Advertisement

New Developments in Molecular Techniques for Breeding in Ornamentals

  • Marinus J. M. Smulders
  • Paul Arens
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)

Abstract

In ornamental crops the development of genetic and molecular tools for breeding has been slow because of the large number of ornamental species, many of which are genetically complicated for breeding, being outbreeding crops, polyploid, and/or having a large genome.

This is changing due to three recent developments: (i) next-generation sequencing can now generate large numbers of single nucleotide polymorphism (SNP) markers based on genomic or transcriptomic sequences, (ii) efficient and automated SNP detection systems render genotyping into an automated and relatively cheap process, and (iii) methods and software now exist to analyse these data, also in polyploid crops, to find associations with traits and to generate tools for marker-assisted breeding. The challenge for the coming years will be to implement these tools to speed up breeding.

When more genome sequences of ornamental species or related species become available, it will also be possible to move from associated markers (for a trait or QTL region) to the underlying variation in the causal genes. Knowledge of the existing variation in functional alleles will make it possible to consider directing biosynthetic or regulatory pathways towards, e.g. different colour or scent combinations.

New plant breeding techniques (also called ‘precision breeding techniques’) add new possibilities to direct the breeding process. Notably, gene editing (also called genome editing) using Crispr/Cas may be used to increase the pool of functional variation, but there are challenges to apply it in ornamentals, in terms of the availability of sequence information for the candidate genes and the existence of transformation and regeneration protocols.

Keywords

SNP marker QTL Marker-assisted breeding DNA-informed breeding Functional variation Plant breeding 

Notes

Acknowledgements

This research was partially supported by KB-24-002-017 and the TKI-U Polyploid projects BO-26.03-002-001 and BO-26.03-009-004. The support of the companies participating in the Polyploid projects is gratefully acknowledged.

