Breeding for Disease Resistance in Ornamentals

  • Leen LeusEmail author
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)


A wide variety of plant species are cultivated for ornamental use as cut flowers, pot and garden plants. The variety of species goes hand in hand with an equally large diversity of problems that are caused by plant pathogens during cultivation and after sale. Improved disease resistance is therefore often a high priority on the wish list of ornamental plant breeders. For food crops, huge efforts are made to develop plant pathology research and breeding. Tools such as bioassays for the screening of parent and offspring plants, biotechnological tools, or other disease resistance-oriented approaches result in more resistant cultivars. For ornamentals, however, these techniques and resources have found only limited application.

Here we offer an overview of disease resistance breeding in ornamental plants. The examples given for specific ornamental crops are primarily based on scientific literature. We also include the practical experience and opinion of commercial breeders to provide insight into common and applied breeding practices. Specific plant-pathogen cases are presented, including Xanthomonas axonopodis pv. dieffenbachiae in Anthurium andreanum, Phytophthora plurivora and Calonectria pauciramosa in azalea (Rhododendron simsii), Calonectria pseudonaviculata and C. henricotiae in Buxus, Fusarium oxysporum f.sp. dianthi in Dianthus caryophyllus, Puccinia horiana in Chrysanthemum x morifolium, and Fusarium oxysporum f.sp. lilii in lily (Lilium).


Bioassay Breeders’ experience Pathogen resistance Plant pathogen Selection 



The author thanks Miriam Levenson, Kurt Heungens, and Johan Van Huylenbroeck for the useful remarks about the structure of the manuscript, fair questions that needed an answer, and helpful English corrections. Kurt Heungens is also thanked for the helpful input on fine tuning some phytopathological issues.

The author also wants to express her gratitude to the breeding companies and ornamental plant breeders who gave valuable information and an insight on their experiences with disease resistance breeding.


  1. Anaïs G, Darrasse A, Prior P (2000) Breeding anthuriums (Anthurium andreanum L.) for resistance to bacterial blight caused by Xanthomonas campestris pv. dieffenbachiae. Acta Hortic 508:135–140CrossRefGoogle Scholar
  2. Arens P, Bijman P, Tang N, Shahin A, van Tuyl JM (2012) Mapping of disease resistance in ornamentals: a long haul. Acta Hortic 953:231–237CrossRefGoogle Scholar
  3. Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P (2016) Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Front Plant Sci 7:382PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arnold DL, Jackson RW (2011) Bacterial genomes: evolution of pathogenicity. Curr Opin Plant Biol 14:385–391PubMedCrossRefPubMedCentralGoogle Scholar
  5. Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicate gene. Biotechnol Lett 33:1249–1255PubMedCrossRefPubMedCentralGoogle Scholar
  6. Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34:1073–1090CrossRefPubMedGoogle Scholar
  7. Baayen RP, Sparnaaij LD, Jansen J, Niemann GJ (1991) Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Neth J Plant Pathol 97:73–86CrossRefGoogle Scholar
  8. Backhaus GF (1994a) Cylindrocladium scoparium causing wilt disease in Rhododendron and azalea. Acta Hortic 364:163–166CrossRefGoogle Scholar
  9. Backhaus GF (1994b) Phytophthora citricola (Sawada) – cause of an important shoot rot of Rhododendron and azalea. Acta Hortic 364:145–154CrossRefGoogle Scholar
