Cardiac Stem Cells: A Plethora of Potential Therapies for Myocardial Regeneration Within Reach

  • Enrique Gallego-Colon
  • Eduardo OliverEmail author


The limited regenerative capacity of the adult heart hinders cardiac regeneration and still remains an unsolved therapeutic target. In the last decade, the development of cell-based approaches for the treatment of myocardial infarction has made substantial progress. The use of cardiac stem cells (CSC) represents a promising therapeutic tool upon massive loss of cardiac tissue such as after myocardial infarction. Different putative CSC populations, with self-renewing capacity and potential to differentiate into cardiomyocytes, smooth muscle, or endothelial cells, are under evaluation. Preclinical studies have discovered various pools of putative CSC including c-kit cardiac progenitor cells (CPCs), epicardium-derived cells (EPDC), Sca-1, cardiac side population (cSP), islet-1 CPC, cardiosphere-derived cells (CDCs), cardiac colony-forming unit fibroblast (cCFU-F), cardiac atrial appendage stem cells (CASCs), bone marrow-derived CSC (BMdCSC), and modified embryonic or induced pluripotent stem cells. Preclinical studies provided encouraging results on the ability of CSC to restore cardiac contractility, regional and global function, myocyte survival, and the remodeling process. Although CSC therapy is safe and feasible in the clinics, heterogeneous outcomes have cast doubts on CSC efficacy to promote cardiac regeneration. Overall, the poor engraftment of transplanted CSC highlights the possibility that the observed beneficial effects may be attributed to the release of paracrine factors rather than CSC ability to reconstitute functional well-differentiated myocardium. Unfortunately, controversy remains around the benefit of CSC therapy, and big challenges such as ideal dose, identification and selection of the best CSC type, delivery system, and concomitant treatments must be addressed. The success of CSC regenerative therapies implies more basic research, and further clinical trials are needed before to reach the clinical practice and fulfill the long-lasting goal of cardiac regeneration.


Cardiac regeneration Myocardial infarction Ischemic disease Cardiac stem cells Cardiac progenitor cell Cardiac function Clinical trials Preclinical studies 





Basic fibroblast growth factor


Bone marrow


Bone marrow-derived cells


Coronary artery bypass surgery


Cardiac atrial appendage stem cells


Cardiac colony-forming unit fibroblast


Cardiosphere-derived cells


Cardiac progenitor cells


Cardiac stem cell


Cardiac side population


Ejection fraction


Epithelial-to-mesenchymal transition


Epicardium-derived cells


Embryonic stem cells


Green fluorescent protein


Heart failure


Insulin growth factor 1


Ischemic heart disease


Induced pluripotent stem cells


Myocardial infarction


Magnetic resonance imaging


Mesenchymal stem cells


Stem cell antigen-1



E.J.G-C wants to acknowledge the EU FP7-Marie Curie-ITN fellows and lecturers for the scientific input over the years when E.J.G-C was a Marie Curie Fellow. During the preparation of this chapter, E.O. was recipient of a CNIC-IPP Research Fellowship funded by the FP7-PEOPLE-2012-COFUND - Marie Curie Action (600396 / 17214-2016), and is currently supported by the 'Talent Attraction program' of Comunidad de Madrid (2017-T1/BMD-5185). The CNIC is supported by the Ministerio de Economía, Industria y Competitividad (MEIC) and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).


E.J.G-C. and E.O. declare no competing financial interests or conflict of interest.


