• Kathryn Kuligowska MackenzieEmail author
  • Henrik Lütken
  • Lívia Lopes Coelho
  • Maja Dibbern Kaaber
  • Josefine Nymark Hegelund
  • Renate Müller
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)


The Kalanchoë genus comprises mainly succulent plants native to Madagascar and East and South Africa. The most important species in the genus is Kalanchoë blossfeldiana that gave rise to the majority of commercial cultivars. Kalanchoë plants are used as potted plants due to abundant flowering, desired longevity of individual flowers, excellent postharvest performance, and low-care requirements. The genus is also increasingly used as outdoor plants and cut flowers. Nowadays, Kalanchoë is ranked as the second most popular potted plant in Europe with annual turnover of 67 million euros in 2016. The breeding efforts in the genus focused mainly on K. blossfeldiana and started in the 1930s with an objective to develop compact cultivars with diverse flower color. Currently, the improvement of Kalanchoë cultivars is accomplished through intraspecific crossbreeding, interspecific hybridization, and genetic engineering. The modern breeding aims consist of a vast list of traits including morphological characteristics and postproduction longevity while minimizing negative impacts on the environment.


Compact plants Crassulacean acid metabolism Ethylene tolerance Genetic engineering Gibberellic acid signaling Interspecific hybridization rol-Genes Short-day plants Wild species 


  1. Aida R, Shibata M (2002) High frequency of polyploidization in regenerated plants of Kalanchoe blossfeldiana cultivar ‘Tetra Vulcan’. Plant Biotechnol 19:329–335CrossRefGoogle Scholar
  2. Akulova-Barlow Z (2009) Kalanchoe: Beginner’s delight, collector’s dream. Cact Succ J 81:268–276CrossRefGoogle Scholar
  3. Alton J, Pertuit J (1992) Kalanchoe. In: Larson R (ed) Introduction to floriculture. Academic press, New York, pp 429–450Google Scholar
  4. Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jørgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol 179:1–12CrossRefPubMedGoogle Scholar
  5. Baldwin JT (1938) Kalanchoe: the genus and its chromosomes. Am J Bot 25:572–580CrossRefGoogle Scholar
  6. Baldwin J Jr (1949) Hybrid of Kalanchoe daigremontiana and K. verticillata. Bull Torrey Bot Club 1:343–345CrossRefGoogle Scholar
  7. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089. CrossRefPubMedGoogle Scholar
  8. Bhattacharya A, Kourmpetli S, Davey MR (2010) Practical applications of manipulating plant architecture by regulating gibberellin metabolism. J Plant Growth Regul 29:249–256. CrossRefGoogle Scholar
  9. Blankenship S, Dole J (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25CrossRefGoogle Scholar
  10. Boiteau P, Allorge-Boiteau L (1995) Kalanchoe (Crassulacées) de Madagascar: systématique, écophysiologie et phytochimie. KARTHALA EditionsGoogle Scholar
  11. Bovy AG, Angenent GC, Dons HJ, van Altvorst A-C (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308CrossRefGoogle Scholar
  12. Broertjes C, Leffring L (1972) Mutation breeding of Kalanchoë. Euphytica 21:415–423CrossRefGoogle Scholar
  13. Carvalho SM, Wuillai SE, Heuvelink E (2006) Combined effects of light and temperature on product quality of Kalanchoe blossfeldiana. Acta Hortic 711:121–126CrossRefGoogle Scholar
  14. Castelblanque L, García-Sogo B, Pineda B, Moreno V (2010) Efficient plant regeneration from protoplasts of Kalanchoe blossfeldiana via organogenesis. Plant Cell Tissue Organ Cult 100:107–112. CrossRefGoogle Scholar
  15. Castro S, Loureiro J, Rodriguez E, Silveira P, Navarro L, Santos C (2007) Evaluation of polysomaty and estimation of genome size in Polygala vayredae and P. calcarea using flow cytometry. Plant Sci 172:1131–1137CrossRefGoogle Scholar
  16. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544CrossRefPubMedGoogle Scholar
  17. Chernetskyy M (2011) Problems in nomenclature and systematics in the subfamily kalanchoideae (Crassulaceae) over the years. Acta Agrobot 64:67–74CrossRefGoogle Scholar