  10. Bakhshaie M, Khosravi S, Azadi P, Bagheri H, Van Tuyl JM (2016) Biotechnological advances in Lilium. Plant Cell Rep 35:1799–1826PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ben-Yephet Y, Reuven M, Mor Y (1993) Selection methods for determining resistance of carnation cultivars to Fusarium oxysporum f.sp. dianthi. Plant Pathol 42:517–521CrossRefGoogle Scholar
  13. Ben-Yephet Y, Reuven M, Zveibil A, Shtienberg D (1996) Effects of abiotic variables on the response of carnation cultivars to Fusarium oxysporum f.sp.dianthi. Plant Pathol 45:98–105CrossRefGoogle Scholar
  14. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bolley HL (1901) Flax wilt and flax sick soil. Norht Dakota Experiment Station Bulletin 50Google Scholar
  16. Brugliera F, Kalc-Wright G, Hyland C, Webb L, Herbert S, Sheehan B, Mason JG (2000) Improvement of Fusarium wilt tolerance in carnations expressing chitinase. Int Plant Mol Biol Rep 18:522–529Google Scholar
  17. CABI/EPPO (2017) n° 236 Accessed 04 Mar 2018
  18. Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng ZJ, Sun FM, Liu WQ, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang MN, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72CrossRefPubMedGoogle Scholar
  19. Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288PubMedCrossRefPubMedCentralGoogle Scholar
  20. Clarke JL, Spetz C, Haugslien S, Xing S, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
  21. Collinge DB, Jorgensen HJL, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291PubMedCrossRefPubMedCentralGoogle Scholar
  22. De Backer M, Alaei Shah Anar Vanar H, Van Bockstaele E, Roldàn-Ruiz I, van der Lee T, Maes M, Heungens K (2011) Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. Eur J Plant Pathol 130:325–338CrossRefGoogle Scholar
  23. De Cáceres González FFN, Davey MR, Sanchez EC, Wilson ZA (2015) Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Rep 34:1201–1209CrossRefGoogle Scholar
  24. De Jong J, Rademaker W (1986) The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 3:945–952CrossRefGoogle Scholar
  25. De Keyser E, De Riek J, Heungens K (2008) Development of supporting techniques for pot azalea (Rhododendron simsii hybrids) breeding focused on plant quality, disease resistance and enlargement of the assortment. Acta Hortic 766:361–366CrossRefGoogle Scholar
  26. Debener T (2009) Current strategies and future prospects of resistance breeding in ornamentals. Acta Hortic 836:125–130CrossRefGoogle Scholar
  27. Debener T, Byrne D (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117CrossRefPubMedGoogle Scholar
  28. Demmink JF, Baayen RP, Sparnaaij LD (1989) Evaluation of the virulence of races 1, 2 and 4 of Fusarium oxysporum f. sp. dianthi in carnation. Euphytica 42:55–63CrossRefGoogle Scholar
  29. Dohm A, Ludwig C, Schilling D, Debener T (2001) Transformation of roses with genes for antifungal proteins. Acta Hortic 547:27–33CrossRefGoogle Scholar
  30. Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hortic 572:105–111CrossRefGoogle Scholar
  31. Elibox W, Umaharan P (2007) The inheritance of systematic resistance to the bacterial blight pathogen (Xanthomonas axonopodis pv. dieffenbachiae) in Anthurium andreanum. Sci Hortic 115:76–81CrossRefGoogle Scholar
  32. Elibox W, Umaharan P (2008a) A quantitative screening method for the detection of foliar resistance to Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Eur J Plant Pathol 121:35–42CrossRefGoogle Scholar
  33. Elibox W, Umaharan P (2008b) Genetic basis of resistance to systemic infection by Xanthomonas axonopodis pv. dieffenbachiae in Anthurium. Phytopathology 98:421–426PubMedCrossRefPubMedCentralGoogle Scholar
