CrossRefGoogle Scholar
  58. 58.
    Cross S, Albury W. Walter B. Cannon, L.J. Henderson and the organic analogy. Osiris. 1987;3:165–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Cam R, Yonem H, Ozsoy H. Core body temperature changes during surgery and nursing management. Clin Med Res. 2016;5:1–5.  https://doi.org/10.11648/j.cmr.s.2016050201.11.CrossRefGoogle Scholar
  60. 60.
    Whelan R, Fleshman J, Fowler D. SAGES manual of perioperative care in minimally invasive surgery. New York: Springer; 2006.Google Scholar
  61. 61.
    Rosenthal R, Friedman R, Phillips E. The pathophysiology of pneumoperitoneum. In: Bessell J, Maddern G, editors. Influence of gas temperature during laparoscopic procedures. Heidelberg: Springer; 1998. p. 18–27.Google Scholar
  62. 62.
    Buhre W, Rossaint R. Perioperative management and monitoring in anaesthesia. Lancet. 2003;362:1839–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Sessler D. Complications and treatment of mild hypothermia. Anesthesiology. 2001;95:531–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Jacobs V, Morrison J, Mettler L, Mundhenke C, Jonat W. Measurement of CO2 hypothermia during laparoscopy and pelviscopy: how cold it gets and how to prevent it. J Am Assoc Gynecol Laparosc. 1999;6(3):289–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Diaz M, Becker D. Thermoregulation: physiological and clinical considerations during sedation and general anesthesia. Anesth Prog. 2010;57:25–33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Binda M, Molinas C, Mailova K, Koninckx P. Effect of temperature upon adhesion formation in a laparoscopic mouse model. Hum Reprod. 2004;19:2626–32.PubMedCrossRefGoogle Scholar
  67. 67.
    Binda M, Molinas C, Hansen P, Koninckx P. Effect of desiccation and temperature during laparoscopy on adhesion formation in mice. Fertil Stertil. 2006;86:166–75.CrossRefGoogle Scholar
  68. 68.
    Sajid M, Mallick A, Rimpel J, Bokari SA, Cheek E, Baig M. Effect of heated and humidified carbon dioxide on patients after laparoscopic procedures: a meta-analysis. Surg Laparosc Endosc Percutan Tech. 2008;18:539–46.PubMedCrossRefGoogle Scholar
  69. 69.
    Sammour T, Kahokehr A, Hill A. Meta-analysis of the effect of warm humidified insufflation on pain after laparoscopy. Br J Surg. 2008;95:950–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Bessell J, Ludbrook G, Millard H, Baxter S, Ubhi S, Maddern G. Humidified gas prevents hypothermia induced by laparoscopic insufflation: a randomized controlled study in a pig model. Surg Endosc. 1999;13:101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bessell J, Karatassas A, Patterson J, Jamieson G, Maddern G. Hypothermia induced by laparoscopic insufflation. A randomized study in a pig model. Surg Endosc. 1995;9:791–6.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ott D, Reich H, Love B, McCorvey R, Toledo A, Liu C, et al. Reduction of laparoscopic-induced hypothermia, postoperative pain and recovery room length of stay by pre-conditioning gas with the Insuflow device: a prospective randomized controlled multi-center study. JSLS. 1998;2:321–9.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Benavides R, Wong A, Nguyen H. Improved outcomes for lap-banding using the Insuflow device compared with heated-only gas. JSLS. 2009;13:302–5.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Beste T, Daucher J, Holbert D. Humidified compared with dry, heated carbon dioxide at laparoscopy to reduce pain. Obstet Gynecol. 2006;107:263–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Farley D, Greenlee S, Larson D, Harrington J. Double-blind, prospective, randomized study of warmed, humidified carbon dioxide insufflation vs standard carbon dioxide for patients undergoing laparoscopic cholecystectomy. Arch Surg. 2004;139:739–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Herrmann A, DeWilde R. Insufflation with humidified and heated carbon dioxide in short-term laparoscopy: a double-blinded randomized controlled trial. Biomed Res Int. 2015;2015:412618.  https://doi.org/10.1155/2015/412618.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Klugsberger B, Schreiner M, Rothe A, Haas D, Oppelt P, Shamiyeh A. Warmed, humidified carbon dioxide insufflation versus standard carbon dioxide in laparoscopic cholecystectomy: a double-blinded randomized controlled trial. Surg Endosc. 2014;28:2656–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Mouton W, Bessell J, Millard S, Baxter P, Maddern G. A randomized controlled trial assessing the benefit of humidified insufflation gas during laparoscopic surgery. Surg Endosc. 1999;13:106–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Hamza M, Schneider B, White P, Recart A, Villegas L, Ogunnaike B, et al. Heated and humidified insufflation during laparoscopic gastric bypass surgery: effect on temperature, postoperative pain, and recovery outcomes. J Laparoendosc Adv Surg Tech A. 2005;15:6–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Gizzi A, Cherubini C, Migliori S, Alloni R, Portuesi R, Filippi S. On the electrical intestine turbulence induced by temperature changes. Phys Biol. 2010;7:1–12.CrossRefGoogle Scholar
  81. 81.