  1. 1.
    Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. Circulation 126:2020–2203. CrossRefPubMedGoogle Scholar
  5. 5.
    Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation 128:240–327. CrossRefGoogle Scholar
  6. 6.
    Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frazier OH (1994) First use of an untethered, vented electric left ventricular assist device for long-term support. Circulation 89:2908–2914CrossRefPubMedGoogle Scholar
  8. 8.
    Sajgalik P, Grupper A, Edwards BS et al (2016) Current status of left ventricular assist device therapy. Mayo Clin Proc 91:927–940. CrossRefPubMedGoogle Scholar
  9. 9.
    Deb S, Wijeysundera HC, Ko DT et al (2013) Coronary artery bypass graft surgery vs percutaneous interventions in coronary revascularization. JAMA 310:2086. CrossRefPubMedGoogle Scholar
  10. 10.
    Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263:1353–1357PubMedGoogle Scholar
  11. 11.
    Minicucci MF, Azevedo PS, Polegato BF et al (2011) Heart failure after myocardial infarction: clinical implications and treatment. Clin Cardiol 34:410–414. CrossRefPubMedGoogle Scholar
  12. 12.
    Pfeffer MA (1998) ACE inhibitors in acute myocardial infarction: patient selection and timing. Circulation 97:2192–2194. CrossRefPubMedGoogle Scholar
  13. 13.
    Gottlieb SS, McCarter RJ, Vogel RA (1998) Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N Engl J Med 339:489–497. CrossRefPubMedGoogle Scholar
  14. 14.
    Ibanez B, James S, Agewall S et al (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 39:119–177. CrossRefPubMedGoogle Scholar
  15. 15.
    Ptaszek LM, Mansour M, Ruskin JN, Chien KR (2012) Towards regenerative therapy for cardiac disease. Lancet 379:933–942. CrossRefPubMedGoogle Scholar
  16. 16.
    Fang H, Lai NC, Gao MH et al (2013) Comparison of adeno-associated virus serotypes and delivery for cardiac gene transfer. Hum Gene Ther Methods 23:234–241. CrossRefGoogle Scholar
  17. 17.
    Kaspar BK, Roth DM, Lai NC et al (2005) Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 7:316–324. CrossRefPubMedGoogle Scholar
  18. 18.
    Müller OJ, Leuchs B, Pleger ST et al (2006) Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 70:70–78. CrossRefPubMedGoogle Scholar
  19. 19.
    Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190. CrossRefPubMedGoogle Scholar
  20. 20.
    Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 28:719–741. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang J, Panáková D, Kikuchi K et al (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138:3421–3430. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kikuchi K, Holdway JE, Major RJ et al (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20:397–404. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ito K, Morioka M, Kimura S et al (2014) Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev Dyn 243:1106–1115. CrossRefPubMedGoogle Scholar
  24. 24.
    Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Porrello ER, Mahmoud AI, Simpson E et al (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci 110:187–192. CrossRefPubMedGoogle Scholar
  26. 26.
    Jesty SA, Steffey MA, Lee FK et al (2012) c-Kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci 109:13380–13385. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aurora AB, Porrello ER, Tan W et al (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Broughton KM, Sussman MA (2016) Empowering adult stem cells for myocardial regeneration V2.0. Circ Res 118:867–880. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272:H220–H226PubMedGoogle Scholar
  30. 30.
    Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 98–102([PubMed: 19342590]):324Google Scholar
  32. 32.
    Walsh S, Pontén A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–373. CrossRefPubMedGoogle Scholar
  33. 33.
    Kikuchi K, Holdway JE, A a W et al (2010) Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464:601–605. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776CrossRefPubMedGoogle Scholar
  35. 35.
    Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705. CrossRefPubMedGoogle Scholar
  36. 36.
    Senyo SE, Steinhauser ML, Pizzimenti CL et al (2012) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dixit P, Katare R (2015) Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 6:26. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Messina E (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921. CrossRefPubMedGoogle Scholar
  39. 39.
    Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908. CrossRefPubMedGoogle Scholar
  40. 40.
    Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci 104:14068–14073. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Urbanek K, Cesselli D, Rota M et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci 103:9226–9231. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Linke A, Muller P, Nurzynska D et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci 102:8966–8971. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sanada F, Kim J, Czarna A et al (2014) c-Kit–positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy novelty and significance. Circ Res 114:41–55. CrossRefPubMedGoogle Scholar
  44. 44.
    Khan M, Koch WJ (2016) c-Kit+ cardiac stem cells. Circ Res 118:783–785. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sultana N, Zhang L, Yan J et al (2015) Resident c-kit+ cells in the heart are not cardiac stem cells. Nat Commun 6:8701. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Di Meglio F, Castaldo C, Nurzynska D et al (2010) Localization and origin of cardiac CD117-positive cells: identification of a population of epicardially-derived cells in adult human heart. Ital J Anat Embryol 115:71–78PubMedGoogle Scholar
  47. 47.
    Di Meglio F, Castaldo C, Nurzynska D et al (2010) Epithelial–mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol 49:719–727. CrossRefPubMedGoogle Scholar
  48. 48.
    Limana F, Bertolami C, Mangoni A et al (2010) Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: role of the pericardial fluid. J Mol Cell Cardiol 48:609–618. CrossRefPubMedGoogle Scholar
  49. 49.
    Keith MCL, Bolli R (2015) “String theory” of c-kitpos cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 116:1216–1230. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tang XL, Li Q, Rokosh G et al (2016) Long-term outcome of administration of c-kit+ cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res 118:1091–1105. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Christoffels VM, Grieskamp T, Norden J et al (2009) Tbx18 and the fate of epicardial progenitors. Nature 458:E8–E9. CrossRefPubMedGoogle Scholar
  53. 53.
    Ding Z, Temme S, Quast C, Friebe D, Jacoby C, Zanger K et al (2016 May) Epicardium-derived cells formed after myocardial injury display phagocytic activity permitting in vivo labeling and tracking. Stem Cells Transl Med [Internet] 5(5):639–650CrossRefGoogle Scholar
  54. 54.
    Cai C-L, Martin JC, Sun Y et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Smits A, Riley P (2014) Epicardium-derived heart repair. J Dev Biol 2:84–100. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Smart N, Dubé KN, Riley PR (2013) Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vascul Pharmacol 58:164–173. CrossRefPubMedGoogle Scholar
  57. 57.
    Zhou B, Honor LB, He H et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121:1894–1904. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    van Wijk B, Gunst QD, Moorman AFM, van den MJB H (2012) Cardiac regeneration from activated epicardium. PLoS One 7:e44692. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Smart N, Bollini S, Dubé KN et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–644. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Paulitschek C, Schulze-Matz P, Hesse J et al (2017) Generation and characterization of two iPSC lines from human epicardium-derived cells. Stem Cell Res 20:50–53. CrossRefPubMedGoogle Scholar
  61. 61.
    Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Freire AG, Nascimento DS, Forte G et al (2014) Stable phenotype and function of immortalized Lin Sca-1+ cardiac progenitor cells in long-term culture: a step closer to standardization. Stem Cells Dev 23:1012–1026. CrossRefPubMedGoogle Scholar
  63. 63.
    Uchida S, De Gaspari P, Kostin S et al (2013) Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 1:397–410. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Valente M, Nascimento DS, Cumano A, Pinto-do-Ó P (2014) Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 23:2263–2273. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang X, Hu Q, Nakamura Y et al (2006) The role of the Sca-1+/CD31 cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24:1779–1788. CrossRefPubMedGoogle Scholar
  66. 66.
    Wang X, Li Q, Hu Q et al (2014) Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31 cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration. PLoS One 9:e95247. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Smits AM, van Vliet P, Metz CH et al (2009) Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 4:232–243. CrossRefPubMedGoogle Scholar
  68. 68.