  34. Elibox W, Umaharan P (2010) Inheritance of resistance to foliar infection by Xanthomonas axonopodis pv. dieffenbachiae in Anthurium. Plant Dis 94:1243–1247CrossRefGoogle Scholar
  35. EU Fact Sheet (2015) Emergency control measures by species. Accessed 04 Mar 2018
  36. Fawke S, Doumane M, Schornack S (2015) Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 79:263–279PubMedPubMedCentralCrossRefGoogle Scholar
  37. Galletti R, De Lorenzo G, Ferrari S (2009) Host-derived signals activate plant innate immunity. Plant Signal Behav 4:33–34PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ganci M, Benson DM, Ivors K (2013) Susceptibility of commercial boxwood varieties to boxwood blight (boxwood cultivars with tolerance to box blight). North Carolina Coop. Ext., Plant Pathology, Raleigh. Accessed 04 Mar 2018
  39. Gehesquiere B (2014) Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: Molecular characterization, epidemiology, host resistance and fungicide control. PhD dissertation, Ghent UniversityGoogle Scholar
  40. Gehesquière B, Rys F, Maes M, Gobin B, Van Huylenbroweck J, Heungens K (2012) Genotypic and phenotypic variation in Cylindrocladium buxicola. (Abstr) Commun Agric Appl Biol Sci 77:95–96Google Scholar
  41. Gehesquière B, Crouch JA, Marra RE, Van Poucke K, Rys F, Maes M, Gobin B, Höfte M, Heungens K (2016) Characterization and taxonomic reassessment of the box blight pathogen Calonectria pseudonaviculata, introducing Calonectria henricotiae sp. nov. Plant Pathol 65:37–52CrossRefGoogle Scholar
  42. Growns DJ (2015) Phenotypic recurrent selection for disease tolerance in Anigozanthos spp. L. Acta Hortic 1097:101–106CrossRefGoogle Scholar
  43. Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138PubMedCrossRefGoogle Scholar
  44. Guo Y, Olsen RT (2015) Effective bioassays for evaluating boxwood blight susceptibility using detached stem inoculations. Hortic Sci 50:268–271Google Scholar
  45. Han Q, Chen R, Yang Y, Cui X, Ge F, Chen C, Liu D (2016) A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum. Sci Hortic 198:370–378CrossRefGoogle Scholar
  46. Hardham (2005) Mol Plant Pathol 6:589–604PubMedCrossRefPubMedCentralGoogle Scholar
  47. He JP, Chen FD, Chen SM, Fang WM, Miao HB, Luo HL (2009) Transformation of Lycoris longituba agglutinin gene to cut chrysanthemum and identification of aphid resistance in the transgenic plants. Acta Bot Boreal Occident Sin 29:2318–2325Google Scholar
  48. Hennebert GL (1973) Botrytis and Botrytis-like genera. Persoonia 7:183–204Google Scholar
  49. Henricot B, Culham A (2002) Cylindrocladium buxicola, a new species affecting Buxus spp., and its phylogenetic status. Mycologia 94:980–997PubMedCrossRefPubMedCentralGoogle Scholar
  50. Henricot B, Gorton C, Denton G, Denton J (2008) Studies on the control of Cylindrocladium buxicola using fungicides and host resistance. Plant Dis 92:1273–1279CrossRefGoogle Scholar
  51. Höfte M (2015) Basal and induced disease resistance mechanisms in ornamentals. Acta Hortic 1087:473–478CrossRefGoogle Scholar
  52. Jarvis WR (1977) Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity, Monograph no. 15. Canadian Department of Agriculture, OttawaGoogle Scholar
  53. Jepson P, Arakelyan I (2017) Exploring public perceptions of solutions to tree diseases in the UK: implications for policy-makers. Environ Sci Pol 76:70–77CrossRefGoogle Scholar
  54. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  55. Jorgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152CrossRefGoogle Scholar
  56. Jung T, Cooke DEL, Blaschke H, Duncan JM, Oßwald W (1999) Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol Res 103:785–798CrossRefGoogle Scholar