  18. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434CrossRefGoogle Scholar
  19. Christensen B, Müller R (2009) Kalanchoe blossfeldiana Transformed with rol genes exhibits improved postharvest performance and increased ethylene tolerance. Postharvest Biol Technol 51:399–406CrossRefGoogle Scholar
  20. Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495. CrossRefPubMedGoogle Scholar
  21. Christensen B, Sriskandarajah S, Müller R (2009) Biomass distribution in Kalanchoe blossfeldiana transformed with rol-genes of Agrobacterium rhizogenes. Hortscience 44:1233–1237Google Scholar
  22. Christensen B, Sriskandarajah S, Jensen E, Lütken H, Müller R (2010) Transformation with rol genes of Agrobacterium rhizogenes as a strategy to breed compact ornamental plants with improved postharvest quality. Acta Hortic 855:69–75CrossRefGoogle Scholar
  23. Coelho L, Kuligowska K, Lütken H, Müller R (2015) Photoperiod and cold night temperature in control of flowering in Kalanchoë. Acta Hortic 1087:129–134. CrossRefGoogle Scholar
  24. CPVO varieties database (2017) Accessed 12.04.2017
  25. Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–60CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cullen J, Knees SG, Cubey HS (2011) Crassulaceae. In: Cullen J, Knees SG, Cubey HS (eds) The European garden flora flowering plants: a manual for the identification of plants cultivated in Europe, both out-of-doors and under glass, vol 3. Cambridge University Press, New York, pp 19–94Google Scholar
  27. Currey C, Erwin J (2010) Variation among Kalanchoe species in their flowering responses to photoperiod and short-day cycle number. J Hortic Sci Biotechnol 85:350–355CrossRefGoogle Scholar
  28. Currey C, Erwin J (2011) Photoperiodic flower induction of several Kalanchoe species and ornamental characteristics of the flowering species. Hortic Sci 46:35–40Google Scholar
  29. Clevenger D, Barrett J, Klee H, Clark D (2004) Factors affecting seed production in transgenic ethylene-insensitive petunia. J Am Soc Hortic Sci 129:401–406Google Scholar
  30. Descoings B (2003) Kalanchoe. In: Eggli U, Hartmann HEK (eds) Illustrated handbook of succulent plants. Crassulaceae. Springer Verlag, New York, pp 143–181Google Scholar
  31. Dilworth WL (1982) Yellow kalanchoe plant. US Patent 4825 PGoogle Scholar
  32. Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238:991–1003CrossRefPubMedGoogle Scholar
  33. Eveleens-Clark B, Carvalho S, Heuvelink E (2004) A conceptual dynamic model for external quality in kalanchoe. Acta Hortic 654:263–270CrossRefGoogle Scholar
  34. FloraHolland (2016) FloraHolland. Facts and figures 2016. Accessed 14.07.2017
  35. Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 11:1019–1032CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gargul J, Mibus H, Serek M (2013) Constitutive overexpression of Nicotiana GA2ox leads to compact phenotypes and delayed flowering in Kalanchoë blossfeldiana and Petunia hybrida. Plant Cell Tissue Organ Cult 115:407–418CrossRefGoogle Scholar
  37. Gargul JM, Mibus H, Serek M (2015) Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnol J 13:51–61CrossRefPubMedGoogle Scholar
  38. Gehrig H, Rosicke H, Kluge M (1997) Detection of DNA polymorphisms in the genus Kalanchoe by RAPD-PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behaviour of the species. Plant Sci 125:41–52CrossRefGoogle Scholar
  39. Gehrig H, Gaußmann O, Marx H, Schwarzott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoe (Crassulaceae) inferred from nucleotide sequences of the ITS-1 and ITS-2 regions. Plant Sci 160:827–835CrossRefPubMedGoogle Scholar
  40. González de León S, Herrera I, Guevara R (2016) Mating system, population growth, and management scenario for Kalanchoe pinnata in an invaded seasonally dry tropical forest. Ecol Evol 6:4541–4550CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gubrium E, Clevenger D, Clark D, Barrett J, Nell T (2000) Reproduction and horticultural performance of transgenic ethylene- insensitive petunias. J Amer Soc Hort Sci 125:277–281Google Scholar