    Hertzler AE. The peritoneum, vol. 1. St. Louis: C. V. Mosby Co.; 1919.Google Scholar
  82. 82.
    diZerega G, Rogers K. The peritoneum. New York: Springer-Verlag; 1992. p. 1–56.CrossRefGoogle Scholar
  83. 83.
    Hanbidge A, Lynch D, Wilson S. Ultrasound of the peritoneum. Radiographics. 2003;23:663–384.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Albanese A, Albanese E, Mino J, Gomez E, Gomez M, Zandomeni M, Merlo A. Peritoneal surface area: measurements of 40 structures covered by peritoneum: correlation between total peritoneal surface area and the surface calculated by formulas. Surg Radiol Anat. 2009;31:369–77.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Volz J, Koster S, Schaeff B, Paolucci V. Laparoscopic surgery: the effects of insufflation gas on tumor-induced lethality in nude mice. Am J Obstet Gynecol. 1998;178:793–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mutsaers S, Birnie K, Lansley S, Herrick S, Lim C, Prele C. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol. 2015;6:113.  https://doi.org/10.3389/fphar.2015.00113.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ryan GB, Grobety J, Majno F. Postoperative peritoneal adhesions: a study of the mechanisms. Am J Pathol. 1971;65:117–48.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Raftery A. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat. 1973;115:375–92.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Raftery A. Regeneration of parietal and visceral peritoneum. A light microscopical study. Br J Surg. 1973;60:293–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Volz J, Koster S, Weiss M, Schmidt R, Urbaschek R, Melchert F, et al. Pathophysiologic features of a pneumoperitoneum at laparoscopy: a swine model. Am J Obstet Gynecol. 1996;174:132–40.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Volz J, Koster S, Leweling H. Surgical trauma and metabolic changes induced by surgical laparoscopy versus laparotomy. Gynaecol Endosc. 1997;6:1–6.CrossRefGoogle Scholar
  92. 92.
    Holmdahl L, Risberg B, Beck D, Burns J, Chegini N, diZerega G, et al. Adhesions: pathogenesis and prevention-panel discussion and summary. Eur J Surg Suppl. 1997;577:56–62.Google Scholar
  93. 93.
    Rosario M, Ribeiro U, Corbett C, Ozaki A, Bresciani C, Zilberstein B, Gama-Rodrigues J. Does CO2 pneumoperitoneum alter the ultra-structure of the mesothelium? J Surg Res. 2006;133:84–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Grabowski J, Talamini M. Physiological effects of pneumoperitoneum. Gastrointest Surg. 2009;13:1009–16.CrossRefGoogle Scholar
  95. 95.
    Brokelman W, Lensvelt M, Borel Rinkes I, Klinkenbijl J, Reijnen M. Peritoneal changes due to laparoscopic surgery. Surg Endosc. 2011;25:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Papparella A, Nino F, Coppola S, Noviello C, Paciello O, Papparella S. Peritoneal morphological changes due to pneumoperitoneum: the effect of intra-abdominal pressure. Eur J Pediatr Surg. 2013;24:322–7.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Mais V. Peritoneal adhesions after laparoscopic gastrointestinal surgery. World Gastroenterol. 2014;20:4917–25.CrossRefGoogle Scholar
  98. 98.
    Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol. 2011;17:4545–53.  https://doi.org/10.3748/wjg.v17.i41.4545.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Diamond M, Freeman M. Clinical implications of post- surgical adhesions. Hum Reprod Update. 2001;7:567–76.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ellis H. The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl. 1997;577:5–9.Google Scholar
  101. 101.
    Hawkins-Ambler G. What makes for success in abdominal surgery? In: Shrady G, editor. The British Gynaecological Society, 1892 Medical Record. New York: William Wood & Company; 1892.Google Scholar
  102. 102.
    Yung S, Chan T. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells mediators of inflammation. Mediat Inflamm. 2012;2012:484167.  https://doi.org/10.1155/2012/484167.CrossRefGoogle Scholar
  103. 103.
    Yung S, Chan T. Mesothelial cells. Perit Dial Int. 2007;27:110–5.Google Scholar
  104. 104.
    Flessner M. Endothelial glycocalyx and the peritoneal barrier. Perit Dial Int. 2008;28:6–12.PubMedGoogle Scholar
  105. 105.
    Anglani F, Forino M, Del Petre D, Ceol M, Favaro S. Molecular biology of the peritoneal membrane: in between morphology and function. Contrib Nephrol. 2001;131:61–73.CrossRefGoogle Scholar
  106. 106.
    Molinas C, Binda M, Manavella G, Koninckx P. Adhesion formation after laparoscopic surgery: what do we know about the role of the peritoneal environment? Facts Views Vis Obgyn. 2010;2:149–60.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Bird S. Mesothelial primary cilia of peritoneal and other serosal surfaces. Cell Biol Int. 2004;28:151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Pouly J, Seak-San S. Adhesions: laparoscopy versus laparotomy. In: DiZerega G, editor. Peritoneal surgery. New York: Springer-Verlag; 2000. p. 183–92.CrossRefGoogle Scholar
  109. 109.
    Alvarez W. The cause and prevention of post-operative gas pains. Cal State J Med. 1918;16:338–41.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Nolph KD, editor. Chapter 4. Peritoneal dialysis. Boston: Martinus Nijhoff Publishers; 1985.Google Scholar
  111. 111.
    Howard F. Approach to the patient with chronic pelvic pain. In: Howard F, editor. Pelvic pain, diagnosis and management. Philadelphia, PA: Lippincott Williams & Wilkins; 2000.Google Scholar
  112. 112.
    Diamond M, Manvinder S, Puscheck E. Chronic pelvic pain and adhesions. In: Vercellini P, editor. Chronic pelvic pain. Singapore: Wiley-Blackwell; 2011.CrossRefGoogle Scholar
  113. 113.
    Wildbrett P, Oh A, Naundorf D, Volk T, Jacobi C. Impact of laparoscopic gases on peritoneal microenvironment and essential parameters of cell function. Surg Endosc. 2003;17:78–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Wong Y, Shah P, Birkett D, Brams D. Peritoneal pH during laparoscopy is dependent on ambient gas environment. Surg Endosc. 2005;19:60–4.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Veekash G, Wei L, Su M. Carbon dioxide pneumoperitoneum, physiologic changes and anesthetic concerns. Ambulatory Surg. 2010;16:41–6.Google Scholar
  116. 116.
    Tan P, Lee T, Tweed W. Carbon dioxide absorption and gas exchange during pelvic laparoscopy. Can J Anaesth. 1992;39:677–81.PubMedCrossRefGoogle Scholar
  117. 117.
    Muelett C, Viale J, Sagnard P, Miellet C, Ruynat L, Counioux H, et al. Pulmonary carbon dioxide elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation. Anesth Analg. 1993;76:622–6.Google Scholar
  118. 118.
    Perrin M, Fletcher A. Laparoscopic abdominal surgery. Contin Educ Anaesth Crit Care Pain. 2004;4:107–10.CrossRefGoogle Scholar
  119. 119.
    Martin-Cancho M, Celdran D, Lima J, Carrasco-Jimenez M, Sanchez-Margall F, Uson-Gargallo J. Anaesthetic considerations during laparoscopic surgery. Chapter 2. In: Darwish A, editor. Advanced gynecologic endoscopy. London: InTech; 2011. http://www.intechopen.com/books/advanced-gynecologic-endoscopy/anaesthetic-considerations-duringlaparoscopic-surgery.Google Scholar
  120. 120.