  57. Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J (2005) Transgenic gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep 23:654–663PubMedCrossRefGoogle Scholar
  58. Kamo K, Jordan R, Guaragna MA, Hsu HT, Ueng P (2010) Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep 29:695–704PubMedCrossRefGoogle Scholar
  59. Kamo K, Aebig J, Guaragna MA, James C, Hsu HT, Jordan R (2012) Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus. Plant Cell Tissue Organ Cult 110:13–21CrossRefGoogle Scholar
  60. Kamo K, Lakshman D, Bauchan G, Rajasekaran K, Cary J, Jaynes J (2015) Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp gladioli. Plant Cell Tissue Organ Cult 121:459–467CrossRefGoogle Scholar
  61. Kamo K, Lakshman D, Pandey R, Guaragna MA, Okubara P, Rajasekaran K, Cary J, Jordan R (2016) Resistance to Fusarium oxysporum f. sp gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes. Plant Cell Tissue Organ Cult 124:541–553CrossRefGoogle Scholar
  62. Kardos JH, Robacker CD, Dirr MA, Rinehart TA (2009) Production and verification of Hydrangea macrophylla × H. angustipetala hybrids. Hortscience 44:1534–1537Google Scholar
  63. Kaufmann H, Qiu X, Wehmeyer J, Debener T (2012) Isolation, molecular characterization, and mapping of four rose MLO orthologs. Front Plant Sci 3:244PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kellerhals M, Szalatnay D, Hunziker K, Duffy B, Nybom H, Ahmadi-Afzadi M, Höfer M, Richter K, Lateur M (2012) European pome fruit genetic resources evaluated for disease resistance. Trees 26:179–189CrossRefGoogle Scholar
  65. Kim YS, Lim S, Yoda H, Choi YE, Sano H (2011) Simultaneous activation of salicylate production and fungal resistance in transgenic Chrysanthemum producing caffeine. Plant Signal Behav 6:409–412PubMedPubMedCentralCrossRefGoogle Scholar
  66. Koning-Boucoiran CF, Gitonga VW, Yan Z, Dolstra O, van der Linden CG, van der Schoot J, Uenk GE, Verlinden K, Smulders MJ, Krens FA, Maliepaard C (2012) The mode of inheritance in tetraploid cut roses. Theor Appl Genet 125:591–607PubMedPubMedCentralCrossRefGoogle Scholar
  67. Korbin M (2006) Assessment of gerbera plants genetically modified with TSWV nucleocapsid gene. J Fruit Ornam Plant Res 14:85–93Google Scholar
  68. Kuehnle AR, Fujii T, Chen FC, Alvarez A, Sugii N, Fukui R, Aragon SL (2004a) Peptide biocides for engineering bacterial blight tolerance and susceptibility in cut flower anthurium. Hortscience 39:1327–1331Google Scholar
  69. Kuehnle AR, Fujii T, Mudalige R, Alvarez A (2004b) Gene and genome mélange in breeding of Anthurium and Dendrobium orchid. Acta Hortic 651:115–122CrossRefGoogle Scholar
  70. Kumar S, Raj SK, Sharma AK, Varma HN (2012) Genetic transformation and development of cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Sci Hortic 134:40–45CrossRefGoogle Scholar
  71. LaMondia JA (2015) Management of Calonectria pseudonaviculata in boxwood with fungicides and less susceptible host species and varieties. Plant Dis 99:363–369CrossRefGoogle Scholar
  72. Leach JE, Leung H, Tisserat NA (2014) Plant disease and resistance. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems, vol 4. New York, pp 360–374CrossRefGoogle Scholar
  73. Lentola A, David A, Abdul-Sasa A, Tapparo A, Goulson D, Hill EM (2017) Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Environ Pollut 228:297–304PubMedCrossRefGoogle Scholar
  74. Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232PubMedCrossRefGoogle Scholar
  75. Li Y, Trigiano R, Reed S, Rinehart T, Spiers J (2009) Assessment of resistance components of bigleaf hydrangeas (Hydrangea macrophylla) to Erysiphe polygoni in vitro. Can J Plant Pathol 31:348–355CrossRefGoogle Scholar