    Hierlihy AM, Seale P, Lobe CG et al (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Martin CM, Meeson AP, Robertson SM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275CrossRefPubMedGoogle Scholar
  70. 70.
    Unno K, Jain M, Liao R (2012) Cardiac side population cells: moving toward the center stage in cardiac regeneration. Circ Res 110:1355–1363. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dey D, Han L, Bauer M et al (2013) Dissecting the molecular relationship among various cardiogenic progenitor cells. Circ Res 112:1253–1262. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yellamilli A, van Berlo JH (2016) The role of cardiac side population cells in cardiac regeneration. Front Cell Dev Biol 4:1–9. CrossRefGoogle Scholar
  73. 73.
    Oyama T, Nagai T, Wada H et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176:329–341. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Alfakir M, Dawe N, Eyre R et al (2012) The temporal and spatial expression patterns of ABCG2 in the developing human heart. Int J Cardiol 156:133–138. CrossRefPubMedGoogle Scholar
  75. 75.
    Sandstedt J, Jonsson M, Kajic K et al (2012) Left atrium of the human adult heart contains a population of side population cells. Basic Res Cardiol 107:255. CrossRefPubMedGoogle Scholar
  76. 76.
    Tomita Y, Matsumura K, Wakamatsu Y et al (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 170:1135–1146. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Liang SX, Tan TYL, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31 cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49. CrossRefPubMedGoogle Scholar
  78. 78.
    Liang SX, Khachigian LM, Ahmadi Z et al (2011) In vitro and in vivo proliferation, differentiation and migration of cardiac endothelial progenitor cells (SCA1+/CD31+ side-population cells). J Thromb Haemost 9:1628–1637. CrossRefPubMedGoogle Scholar
  79. 79.
    Pfister O (2005) CD31 but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61. CrossRefPubMedGoogle Scholar
  80. 80.
    Noseda M, Harada M, McSweeney S et al (2015) PDGFR? demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nat Commun 6:6930. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Laugwitz K-L, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lui KO, Zangi L, Silva EA et al (2013) Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 23:1172–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Moretti A, Lam J, Evans SM, Laugwitz K-L (2007) Cardiovascular development: towards biomedical applicability. Cell Mol Life Sci 64:674–682. CrossRefPubMedGoogle Scholar
  84. 84.
    Bu L, Jiang X, Martin-Puig S et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–117. CrossRefPubMedGoogle Scholar
  85. 85.
    Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165. CrossRefPubMedGoogle Scholar
  86. 86.
    Simpson DL, Mishra R, Sharma S et al (2012) A strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation 126:S46–S53. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Barile L, Chimenti I, Gaetani R et al (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 4:S9–S14. CrossRefPubMedGoogle Scholar
  88. 88.
    Barile L, Messina E, Giacomello A, Marbán E (2007) Endogenous cardiac stem cells. Prog Cardiovasc Dis 50:31–48. CrossRefPubMedGoogle Scholar
  89. 89.
    Chimenti I, Gaetani R, Barile L et al (2012) Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol 879:327–338CrossRefPubMedGoogle Scholar
  90. 90.
    Chimenti I, Smith RR, Li T-S et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Davis DR, Kizana E, Terrovitis J et al (2010) Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J Mol Cell Cardiol 49:312–321. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Redgrave RE, Tual-Chalot S, Davison BJ et al (2017) Cardiosphere-derived cells require endoglin for paracrine-mediated angiogenesis. Stem Cell Reports 8:1287–1298. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Li T-S, Cheng K, Malliaras K et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Johnston PV, Sasano T, Mills K et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120:1075–1083. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Shenje LT, Field LJ, Pritchard CA et al (2008) Lineage tracing of cardiac explant derived cells. PLoS One 3:e1929. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kasai-Brunswick TH, da Costa AR, Barbosa RAQ et al (2017) Cardiosphere-derived cells do not improve cardiac function in rats with cardiac failure. Stem Cell Res Ther 8:36. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Chong JJH, Chandrakanthan V, Xaymardan M et al (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Chong JJH, Reinecke H, Iwata M et al (2013) Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev 22:1932–1943. CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Koninckx R, Daniëls A, Windmolders S et al (2013) The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair. Cardiovasc Res 97:413–423. CrossRefPubMedGoogle Scholar