References

  1. Arens P, Bijman P, Tang N, Shahin A, van Tuyl JM (2012) Mapping of disease resistance in ornamentals: a long haul. Acta Hortic (ISHS) 953:231–238. https://doi.org/10.17660/ActaHortic.2012.953.32 CrossRefGoogle Scholar
  2. Berg JA, Appiano M, Bijsterbosch G et al (2017) Functional characterization of cucumber (Cucumis sativus L.) Clade V MLO genes. BMC Plant Biol 17:80. https://doi.org/10.1186/s12870-017-1029-z CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bink MCAM, Jansen J, Madduri M et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090. https://doi.org/10.1007/s00122-014-2281-3 CrossRefPubMedGoogle Scholar
  4. Bombarely A, Moser M, Amrad A et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants 2:16074. https://doi.org/10.1038/nplants.2016.74 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bourke PM, Arens P, Voorrips RE et al (2017) Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J 90:330–343. https://doi.org/10.1111/tpj.13496 CrossRefPubMedGoogle Scholar
  6. Bourke P, van Geest G, Voorrips RE et al (2018) polymapR: linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics, bty371. https://doi.org/10.1093/bioinformatics/bty371
  7. Cai J, Liu X, Vanneste K et al (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72. https://doi.org/10.1038/ng.3149 CrossRefPubMedGoogle Scholar
  8. Cao Z, Deng Z (2017) De novo assembly, annotation, and characterization of root transcriptomes of three Caladium cultivars with a focus on necrotrophic pathogen resistance/defense-related genes. Int J Mol Sci 18:712. https://doi.org/10.3390/ijms18040712 CrossRefPubMedCentralGoogle Scholar
  9. Casimiro-Soriguer I, Narbona E, Buide ML, del Valle JC, Whittall JB (2016) Transcriptome and biochemical analysis of a flower color polymorphism in Silene littorea (Caryophyllaceae). Front Plant Sci 7:204. https://doi.org/10.3389/fpls.2016.00204 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chong X, Zhang F, Wu Y et al (2016) A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in Chrysanthemum. Genome Biol Evol 8:3661–3671. https://doi.org/10.1093/gbe/evw270 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Debener T, Byrne DH (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117. https://doi.org/10.1016/j.plantsci.2014.04.005 CrossRefPubMedGoogle Scholar
  12. Di Guardo M, Micheletti D, Bianco L et al (2015) ASSIsT: an automatic SNP scoring tool for in- and outbreeding species. Bioinformatics 31:3873–3874. https://doi.org/10.1093/bioinformatics/btv446 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fu Y, Esselink GD, Visser RGF, van Tuyl JM, Arens P (2016) Transcriptome analysis of Gerbera hybrida including in silico confirmation of defense genes found. Front Plant Sci 7:247. https://doi.org/10.3389/fpls.2016.00247 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fu Y, van Silfhout A, Shahin A et al (2017) Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol Breed 37:13. https://doi.org/10.1007/s11032-016-0617-1 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gar O, Sargent DJ, Tsai C-J et al (2011) An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS One 6:e20463. https://doi.org/10.1371/journal.pone.0020463 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49 CrossRefGoogle Scholar
  17. Hawkins C, Caruana J, Schiksnis E, Liua Z (2016) Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Sci Rep 6:29017. https://doi.org/10.1038/srep29017 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hibrand Saint-Oyant L, Ruttink T, Hamama L et al (2018) A high-quality sequence of Rosa chinensis to elucidate genome structure and ornamental traits. In: bioRxiv. https://doi.org/10.1101/254102 Google Scholar
  19. Holdsworth WL, Mazourek M (2015) Development of user-friendly markers for the pvr1 and Bs3 disease resistance genes in pepper. Mol Breed 35:28CrossRefGoogle Scholar
  20. Huang J, Lin C, Cheng T et al (2016) The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017. https://doi.org/10.7717/peerj.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jung H-J, Veerappan K, Natarajan S et al (2017) A system for distinguishing octoploid strawberry cultivars using high-throughput SNP genotyping. Trop. Plant Biol 10:68–76. https://doi.org/10.1007/s12042-017-9185-8 CrossRefGoogle Scholar
  22. Kaufmann H, Qiu X, Wehmeyer J, Debener T (2012) Isolation, molecular characterization, and mapping of four rose MLO orthologs. Front Plant Sci 3:244. https://doi.org/10.3389/fpls.2012.00244 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim JE, Oh SK, Lee JH, Lee BM, Jo SH (2014) Genome-wide SNP calling using next generation sequencing data in tomato. Mol Cells 37:36–42. https://doi.org/10.14348/molcells.2014.2241 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Koning-Boucoiran CFS, Smulders MJM, Krens FA, Esselink GD, Maliepaard C (2012) SNP genotyping in tetraploid roses. Acta Hortic (ISHS) 953:351–356. https://doi.org/10.17660/ActaHortic.2012.953.49 CrossRefGoogle Scholar
  25. Koning-Boucoiran CFS, Esselink GD, Vukosavljev M et al (2015) Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Front Plant Sci 6:249. https://doi.org/10.3389/fpls.2015.00249 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leeggangers HACF, Moreno-Pachon N, Gude H, Immink RGH (2013) Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants. Int J Dev Biol 57:611–620. https://doi.org/10.1387/ijdb.130238ri CrossRefPubMedGoogle Scholar
  27. Leeggangers HACF, Nijveen H, Nadal Bigas J, Hilhorst HWM, Immink RGH (2017) Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana. Plant Physiol 173:1904–1919. https://doi.org/10.1104/pp.16.01758 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moreno-Pachon NM, Leeggangers HACF, Nijveen H et al (2016) Elucidating and mining the Tulipa and Lilium transcriptomes. Plant Mol Biol 92:249–261. https://doi.org/10.1007/s11103-016-0508-1 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Muir P, Li S, Lou S et al (2016) The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 17:53. https://doi.org/10.1186/s13059-016-0917-0 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nguyen THN, Schulz D, Winkelmann T, Debener T (2017) Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Rep 36:1493–1505. https://doi.org/10.1007/s00299-017-2170-8 CrossRefPubMedGoogle Scholar