  76. Liao LJ, Pan IC, Chan YL, Hsu YH, Chen WH, Chan MT (2004) Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance. Mol Breed 13:229–242CrossRefGoogle Scholar
  77. Liu WL, Wu LF, Wu HZ, Zheng SX, Wang JH, Liu FH (2011) Correlation of saponin content and Fusarium resistance in hybrids from different ploidy levels of Lilium oriental. Sci Hortic 129:849–853CrossRefGoogle Scholar
  78. Luypaert G, Van Huylenbroeck J, De Riek J, De Clercq P (2014) Screening for broad mite susceptibility in Rhododendron simsii hybrids. J Plant Dis Protect 121:260–269CrossRefGoogle Scholar
  79. Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194CrossRefGoogle Scholar
  80. Menda N, Strickler SR, Edwards JD, Bombarely A, Dunham DM, Martin GB, Mejia L, Hutton SF, Havey MJ, Maxwell DP, Mueller LA (2014) Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins. BMC Plant Biol 14:287PubMedPubMedCentralCrossRefGoogle Scholar
  81. Miao H, Jiang B, Chen S, Zhang S, Chen F, Fang W, Teng N, Guan Z (2010) Isolation of a gibberellin 20-oxidasec DNA from and characterization of its expression in chrysanthemum. Plant Breed 129:707–714CrossRefGoogle Scholar
  82. Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566PubMedCrossRefPubMedCentralGoogle Scholar
  83. Mitteau Y (1987) Breeding of new carnations resistant to Fusarium oxysporum. Acta Hortic 216:359–366CrossRefGoogle Scholar
  84. Mork EK (2011) Disease resistance in ornamental plants – transformation of Symphyotrichum novi-belgii with powdery mildew resistance genes. PhD dissertation, Aarhus UniversityGoogle Scholar
  85. Motaung TE, Saitoh H, Tsilo TJ (2017) Large-scale molecular genetic analysis in plant-pathogenic fungi: a decade of genome-wide functional analysis. Mol Plant Pathol 18:754–764PubMedCrossRefPubMedCentralGoogle Scholar
  86. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ortega F, Lopez-Vizcon C (2012) Application of molecular marker-assisted selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res 55:1–13CrossRefGoogle Scholar
  88. Orton WA (1918) Breeding for disease resistance in plants. Am J Bot 5:279–283CrossRefGoogle Scholar
  89. Oßwald W, Fleischmann F, Rigling D, Coelho AC, Cravador A, Diez J, Dalio RJ, Horta Jung M, Pfanz H, Robin C, Sipos G, Solla A, Cech T, Chambery A, Diamandis S, Hansen E, Jung T, Orlikowski LB, Parke J, Prospero S, Werres S (2014) Strategies of attack and defence in woody plant–Phytophthora interactions. For Pathol 44:169–190CrossRefGoogle Scholar
  90. Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R (2017) Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci 8:1838PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tissue Organ Cult 112:101–108CrossRefGoogle Scholar
  93. Prados-Ligero AM, Basallote-Urba MJ, Lopze-Herrera CJ, Melero-Vara JM (2007) Evaluation of susceptibility of carnation cultivars to fusarium wilt and determination of Fusarium oxysporum f.sp. dianthi races in Southwest Spain. Hortscience 42:596–599Google Scholar
  94. Proefstation voor de Bloemisterij in Nederland (1984) Overzicht van het onderzoek over schimmelvaatziekten bij anjers in de periode 1939-1983. Report 23Google Scholar
  95. Rao J, Liu D, Zhang N, He H, Ge F, Chen C (2014) Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis. Mol Biol 48:802–812CrossRefGoogle Scholar
  96. Ridley G (1998) New plant fungus found in Auckland box hedges (Buxus). Forest Health News 77:1Google Scholar
