• Emmy DhoogheEmail author
  • Julia Sparke
  • Peter Oenings
  • Thierry Van Paemel
  • Marie-Christine Van Labeke
  • Traud Winkelmann
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)


Helleborus plants, especially H. niger, H. × hybridus, and some interspecific crossing products, are ornamentals with increasing economic importance for use as garden plants, indoor potted plants, and cut flowers. Several other Helleborus species with minor ornamental impact exhibit various interesting features like flower size, flower color, foliage, scent, and disease resistance. Incorporation of these features using advanced breeding within this genus can therefore meet the growing demand for Helleborus products. New breeding products must meet many production and product quality criteria before market introduction. For example, 10 years ago, H. × hybridus could be marketed as a 3-year-old flowering plant, but now the plants have to flower after 1 or 2 years. Similarly, for H. niger, flowering before Christmas is preferred. Here an overview is given of the Helleborus species, their relatedness and the available breeding products, the breeding goals, and modern methods to reach them, in combination with an up-to-date list of breeding achievements.


Helleborus Interspecific hybridization Breeding Chromosome doubling 


  1. Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8:382–389CrossRefPubMedGoogle Scholar
  2. Braun P, Winkelmann T (2016) Localization and overcoming of hybridization barriers in Delosperma and Lampranthus (Aizoaceae). Euphytica 211:255–275CrossRefGoogle Scholar
  3. Brcko A, Pencik A, Magnus V, Prebeg T, Mlinaric S, Antunovic J, Lepedus H, Cesar V, Strnad M, Rolcik J, Salopek-Sondi B (2012) Endogenous auxin profile in the Christmas rose (Helleborus niger L.) flower and fruit: free and amide conjugated IAA. J Plant Growth Regul 31:63–78CrossRefGoogle Scholar
  4. Caesar L, Adelberg J (2015) Using a multifactor approach for improving stage II responses of Helleborus hybrids in micropropagation. Propag Ornamental Plants 15(4):125–135Google Scholar
  5. Cakar J, Haveric A, Haveric S, Maksimovic M, Paric A (2014) Cytotoxic and genotoxic activity of some Helleborus species. Nat Prod Res 28:883–887CrossRefPubMedGoogle Scholar
  6. Christiaens A, Dhooghe E, Pinxteren D, van Labeke MC (2012) Flower development and effects of a cold treatment and a supplemental gibberellic acid application on flowering of Helleborus niger and Helleborus × ericsmithii. Sci Hortic 136:145–151CrossRefGoogle Scholar
  7. Dart S, Kron P, Mable BK (2004) Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Can J Bot 82:185–197CrossRefGoogle Scholar
  8. Dhooghe E, Grunewald W, Leus L, Van Labeke M-C (2008) In vitro polyploidisation of Helleborus species. Euphytica 165:89–95CrossRefGoogle Scholar
  9. Dresselhaus T, Franklin-Tong N (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036CrossRefPubMedGoogle Scholar
  10. Erbar C, Kusma S, Leins P (1998) Development and interpretation of nectary organs in Ranunculaceae. Flora 194:317–332CrossRefGoogle Scholar
  11. Fico G, Servettaz O, Caporali E, Tomè F, Agradi E (2005) Investigation of Helleborus genus (Ranunculaceae) using RAPD markers as an aid to taxonomic discrimination. Acta Hortic 675:205–209CrossRefGoogle Scholar
  12. Gabryszewska E (2017) Propagation in vitro of hellebores (Helleborus L.) review. Acta Sci Pol Hortorum Cultus 16(1):61–72Google Scholar
  13. Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixes. Philos Trans R Soc Lond B 333:1–13CrossRefGoogle Scholar
  14. Heinrich R, Klein F, Hohe A (2012) Use of AFLP-markers for estimation of the inbreeding level in Helleborus orientalis. Acta Hortic 961:205–210CrossRefGoogle Scholar
  15. Maior MC, Dobrota C (2013) Natural compounds with important medical potential found in Helleborus sp. Cent Eur J Biol 8:272–285Google Scholar
  16. Mathew B (1989) Hellebores. Alpine Garden Society Publications, WokingGoogle Scholar
  17. Matysiak B, Gabryszewska E (2016) The effect of in vitro culture conditions on the pattern of maximum photochemical efficiency of photosystem II during acclimatisation of Helleborus niger plantlets to ex vitro conditions. Plant Cell Tissue Organ Cult 125(3):585–593CrossRefGoogle Scholar
  18. Mears JA (1980) Chemistry of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 77–102CrossRefGoogle Scholar
  19. Meiners J, Winkelmann T (2012) Evaluation of reproductive barriers and realisation of interspecific hybridisations depending on the genetic distances between species in the genus Helleborus. Plant Biol 14:576–585CrossRefPubMedGoogle Scholar