  43. Hansen G, Larribe M, Vaubert D, Tempe J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci U S A 88:7763–7767CrossRefPubMedPubMedCentralGoogle Scholar
  44. Herrera I, Nassar J (2009) Reproductive and recruitment traits as indicators of the invasive potential of Kalanchoe daigremontiana (Crassulaceae) and Stapelia gigantea (Apocynaceae) in a Neotropical arid zone. J Arid Environ 73:978–986CrossRefGoogle Scholar
  45. Hickey M, King C (1988) Kalanchoë blossfeldiana Poelln. In: 100 families of flowering plants, 2nd edn. Cambridge University Press, New York, p 174Google Scholar
  46. Høyer L, Nell TA (1995) Plants respond differently to either dynamic or stationary ethylene exposure. VI Int Symp Postharvest Phys Ornamental Plants 405(1995):277–283Google Scholar
  47. Huang C-H, Chu C-Y (2012) The flower development and photoperiodism of native Kalanchoe spp. in Taiwan. Sci Hortic 146:59–64CrossRefGoogle Scholar
  48. Huang C-H, Chu C-Y (2017) Inheritance of leaf and flower morphologies in Kalanchoe spp. Euphytica 213:4CrossRefGoogle Scholar
  49. Irwin LT (1976) Kalanchoe plant US Patent 3992 PGoogle Scholar
  50. Izumikawa Y, Takei S, Nakamura I, Mii M (2007) Production and characterization of inter-sectional hybrids between Kalanchoe spathulata and K. laxiflora ( = Bryophyllum crenatum). Euphytica 163:123–130. CrossRefGoogle Scholar
  51. Izumikawa Y, Nakamura I, Mii M (2008) Interspecific hybridization between Kalanchoe blossfeldiana and several wild Kalanchoe species with ornamental value. Acta Hortic 743:59–66Google Scholar
  52. Jepsen K, Christensen E (2006) Double-type kalanchoe interspecific hybrids. US 7453032 B2Google Scholar
  53. Johnson EL (1948) Response of Kalanchoe tubiflora to X-radiation. Plant Physiol 23:544CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392CrossRefGoogle Scholar
  55. Kalanchoë Growers Holland (2017) Accessed 14.07.2017
  56. Khan S, Naz S, Ali K, Zaidi S (2006) Direct organogenesis of Kalanchoe tomentosa (Crassulaceae) from shoot-tips. Pak J Bot 38:977Google Scholar
  57. Khoury N, White J (1980) Juvenility and response time of kalanchoe cultivars. J Am Soc Hortic Sci 105:724–726Google Scholar
  58. Krupa-Malkiewicz M (2010) Influence of chemical mutagens on morphological traits in kalanchoe (Kalanchoe hybrida). Folia Pomeranae Univ Technol Stetin Agric Aliment Piscaria Zootech 279:11–18Google Scholar
  59. Kuligowska K, Lütken H, Christensen B, Müller R (2015a) Quantitative and qualitative characterization of novel features of Kalanchoë interspecific hybrids. Euphytica 205:927–940. CrossRefGoogle Scholar
  60. Kuligowska K, Lütken H, Christensen B, Skovgaard I, Linde M, Winkelmann T, Müller R (2015b) Evaluation of reproductive barriers contributes to the development of novel interspecific hybrids in the Kalanchoë genus. BMC Plant Biol 15:15. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kuligowska K, Lütken H, Müller R (2016) Towards development of new ornamental plants: status and progress in wide hybridization. Planta 244:1–17CrossRefPubMedGoogle Scholar
  62. Laura M, Borghi C, Regis C, Casetti A, Allavena A (2009) Overexpression and silencing of KxhKN5 gene in K x houghtonii. Acta Hortic 836:265–269CrossRefGoogle Scholar
  63. Laura M, Borghi C, Regis C, Cassetti A, Allavena A (2013) Ectopic expression of Kxhkn5 in the viviparous species Kalanchoe × Houghtonii induces a novel pattern of epiphyll development. Transgenic Res 22:59–74CrossRefPubMedGoogle Scholar
  64. Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. CrossRefPubMedGoogle Scholar
  65. Lemcke K, Schmulling T (1998) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423–433CrossRefPubMedGoogle Scholar
  66. Leonard R, Nell T (1998) Effects of production and postproduction factors on longevity and quality of Kalanchoe. Acta Hortic 518:121–124Google Scholar
  67. LPlants (1975) Kalanchoe plant US Patent 3821 PGoogle Scholar
  68. Lütken H, Jensen LS, Topp SH, Mibus H, Müller R, Rasmussen SK (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotechnol J 8:211–222CrossRefPubMedGoogle Scholar