  97. Rispail N, Rubiales D (2016) Genome-wide identification and comparison of legume MLO gene family. Sci Rep 6:32673PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rytkönen A, Lilja A, Vercauteren A, Sirkiä A, Parikka P, Soukainen M, Hantula J (2012) Identity and potential pathogenicity of Phytophthora species found on symptomatic Rhododendron plants in a Finnish nursery. Can J Plant Pathol 34:255–267CrossRefGoogle Scholar
  99. Sen S, Kumar S, Ghani M, Thakur M (2013) Agrobacterium mediated genetic transformation of chrysanthemum (Dendranthema grandiflora Tzvelev) with rice chitinase gene for improved resistance against Septoria obesa. Plant Pathol J 12:1–10CrossRefGoogle Scholar
  100. Shahin A, Arens P, Van Heusden AW, Van Der Linden G, Van Kaauwen M, Khan N, Schouten HJ, Van De Weg WE, Visser RGF, Van Tuyl JM (2011) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130:372–382CrossRefGoogle Scholar
  101. Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192PubMedCrossRefPubMedCentralGoogle Scholar
  102. Sharma R, Messar Y (2017) Transgenics in ornamental crops: creating novelties in economically important cut flowers. Curr Sci 113:43–52CrossRefGoogle Scholar
  103. Sherman JM, Moyer JW, Daub ME (1998) Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis 82:407–414CrossRefGoogle Scholar
  104. Shinoyama H, Mochizuki A, Komano M, Nomura Y, Nagai T (2003) Insect resistance in transgenic chrysanthemum (Dendranthema x grandiflorum (Ramat) Kitamura) by the introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Breed Sci 53:359–367CrossRefGoogle Scholar
  105. Shinoyama H, Mochizuki A, Nomura Y, Kamada H (2008) Environmental risk assessment of genetically modified chrysanthemums containing a modified cry1Ab gene from Bacillus thuringiensis. Plant Biotechnol 25:17–29CrossRefGoogle Scholar
  106. Shinoyama H, Sano T, Saito M, Ezura H, Aida R, Nomura Y et al (2012) Induction of male sterility in transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures. Mol Breed 29:285–295CrossRefGoogle Scholar
  107. Shinoyama H, Mitsuhara I, Ichikawa H, Kato K, Mochizuki A (2015) Transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. Acta Hortic 1087:485–497CrossRefGoogle Scholar
  108. Shishkoff N, Daughtrey M, Aker S, Olsen RT (2015) Evaluating boxwood susceptibility to Calonectria pseudonaviculata using cuttings from the National Boxwood Collection. Plant Health Prog 16:11–15CrossRefGoogle Scholar
  109. Skirvin DJ, De Courcy Williams ME, Fenlon JS, Sunderland KD (2002) Modelling the effects of plant species on biocontrol effectiveness in ornamental nursery crops. J Appl Ecol 39:469–480CrossRefGoogle Scholar
  110. Sparnaaij LD, Demmink JF (1976) Breeding for resistance to Phialophora cinerescens (Wr.) Van Beyma in glasshouse carnations (Dianthus caryophyllus L.). Euphytica 25:329–338CrossRefGoogle Scholar
  111. Staats M, van Baarlen P, van Kan JAL (2004) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346PubMedCrossRefGoogle Scholar
  112. Straathof TP, Löffler HJM (1994) Screening for Fusarium resistance in seedling populations of Asiatic hybrid lily. Euphytica 78:43–51Google Scholar
  113. Straathof TP, Löffler HJM, Linfield CA, Roebroeck EJA (1997) Breeding for resistance to Fusarium oxysporum in flower bulbs. Acta Hortic 430:477–486CrossRefGoogle Scholar
  114. Takatsua Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hortic 82:113–123CrossRefGoogle Scholar
  115. Teixeira da Silva JA, Dobránszki J, Zeng S, Winarto B, Lennon AM, Jaufeerally-Fakim Y, Christopher DA (2015) Genetic transformation and molecular research in Anthurium: progress and prospects. Plant Cell Tissue Organ Cult 123:205–219CrossRefGoogle Scholar
  116. Thakur M, Sharma D, Sharma S (2002) In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f.sp. dianthi. Plant Cell Rep 20:825–828CrossRefGoogle Scholar