  20. Meiners J, Debener T, Schweizer G, Winkelmann T (2011) Analysis of the taxonomic subdivision within the genus Helleborus by nuclear DNA content and genome-wide DNA markers. Sci Hortic 128(1):38–47CrossRefGoogle Scholar
  21. Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity 102:45–50CrossRefPubMedGoogle Scholar
  22. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273CrossRefPubMedPubMedCentralGoogle Scholar
  23. Niimi Y, Han DS, Abe S (2006) Temperatures affecting embryo development and seed germination of Christmas rose (Helleborus niger) after sowing. Sci Hortic 107:292–296CrossRefGoogle Scholar
  24. Rice G (2009) Hybridising Helleborus niger. Plantsman 2009:212–215Google Scholar
  25. Rice G, Strangman E (1993) The gardener’s guide to growing hellebores. David & Charles, Devon. 160 pGoogle Scholar
  26. Rieseberg LH, Carney SE (1998) Tansley review no. 102. Plant hybridization. New Phytol 140:599–624CrossRefGoogle Scholar
  27. Rottensteiner WK (2016) Attempt of a morphological differentiation of Helleborus species in the Northwestern Balkans. Mod Phytomorphol S9:17–33Google Scholar
  28. Stebbins GL (1971) Chromosome evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  29. Schink M, Garcia-Kaufer M, Bertrams J, Duckstein SM, Müller MB, Huber R, Stintzing FC, Grundemann C (2015) Differential cytotoxic properties of Helleborus niger L. on tumour and immunocompetent cells. J Ethnopharmacol 159:129–136CrossRefPubMedGoogle Scholar
  30. Schmitzer V, Mikulic-Petkovsek M, Stampar F (2013) Sepal phenolic profile during Helleborus niger flower development. J Plant Physiol 170:1407–1415CrossRefPubMedGoogle Scholar
  31. Salopek-Sondi B, Kovac M, Ljubesic N, Magnus V (2000) Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. J Plant Physiol 157:357–364CrossRefGoogle Scholar
  32. Salopek-Sondi B, Kovac M, Prebeg T, Magnus V (2002) Developing fruit direct post-floral morphogenesis in Helleborus niger L. J Exp Bot 53:1949–1957CrossRefPubMedGoogle Scholar
  33. Shahri W, Tahir I, Islam ST, Bhat MA (2011) Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis Lam. cv. Olympicus. Physiol Mol Biol Plants 17(1):33–39CrossRefPubMedPubMedCentralGoogle Scholar
  34. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A 97:7051–7057CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sun H, McLewin W, Fay F (2001) Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian-Mediterranean disjunction. Taxon 50:1001–1018CrossRefGoogle Scholar
  36. Susek A (2016) Perspectives of Christmas rose (Helleborus niger L.) genetic improvement. Agricultura 13(1–2):11–19. CrossRefGoogle Scholar
  37. Susek A, Ivancic A (2006) Pollinators of Helleborus niger in Slovenian naturally occurring populations. Acta Agric Slov 87(2):205–211Google Scholar
  38. Tal M (1980) Physiology of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 61–76CrossRefGoogle Scholar
  39. Tamura M (1993) Ranunculaceae. In: Kubitski K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants: flowering plants - Dicotyledons, vol II. Springer-Verlag, Berlin, pp 563–583CrossRefGoogle Scholar
  40. Tamura M (1995) Systematic part. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien. Bd. 17 a IV Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae, 2nd edn. Duncker & Humblot, Berlin, pp 220–519Google Scholar
  41. Tan CW, Tian YF, Gong HY, Chen XW, Jiang KJ, Wang R (2014) Two new bufadienolides from the rhizomes of Helleborus thibetanus with inhibitory activities against prostate cancer cells. Nat Prod Res 28:901–908CrossRefPubMedGoogle Scholar
  42. Winkelmann T, Hartwig N, Sparke J (2015) Interspecific hybridisation in the genus Helleborus. Acta Hortic 1087:301–308CrossRefGoogle Scholar
  43. Zonneveld BJM (2001) Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Syst Evol 229:125–130CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emmy Dhooghe
    • 1
    Email author
  • Julia Sparke
    • 2
  • Peter Oenings
    • 3
  • Thierry Van Paemel
    • 4
  • Marie-Christine Van Labeke
    • 5
  • Traud Winkelmann
    • 6
  1. 1.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium
  2. 2.Boehringer Ingelheim Pharma GmbH & Co. KGIngelheim am RheinGermany
  3. 3.HeugerGlandorfGermany
  4. 4.Het WilgenbroekOostkampBelgium
  5. 5.Ghent University, Department Plants and CropsGhentBelgium
  6. 6.Institute of Horticultural Production Systems, Woody Plant and Propagation PhysiologyLeibniz Universität HannoverHannoverGermany

Personalised recommendations