  69. Lütken H, Laura M, Borghi C, Orgaard M, Allavena A, Rasmussen SK (2011) Expression of KxhKN4 and KxhKN5 genes in Kalanchoe blossfeldiana ‘Molly’ results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants. Plant Cell Rep 30:2267–2279. CrossRefPubMedGoogle Scholar
  70. Lütken H, Clarke JL, Muller R (2012a) Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep 31:1141–1157. CrossRefPubMedGoogle Scholar
  71. Lütken H, Jensen EB, Wallstrom S, Müller R, Christensen B (2012b) Development and evaluation of a non-GMO breeding technique exemplified by Kalanchoë. Acta Hortic 961:51–58CrossRefGoogle Scholar
  72. Lütken H, Wallström SV, Jensen EB, Christensen B, Müller R (2012c) Inheritance of rol-genes from Agrobacterium rhizogenes through two generations in Kalanchoë. Euphytica 188:397–407CrossRefGoogle Scholar
  73. Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652CrossRefPubMedPubMedCentralGoogle Scholar
  74. Madriz-Ordeñana K, Jørgensen H, Nielsen K, Thordal-Christensen H (2016) First report of Kalanchoe leaf and stem spot caused by Corynespora cassiicola in Denmark. Plant Dis 101:505–505CrossRefGoogle Scholar
  75. Mariotti D, Fontana GS, Santini L, Constantino P (1989) Evaluation under field conditions of the morphological alterations (`hairy root phenotype') induced on Nicotiana tabacum by different Ri plasmid T-DNA genes. J Genet Breed 43:157–164Google Scholar
  76. Marousky F, Harbaugh B (1979) Ethylene-induced floret sleepiness in Kalanchoe blossfeldiana Poelln. Physiological disorders. HortSci 14:505–507Google Scholar
  77. Moriguchi K, Maeda Y, Satou M, Kataoka M, Tanaka N, Yoshida K (2000) Analysis of unique variable region of a plant root inducing plasmid, pRi1724, by the construction of its physical map and library. DNA Res 7:157–163CrossRefPubMedGoogle Scholar
  78. Mortensen LM (2014) The effect of wide-range photosynthetic active radiations on photosynthesis, growth and flowering of Rosa sp. and Kalanchoe blossfeldiana. Am J Plant Sci 5:1489–1498CrossRefGoogle Scholar
  79. Mort M, Douglas E, Soltis E, Soltis P, Francisco-Ortega J, Santos-Guerra A (2001) Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. Am J Bot 88:76–91CrossRefPubMedGoogle Scholar
  80. Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Mullins MG (1989) Growth regulators in the propagation and genetic improvement of fruit crops. Acta Hortic 239:101–108CrossRefGoogle Scholar
  82. Müller R (2011) Physiology and genetics of plant quality improvement. Doctoral dissertation, University of CopenhagenGoogle Scholar
  83. Nakornthap A (1973) Radiation-induced somatic mutations in Kalanchoe (Kalanchoe laciniata). Kasetsart 7:13–18Google Scholar
  84. Nielsen AH, Olsen CE, Møller BL (2005) Flavonoids in flowers of 16 Kalanchoe blossfeldiana varieties. Phytochemistry 66:2829–2835CrossRefPubMedGoogle Scholar
  85. Nell T (1992) Taking silver safely out of the longevity picture. Grower Talks June 35:41–42Google Scholar
  86. Olsen A, Lütken H, Hegelund JN, Müller R (2015) Ethylene resistance in flowering ornamental plants-improvements and future perspectives. Hortic Res 2:15038CrossRefPubMedPubMedCentralGoogle Scholar
  87. Pittman RN (1977) Kalanchoe plant US Patent 4062 PGoogle Scholar
  88. Queen® (2017) Accessed 14.07.2017
  89. Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531. CrossRefPubMedGoogle Scholar
  90. Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy-root of nursery apple trees. J Agric Res 41:507–540Google Scholar
  91. Rünger W (1966) Über die Wirkung von Lang-und Kurztagen auf das Wachstum noch nicht blühfähiger Kalanchoë. Gartenbauwissenschaft 1:429–436Google Scholar
  92. Sanikhani M, Frello S, Serek M (2006) TDZ induces shoot regeneration in various Kalanchoe blossfeldiana Poelln. Cultivars in the absence of auxin. Plant Cell Tissue Organ Cult 85:75–82CrossRefGoogle Scholar
  93. Sanikhani M, Mibus H, Stummann BM, Serek M (2008) Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep 27:729–737. CrossRefPubMedGoogle Scholar
  94. Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schwabe WW (1969) Kalanchoe blossfeldiana Poellniz. In: Evans LT (ed) The induction of flowering. Macmillan of Australia, Melbourne, pp 227–246Google Scholar