  100. 100.
    Fanton Y, Robic B, Rummens JL et al (2015) Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: a new tool for cardiac repair after MI. Int J Cardiol 201:10–19. CrossRefPubMedGoogle Scholar
  101. 101.
    Fanton Y, Houbrechts C, Willems L et al (2016) Cardiac atrial appendage stem cells promote angiogenesis in vitro and in vivo. J Mol Cell Cardiol 97:235–244. CrossRefPubMedGoogle Scholar
  102. 102.
    Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668. CrossRefPubMedGoogle Scholar
  103. 103.
    Liu N, Qi X, Han Z et al (2016) Bone marrow is a reservoir for cardiac resident stem cells. Sci Rep 6:28739. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Mouquet F (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97:1090–1092. CrossRefPubMedGoogle Scholar
  105. 105.
    Kawada H, Ogawa M (2001) Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 98:2008–2013CrossRefPubMedGoogle Scholar
  106. 106.
    Sadek HA, Martin CM, Latif SS et al (2009) Bone-marrow-derived side population cells for myocardial regeneration. J Cardiovasc Transl Res 2:173–181. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232. CrossRefPubMedGoogle Scholar
  109. 109.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  110. 110.
    Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:1–24. CrossRefGoogle Scholar
  111. 111.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Devalla HD, Schwach V, Ford JW et al (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410. CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. CrossRefPubMedGoogle Scholar
  115. 115.
    Lowry WE, Richter L, Yachechko R et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci 105:2883–2888. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1:245–247. CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Hou P, Li Y, Zhang X et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654. CrossRefPubMedGoogle Scholar
  118. 118.
    Ieda M, Fu J-D, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Zhao Z, Xu M, Wu M et al (2015) Transdifferentiation of fibroblasts by defined factors. Cell Reprogram 17:151–159. CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Sayed N, Liu C, Wu JC (2016) Translation of human-induced pluripotent stem cells. J Am Coll Cardiol 67:2161–2176. CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Youssef AA, Ross EG, Bolli R et al (2016) The promise and challenge of induced pluripotent stem cells for cardiovascular applications. JACC Basic Transl Sci 1:510–523. CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Zhang J, Wilson G, Soerens A (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41. CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Yamakawa H (2016) Heart regeneration for clinical application update 2016: from induced pluripotent stem cells to direct cardiac reprogramming. Inflamm Regen 36:23. CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Deuse T, Peter C, Fedak PWM et al (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120:S247–S254. CrossRefPubMedGoogle Scholar
  125. 125.
    Tang J-M, Wang J-N, Zhang L et al (2011) VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 91:402–411. CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Tang JM, Luo B, Xiao JH et al (2015) VEGF-A promotes cardiac stem cell engraftment and myocardial repair in the infarcted heart. Int J Cardiol 183:221–231. CrossRefPubMedGoogle Scholar
  127. 127.
    Stewart DJ, Kutryk MJ, Fitchett D et al (2009) VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 17:1109–1115. CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Santini MP, Lexow J, Borsellino G et al (2011) IGF-1Ea induces vessel formation after injury and mediates bone marrow and heart cross-talk through the expression of specific cytokines. Biochem Biophys Res Commun 410:201–207. CrossRefPubMedGoogle Scholar
  129. 129.
    Gallego-Colon E, Sampson RD, Sattler S et al (2015) Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediators Inflamm 2015:1–10. CrossRefGoogle Scholar
  130. 130.
    Ellison GM, Torella D, Dellegrottaglie S et al (2011) Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol 58:977–986. CrossRefPubMedGoogle Scholar
  131. 131.