    Loring S, Behazin N, Novero A, Novack V, Jones S, O’Donnell C, et al. Respiratory mechanical effects of surgical pneumoperitoneum in humans. J Appl Physiol. 2014;117:1074–9.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sodha S, Nazarian S, Adshead J, Vasdev N, Mohan-S G. Effect of pneumoperitoneum on renal function and physiology in patients undergoing robotic renal surgery. Curr Urol. 2016;9:1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wever J. Renal perfusion and function during pneumoperitoneum: a systematic review and meta-analysis of animal studies. PLoS One. 2016;11(9):e0163419.  https://doi.org/10.1371/journal.pone.0163419.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Demyttenaere S, Feldman L, Fried G. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc. 2007;21:152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Taskin O, Buhur A, Birincioglu M, Burak F, Atmaca R, Yilmaz I, et al. The effects of duration of CO2 insufflation and irrigation on peritoneal microcirculation assessed by free radical scavengers and total glutathione levels during operative laparoscopy. J Am Assoc Gynecol Laparosc. 1998;5:129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Glantzounis G, Tselepis A, Tambaki A, Trikalinos T, Manataki A, Galaris D, et al. Laparoscopic surgery-induced changes in oxidative stress markers in human plasma. Surg Enndosc. 2001;15:1315–9.CrossRefGoogle Scholar
  126. 126.
    Arsalani-Zadeh R, Ullah S, Khan S, MacFie J. Oxidative stress in laparoscopic versus open abdominal surgery: a systematic review. J Surg Res. 2011;169:59–68.  https://doi.org/10.1016/j.jss.2011.01.038 CrossRefGoogle Scholar
  127. 127.
    Sammour T, Mittal A, Loveday B, Kahokehr A, Phillips A, Windsor J, Hill A. Systematic review of oxidative stress associated with pneumoperitoneum. Br J Surg. 2009;96:8366–50.CrossRefGoogle Scholar
  128. 128.
    Yiannakopoulou E, Nikiteas N, Despina P, Tsigris C. Effect of laparoscopic surgery on oxidative stress response: systematic review. Surg Laparosc Endosc Percutan Tech. 2013;23:101–8.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Cheong Y, Laird S, Li T, Shelton J, Ledger W, Cooke I. Peritoneal healing and adhesion formation/reformation. Hum Reprod Update. 2001;7:556–66.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Desborough J. The stress response to trauma and surgery. Br J Anaesth. 2000;85:109–17.CrossRefGoogle Scholar
  131. 131.
    Sammour T, Kahokehr A, Soop M, Hill A. Peritoneal damage: the inflammatory response and clinical implications of the neuro-immuno-humoral axis. World J Surg. 2010;34:704–20.PubMedCrossRefGoogle Scholar
  132. 132.
    Chegini N. Peritoneal molecular environment, adhesion formation and clinical implication. Front Biosci. 2002;1(7):e91–115.Google Scholar
  133. 133.
    Cheong Y, Laird S, Shelton J, Ledger W, Li T, Cooke I. The correlation of adhesions and peritoneal fluid cytokine concentrations: a pilot study. Hum Reprod. 2002;17:1039–45.PubMedCrossRefGoogle Scholar
  134. 134.
    Yahara N, Abe T, Morita K, Tangoku A, Oka M. Comparison of interleukin-6, interleukin-8, and granulocyte colony-stimulating factor production by the peritoneum in laparoscopic and open surgery. Surg Endosc. 2002;16(11):1615–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Luk J, Tung P, Wong K, Chan K, Law S, Wong J. Laparoscopic surgery induced inerleukin-6 levels in serum and gut mucosa: implications of peritoneum integrity and gas factors. Surg Endosc. 2009;23:370–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Neuhaus S, Watson D. Pneumoperitoneum and peritoneal surface changes: a review. Surg Endosc. 2004;18:1316–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Douglas E. Ott
    • 1
  1. 1.Biomedical Engineering, Mercer UniversityMaconUSA

Personalised recommendations