  31. Nijveen H, van Kaauwen M, Esselink DG, Hoegen B, Vosman B (2013) QualitySNPng: a user-friendly SNP detection and visualization tool. Nucleic Acids Res 41:W587–W590. https://doi.org/10.1093/nar/gkt333 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nowak MD, Russo G, Schlapbach R et al (2015) The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol 16:12. https://doi.org/10.1186/s13059-014-0567-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. Peace CP (2017) DNA-informed breeding of rosaceous crops: promises, progress and prospects. Hortic Res 4:17006. https://doi.org/10.1038/hortres.2017.6 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Preedy KF, Hackett CA (2016) A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling. Theor Appl Genet 129:2117–2132. https://doi.org/10.1007/s00122-016-2761-8 CrossRefPubMedGoogle Scholar
  35. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.e8. https://doi.org/10.1016/j.cell.2017.08.030 CrossRefPubMedGoogle Scholar
  36. Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449. https://doi.org/10.1016/j.tplants.2015.11.006 CrossRefPubMedGoogle Scholar
  37. Schmutz J, Wheeler J, Grimwood J et al (2004) Quality assessment of the human genome sequence. Nature 429:365–368CrossRefPubMedGoogle Scholar
  38. Schulz DF, Schott RT, Voorrips RE, Smulders MJM, Linde M, Debener T (2016) Genome-wide association analysis of the anthocyanin and carotenoid contents of rose petals. Front Plant Sci 7:1798. https://doi.org/10.3389/fpls.2016.01798
  39. Shahin A, Arens P, Van Heusden AW et al (2010) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130:372–382. https://doi.org/10.1111/j.1439-0523.2010.01812.x CrossRefGoogle Scholar
  40. Shahin A, van Gurp T, Peters SA, Visser RGF, van Tuyl JM, Arens P (2012a) SNP markers retrieval for a non-model species: a practical approach. BMC Res Notes 5:79. https://doi.org/10.1186/1756-0500-5-79 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shahin A, van Kaauwen M, Esselink D et al (2012b) Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics 13:640. https://doi.org/10.1186/1471-2164-13-640 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Smulders MJM, Esselink D, Voorrips RE, Vosman B (2009) Analysis of a database of DNA profiles of 734 hybrid tea rose varieties. Acta Hortic 836:169–174. http://www.actahort.org/books/836/836_24.htm
  43. Smulders MJM, Vukosavljev M, Shahin A, van de Weg WE, Arens P (2012) High throughput marker development and application in horticultural crops. Acta Hortic (ISHS) 961:547–551. https://doi.org/10.17660/ActaHortic.2012.961.72 CrossRefGoogle Scholar
  44. Smulders MJM, Voorrips RE, Esselink GD et al (2015) Development of the WagRhSNP Axiom SNP array based on sequences from tetraploid cut roses and garden roses. Acta Hortic 1064:177–184. https://doi.org/10.17660/ActaHortic.2015.1064.20 CrossRefGoogle Scholar
  45. Tang N, van der Lee T, Shahin A et al (2015) Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip. Mol Breed 35:122. https://doi.org/10.1007/s11032-015-0316-3 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Van de Weg E, Di Guardo M, Jänsch M et al (2018) Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’ and selection X-6398 discovered and characterized through pedigree-informed analysis. Mol Breed 38:5. https://doi.org/10.1007/s11032-017-0755-0 CrossRefGoogle Scholar
  47. Van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM (2017) New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol Rep 11:1–8. https://doi.org/10.1007/s11816-017-0425-z CrossRefPubMedPubMedCentralGoogle Scholar
  48. Van Geest G, Bourke PM, Voorrips RE et al (2017a) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527–2541. https://doi.org/10.1007/s00122-017-2974-5 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Van Geest G, Voorrips RE, Esselink D, Post A, Visser RGF, Arens P (2017b) Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183k SNP array. BMC Genomics 18:585. https://doi.org/10.1186/s12864-017-4003-0 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Voorrips RE, Gort G, Vosman B (2011) Genotype calling in tetraploid species from bi-allelic marker data using mixture models. BMC Bioinformatics 12:172CrossRefPubMedPubMedCentralGoogle Scholar
  51. Voorrips RE, Bink MCAM, Kruisselbrink JW et al (2016) PediHaplotyper: software for consistent assignment of marker haplotypes in pedigrees. Mol Breed 36:119. https://doi.org/10.1007/s11032-016-0539-y CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vukosavljev M, Arens P, Voorrips RE et al (2016) High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. Hortic Res 3:16052. https://doi.org/10.1038/hortres.2016.52 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wei Z, Sun Z, Cui B, Zhang Q, Xiong M, Wang X, Zhou D (2016) Transcriptome analysis of colored calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing: de novo assembly, annotation and EST-SSR marker development. PeerJ 4:e2378. https://doi.org/10.7717/peerj.2378 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yagi M, Kosugi S, Hirakawa H et al (2014) Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Res 21:231–241. https://doi.org/10.1093/dnares/dst053 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang Q, Chen W, Sun L et al (2012) The genome of Prunus mume. Nat Commun 3:1318. https://doi.org/10.1038/ncomms2290 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhang J, Zhao K, Hou D et al (2017) Genome-wide discovery of DNA polymorphisms in Mei (Prunus mume Sieb. et zucc.), an ornamental woody plant, with contrasting tree architecture and their functional relevance for weeping trait. Plant Mol Biol Report 35:37–46. https://doi.org/10.1007/s11105-016-1000-4 CrossRefPubMedGoogle Scholar
  57. Zheng C, Boer MP, Van Eeuwijk FA (2015) Reconstruction of genome ancestry blocks in multiparental populations. Genetics 200:1073–1087. https://doi.org/10.1534/genetics.115.177873 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wageningen University & ResearchWageningenThe Netherlands

Personalised recommendations