    Gallego-Colon E, Villalba M, Tonkin J et al (2016) Intravenous delivery of adeno-associated virus 9-encoded IGF-1Ea propeptide improves post-infarct cardiac remodelling. NPJ Regen Med 1:16001. CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Evaluation of the Safety and Efficacy of Using Insulin-like Growth Factor-1 in Patients With a Heart Attack (RESUS-AMI) (NCT01438086).
  133. 133.
    Minatoguchi S (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580. CrossRefPubMedGoogle Scholar
  134. 134.
    Askari AT, Unzek S, Popovic ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703. CrossRefPubMedGoogle Scholar
  135. 135.
    Hu X, Yu SP, Fraser JL et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808. CrossRefPubMedGoogle Scholar
  136. 136.
    Yan F, Yao Y, Chen L et al (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1α–CXCR4 axis. PLoS One 7:e37948. CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Herrmann JL, Wang Y, Abarbanell AM et al (2010) Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock 33:24–30. CrossRefPubMedGoogle Scholar
  138. 138.
    Vandergriff AC, de JBM A, Tang J et al (2015) Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int 2015:1–8. CrossRefGoogle Scholar
  139. 139.
    Nawaz M, Fatima F, Vallabhaneni KC et al (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int 2016:1–17. CrossRefGoogle Scholar
  140. 140.
    Yang Y-J, Qian H-Y, Huang J et al (2009) Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts. Arterioscler Thromb Vasc Biol 29:2076–2082. CrossRefPubMedGoogle Scholar
  141. 141.
    Wisel S, Khan M, Kuppusamy ML et al (2009) Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 329:543–550. CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Takehara N, Tsutsumi Y, Tateishi K et al (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 52:1858–1865. CrossRefPubMedGoogle Scholar
  143. 143.
    Abstracts LCT, Brighton T, Eikelboom J et al (2015) Late-breaking clinical trial abstracts. Circulation 132:2267–2285. CrossRefGoogle Scholar
  144. 144.
    Yacoub MH, Terrovitis J (2013) CADUCEUS, SCIPIO, ALCADIA: cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Glob Cardiol Sci Pract 2013:3. CrossRefGoogle Scholar
  145. 145.
    Chugh AR, Beache GM, Loughran JH et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54–S64. CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857. CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    The Lancet Editors (2014) Expression of concern: the SCIPIO trial. Lancet 383:1279. CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Malliaras K, Makkar RR, Smith RR et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction. J Am Coll Cardiol 63:110–122. CrossRefPubMedGoogle Scholar
  149. 149.
    Ishigami S, Ohtsuki S, Tarui S et al (2015) Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res 116:653–664. CrossRefPubMedGoogle Scholar
  150. 150.
    Ishigami S, Ohtsuki S, Eitoku T et al (2017) Intracoronary cardiac progenitor cells in single ventricle physiology novelty and significance. Circ Res 120:1162–1173. CrossRefPubMedGoogle Scholar
  151. 151.
    Cardiac Stem/Progenitor Cell Infusion in Univentricular Physiology (APOLLON Trial) (APOLLON) (NCT02781922).
  152. 152.
    Combination of Mesenchymal and C-kit+ Cardiac Stem Cells as Regenerative Therapy for Heart Failure (CONCERT-HF) (NCT02501811).
  153. 153.
    Allogeneic Heart Stem Cells to Achieve Myocardial Regeneration (ALLSTAR) (NCT01458405).
  154. 154.
    Presented by Dr. Timothy D. Henry at the American Heart Association Annual Scientific Sessions (AHA 2017), Anaheim, CA, November 15, 2017.
  155. 155.
    Dilated cardiomYopathy iNtervention with Allogeneic MyocardIally-regenerative Cells (DYNAMIC) (NCT02293603).
  156. 156.
    HOPE-Duchenne (Halt cardiomyOPathy progression in Duchenne) (HOPE) (NCT02485938).
  157. 157.
    Menasché P, Alfieri O, Janssens S et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200. CrossRefPubMedGoogle Scholar
  158. 158.
    Chavakis E, Koyanagi M, Dimmeler S (2010) Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 121:325–335. CrossRefPubMedGoogle Scholar
  159. 159.
    Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116:1413–1430. CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256CrossRefPubMedGoogle Scholar
  161. 161.
    Bel A, Messas E, Agbulut O et al (2003) Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 108(Suppl):II247–II252. CrossRefPubMedGoogle Scholar
  162. 162.
    Waksman R, Fournadjiev J, Baffour R et al (2004) Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc Radiat Med 5:125–131. CrossRefPubMedGoogle Scholar
  163. 163.
    Mathieu M, Bartunek J, El Oumeiri B et al (2009) Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J Thorac Cardiovasc Surg 138:646–653. CrossRefPubMedGoogle Scholar
  164. 164.
    Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J et al (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360. CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Fisher SA, Doree C, Mathur A et al (2016) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. In: Martin-Rendon E (ed) Cochrane database of systematic reviews. Wiley, Chichester, UKGoogle Scholar
  166. 166.
    Wei X, Yang X, Han Z et al (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754. CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:1–13. CrossRefGoogle Scholar
  168. 168.
    Miao C, Lei M, Hu W et al (2017) A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 8:242. CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Mills JS, Rao SV (2007) REPAIR-AMI: stem cells for acute myocardial infarction. Future Cardiol 3:137–140. CrossRefPubMedGoogle Scholar
  170. 170.
    Yousef M, Schannwell CM, Köstering M et al (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269. CrossRefPubMedGoogle Scholar
  171. 171.
    Assmus B, Schächinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017CrossRefPubMedGoogle Scholar
  172. 172.
    Leistner DM, Fischer-Rasokat U, Honold J et al (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100:925–934. CrossRefPubMedGoogle Scholar
  173. 173.
    Wang X, Zhang J, Zhang F et al (2015) The clinical status of stem cell therapy for ischemic cardiomyopathy. Stem Cells Int 2015:1–13. CrossRefGoogle Scholar
  174. 174.
    Fernández-Avilés F, Sanz-Ruiz R, Climent AM, Badimon L, Bolli R, Charron D et al (2017) Global position paper on cardiovascular regenerative medicine. Eur Heart J 38:2532–2546. CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Sanz-Ruiz R, Climent AM, Fernández-Santos ME, Villa Arranz A, Gutiérrez Ibañes E, Vázquez-Álvarez ME et al (2017) General overview of the 14th international symposium on stem cell therapy and cardiovascular innovations. Circ Res 121:1040–1043. CrossRefPubMedGoogle Scholar
  176. 176.
    Lister Z, Rayner KJ, Suuronen EJ (2016) How biomaterials can influence various cell types in the repair and regeneration of the heart after myocardial infarction. Front Bioeng Biotechnol 4:62. CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Leor J, Amsalem Y, Cohen S (2005) Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther 105:151–163. CrossRefPubMedGoogle Scholar
  178. 178.
    Vunjak-Novakovic G, Tandon N, Godier A et al (2010) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16:169–187. CrossRefPubMedGoogle Scholar
  179. 179.
    Taylor DA, Parikh RB, Sampaio LC (2017) Bioengineering hearts: simple yet complex. Curr Stem Cell Reports 3:35–44. CrossRefGoogle Scholar
  180. 180.
    Segers VFM, Lee RT (2011) Biomaterials to enhance stem cell function in the heart. Circ Res 109:910–922. CrossRefPubMedGoogle Scholar
  181. 181.
    Georgiadis V, Knight RA, Jayasinghe SN, Stephanou A (2014) Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr Biol 6:111–126. CrossRefGoogle Scholar
  182. 182.
    Hastings CL, Roche ET, Ruiz-Hernandez E et al (2015) Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 84:85–106. CrossRefPubMedGoogle Scholar
  183. 183.
    Guyette JP, Charest JM, Mills RW et al (2016) Bioengineering human myocardium on native extracellular matrix novelty and significance. Circ Res 118:56–72. CrossRefPubMedGoogle Scholar
  184. 184.
    Transplantation of Human Embryonic Stem Cell-Derived Progenitors in Severe Heart Failure (ESCORT) (NCT02057900).
  185. 185.
    Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: figure 1. Eur Heart J 36:2011–2017. CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Lui KO, Zangi L, Chien KR (2014) Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Res 13:693–704. CrossRefPubMedGoogle Scholar
  187. 187.
    Nakada Y, Canseco DC, Thet S et al (2016) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227. CrossRefPubMedGoogle Scholar
  188. 188.
    Hu X, Xu Y, Zhong Z et al (2016) A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates novelty and significance. Circ Res 118:970–983. CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Van Den SWM B, Van De VAM S, Strzelecka AE et al (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84:273–282. CrossRefGoogle Scholar
  190. 190.
    Monteiro LM, Vasques-Nóvoa F, Ferreira L et al (2017) Restoring heart function and electrical integrity: closing the circuit. NPJ Regen Med 2:9. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryMedical University of Silesia, School of Medicine in KatowiceKatowicePoland
  2. 2.Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain

Personalised recommendations