  117. Uchneat MS, Zhigilei A, Craig R (1999) Differential response to foliar infection with Botrytis cinerea within the genus Pelargonium. J Am Soc Hortic Sci 124:76–80Google Scholar
  118. van den Bulk RW (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding. Euphytica 56:269–285CrossRefGoogle Scholar
  119. Van Heusden AW, Jongerius MC, Van Tuyl JM, Straathof TP, Mes JJ (2002) Molecular assisted breeding for disease resistance in lily. Acta Hortic 572:131–138CrossRefGoogle Scholar
  120. Van Huylenbroeck J, Calsyn E, De Keyser E, Luypaert G (2015) Breeding for biotic stress resistance in Rhododendron simsii. Acta Hortic 1104:375–379CrossRefGoogle Scholar
  121. van Kan JAL, Shaw MW, Grant-Downton RT (2014) Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol 15:957–961PubMedPubMedCentralGoogle Scholar
  122. Van Laere K, Hermans D, Leus L, Van Huylenbroeck J (2011) Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers. Plant Syst Evol 293:1–11CrossRefGoogle Scholar
  123. Van Laere K, Hermans D, Leus L, Van Huylenbroeck J (2015) Interspecific hybridisation within Buxus spp. Sci Hortic 185:139–144CrossRefGoogle Scholar
  124. van Schie CCN, Takken FLW (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581PubMedCrossRefPubMedCentralGoogle Scholar
  125. van Wordragen MF, Honée G, Dons HJM (1993) Insect resistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein gene. Transgenic Res 2:170–180PubMedCrossRefPubMedCentralGoogle Scholar
  126. Vieira P, Wantoch S, Lilley CJ, Chitwood DJ, Atkinson HJ, Kamo K (2015) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum ‘Nellie White’. Transgenic Res 24:421–432PubMedCrossRefPubMedCentralGoogle Scholar
  127. Vyska M, Cunniffe N, Gilligan C (2016) Trade-off between disease resistance and crop yield: a landscape-scale mathematical modelling perspective. J R Soc Interface 13:20160451PubMedPubMedCentralCrossRefGoogle Scholar
  128. Xiong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019PubMedPubMedCentralCrossRefGoogle Scholar
  129. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publication to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  130. Xu G, Chen S, Chen F (2010) Transgenic chrysanthemum plants expressing a harpin (Xoo) gene demonstrate induced resistance to alternaria leaf spot and accelerated development. Russ J Plant Physiol 57:548–553CrossRefGoogle Scholar
  131. Xu G, Liu Y, Chen S, Chen F (2011) Potential structural and biochemical mechanisms of compositae wild species resistance to Alternaria tenuissima. Russ J Plant Physiol 58:491–497CrossRefGoogle Scholar
  132. Zeller W (1979) Resistance and resistance breeding in ornamentals. EPPO Bull 9:35–44CrossRefGoogle Scholar
  133. Zhang NN, Liu DQ, Zheng W, He H, Ji B, Han Q, Ge F, Chen CY (2014a) A bZIP transcription factor, LrbZIP1, is involved in Lilium regale Wilson defense repsonses against Fusarium oxysporym f.sp. lilii. Genes Genom 36:789–798CrossRefGoogle Scholar
  134. Zhang YP, Jiang S, Qu SP, Yang XM, Wang XN, Ma LL, Wu LL, He YQ, Wang JH (2014b) In vitro selection for Fusarium resistant oriental lily mutants using culture filtrate of the fungal agent. Acta Hortic 1027:205–212CrossRefGoogle Scholar
  135. Zhang N, Guan R, Yang Y, Bai Z, Ge F, Liu D (2017) Isolation and characterization of a Fusarium oxysporum-resistant gene LrGLP1 from Lilium regale Wilson. In Vitro Cell Dev Biol Plant 53:461–468CrossRefGoogle Scholar
  136. Zhu S, Li Y, Vossen JH, Visser RGF, Jacobsen E (2012) Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res 21:89–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium

Personalised recommendations