  96. Serek M, Reid MS (2000) Ethylene and postharvest performance of potted kalanchoe. Postharvest Biol Technol 18:43–48CrossRefGoogle Scholar
  97. Sharma GK (1970) Effects of cool nights on flowering of Kalanchoe fedschenkoi. Trans Missouri Acad Sci 3:22–28Google Scholar
  98. Sharma GJ (1973) Flower formation in Kalanchoe velutina induced by low night temperature. Southwest Nat 18:331–334CrossRefGoogle Scholar
  99. Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121PubMedGoogle Scholar
  100. Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123. CrossRefPubMedGoogle Scholar
  101. Spear I (1959) Metabolic aspects of photoperiodism. In: Withrow RB (ed) Photoperiodism. Amer Assoc Adv Sci, Washington, DC, pp 289–300Google Scholar
  102. Spena A, Schmulling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899PubMedPubMedCentralCrossRefGoogle Scholar
  103. Staldal V, Sohlberg JJ, Eklund DM, Ljung K, Sundberg E (2008) Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytol 180:798–808. CrossRefPubMedGoogle Scholar
  104. Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146CrossRefGoogle Scholar
  105. Topp SH, Rasmussen SK, Sander L (2008) Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoe blossfeldiana. Plant Cell Tissue Organ Cult 93:241–248CrossRefGoogle Scholar
  106. Traoré L, Kuligowska K, Lütken H, Müller R (2014) Stigma development and receptivity of two Kalanchoë blossfeldiana cultivars. Acta Physiol Plant 36:1763–1769. CrossRefGoogle Scholar
  107. Uhl CH (1948) Cytotaxonomic studies in the subfamilies Crassuloideae, Kalanchoideae, and Cotyledonoideae of the Crassulaceae. Am J Bot 35:695–706CrossRefGoogle Scholar
  108. Van Ham R, Hart H (1998) Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. Am J Bot 85:123–134CrossRefPubMedGoogle Scholar
  109. Varga A, Thoma L, Bruinsma J (1988) Effects of auxins and cytokinins on epigenetic instability of callus-propagated Kalanchoe blossfeldiana Poelln. Plant Cell Tissue Organ Cult 15:223–231CrossRefGoogle Scholar
  110. Vlielander I (2007) Kalanchoe plant named ‘Fiveranda Orange’. US Patent 17917 P2Google Scholar
  111. van Voorst A, Arends JC (1982) The origin and chromosome numbers of cultivars of Kalanchoe blossfeldiana Von Poelln.: their history and evolution. Euphytica 31:573–584. CrossRefGoogle Scholar
  112. Wadhi M, Ram HM (1967) Shortening the juvenile phase for flowering in Kalanchoe pinnata. Pers. Planta 73:28–36CrossRefPubMedGoogle Scholar
  113. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44PubMedPubMedCentralGoogle Scholar
  114. Wick RL (2017) Diseases of Kalanchoe. In: McGovern RJ, Elmer WH (eds) Handbook of Florists’ crops diseases. Springer International Publishing, Cham, pp 1–13. CrossRefGoogle Scholar
  115. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447. CrossRefPubMedGoogle Scholar
  116. Willumsen K, Fjeld T (1995) The sensitivity of some flowering potted plants to exogenous ethylene. Acta Hortic 405:362–371CrossRefGoogle Scholar
  117. Yamada K, Honma Y, Asahi KI, Sassa T, Hino KI, Tomoyasu S (2001) Differentiation of human acute myeloid leukaemia cells in primary culture in response to cotylenin A, a plant growth regulator. Br J Haematol 114:814–821CrossRefGoogle Scholar
  118. Zeevaart JA (1976) Physiology of flower formation. Annu Rev Plant Physiol 28:321–348CrossRefGoogle Scholar
  119. Zeevaart JAD (1985). Bryophyllum. In: (ed.) Haley, A. H. CRC handbook of flowering, vol. 2. CRC Press, Boca Raton, Florida. In: CRC handbook of flowering, vol 5. pp 89–100Google Scholar
  120. Zimmer K (1996) Untersuchungen zur Blühinduktion bei Kalanchoë marmorata Baker. Kakteen und andere Sukkulenten 47:188–191Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathryn Kuligowska Mackenzie
    • 1
    Email author
  • Henrik Lütken
    • 1
  • Lívia Lopes Coelho
    • 1
  • Maja Dibbern Kaaber
    • 1
  • Josefine Nymark Hegelund
    • 1
  • Renate Müller
    • 1
  1. 1.Department of Plant and Environmental SciencesUniversity of CopenhagenTåstrupDenmark

Personalised recommendations