Advertisement

Past, Present and Future of Cell-Based Therapy in Progressive Multiple Sclerosis

  • Giulio Volpe
  • Joshua D. Bernstock
  • Luca Peruzzotti-Jametti
  • Stefano Pluchino
Chapter

Abstract

Although substantial progress has been made in the development of effective drugs for relapsing-remitting multiple sclerosis, no convincingly treatment exists to slow and/or reverse progressive forms of the disease. Advances in the field of cell-based therapies have opened to novel possible application to treat inflammatory and degenerative disease of the central nervous system including progressive MS. Major expectation arises from the use of (i) oligodendrocyte progenitor cells for directly replacing the damaged myelin and (ii) non-haematopoietic stem cells for the potential of influencing host immune response and endogenous mechanisms of repair. Each approach has potential advantages but also safety concerns and unresolved questions that are to be addressed in order to witness further advance in clinics.

In this chapter, we summarize the preclinical research leading to the current status of cell-based therapies to treat progressive form of MS and discuss the current obstacle and main objective for prospective clinical application.

Keywords

Multiple sclerosis Cell-based therapy Oligodendrocyte progenitor cells Mesenchymal stem cells Neural stem cells Non-haematopoietic stem cells Regenerative medicine Stem cells 

References

  1. 1.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822.  https://doi.org/10.1182/blood-2004-04-1559 CrossRefPubMedGoogle Scholar
  2. 2.
    Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T (2008) Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 3(9):e3145.  https://doi.org/10.1371/journal.pone.0003145 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ahmed S, Reynolds BA, Weiss S (1995) BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci Off J Soc Neurosci 15(8):5765–5778CrossRefGoogle Scholar
  4. 4.
    Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167(1):27–39.  https://doi.org/10.1006/exnr.2000.7539 CrossRefPubMedGoogle Scholar
  5. 5.
    Altaner C, Altanerova V, Cihova M, Hunakova L, Kaiserova K, Klepanec A, Vulev I, Madaric J (2013) Characterization of mesenchymal stem cells of “no-options” patients with critical limb ischemia treated by autologous bone marrow mononuclear cells. PLoS One 8(9):e73722.  https://doi.org/10.1371/journal.pone.0073722 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335CrossRefPubMedGoogle Scholar
  7. 7.
    Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126(3):337–389.  https://doi.org/10.1002/cne.901260302 CrossRefPubMedGoogle Scholar
  8. 8.
    Altman J, Das GD (1967) Postnatal neurogenesis in the guinea-pig. Nature 214(5093):1098–1101CrossRefPubMedGoogle Scholar
  9. 9.
    Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, Chua JY, Lee SW, Palmer TD, Steinberg GK, Guzman R (2011) The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42(10):2923–2931.  https://doi.org/10.1161/STROKEAHA.110.606368 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260.  https://doi.org/10.1038/nbt.2816 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Archer DR, Cuddon PA, Lipsitz D, Duncan ID (1997) Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat Med 3(1):54–59CrossRefPubMedGoogle Scholar
  12. 12.
    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490.  https://doi.org/10.1002/eji.200425405 CrossRefPubMedGoogle Scholar
  13. 13.
    Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A (1996) Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 45(5):558–570.  https://doi.org/10.1002/(SICI)1097-4547(19960901)45:5<558::AID-JNR6>3.0.CO;2-B CrossRefPubMedGoogle Scholar
  14. 14.
    Bachelin C, Lachapelle F, Girard C, Moissonnier P, Serguera-Lagache C, Mallet J, Fontaine D, Chojnowski A, Le Guern E, Nait-Oumesmar B, Baron-Van Evercooren A (2005) Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128(Pt 3):540–549.  https://doi.org/10.1093/brain/awh406 CrossRefPubMedGoogle Scholar
  15. 15.
    Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, Zaremba A, Miller RH (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15(6):862–870.  https://doi.org/10.1038/nn.3109 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57(11):1192–1203.  https://doi.org/10.1002/glia.20841 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, Gallo V (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161(1):169–186.  https://doi.org/10.1083/jcb.200210110 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ben-Hur T (2008) Immunomodulation by neural stem cells. J Neurol Sci 265(1–2):102–104.  https://doi.org/10.1016/j.jns.2007.05.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41(1):73–80.  https://doi.org/10.1002/glia.10159 CrossRefPubMedGoogle Scholar
  20. 20.
    Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De Fraja C, Vescovi A, Cattaneo E, Finocchiaro G (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6(4):447–450.  https://doi.org/10.1038/74710 CrossRefPubMedGoogle Scholar
  21. 21.
    Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G, Uccelli A (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25(7):1753–1760.  https://doi.org/10.1634/stemcells.2007-0068 CrossRefPubMedGoogle Scholar
  22. 22.
    Berkowitz AL, Miller MB, Mir SA, Cagney D, Chavakula V, Guleria I, Aizer A, Ligon KL, Chi JH (2016) Glioproliferative lesion of the spinal cord as a complication of “stem-cell tourism”. N Engl J Med 375(2):196–198.  https://doi.org/10.1056/NEJMc1600188 CrossRefPubMedGoogle Scholar
  23. 23.
    Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99(4):2344–2349.  https://doi.org/10.1073/pnas.022438099 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Blakemore WF (1977) Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266(5597):68–69CrossRefPubMedGoogle Scholar
  25. 25.
    Blakemore WF, Crang AJ (1985) The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J Neurol Sci 70(2):207–223CrossRefPubMedGoogle Scholar
  26. 26.
    Blakemore WF, Gilson JM, Crang AJ (2000) Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res 61(3):288–294.  https://doi.org/10.1002/1097-4547(20000801)61:3<288::AID-JNR6>3.0.CO;2-# CrossRefPubMedGoogle Scholar
  27. 27.
    Blakemore WF, Gilson JM, Crang AJ (2003) The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors. Exp Neurol 184(2):955–963.  https://doi.org/10.1016/S0014-4886(03)00347-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7(6):407–414CrossRefPubMedGoogle Scholar
  29. 29.
    Bowen JD, Kraft GH, Wundes A, Guan Q, Maravilla KR, Gooley TA, McSweeney PA, Pavletic SZ, Openshaw H, Storb R, Wener M, McLaughlin BA, Henstorf GR, Nash RA (2012) Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 47(7):946–951.  https://doi.org/10.1038/bmt.2011.208 CrossRefPubMedGoogle Scholar
  30. 30.
    Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ (2014) Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 83(11):1022–1024.  https://doi.org/10.1212/WNL.0000000000000768 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428):754–756CrossRefPubMedGoogle Scholar
  32. 32.
    Buchet D, Baron-Van Evercooren A (2009) In search of human oligodendroglia for myelin repair. Neurosci Lett 456(3):112–119.  https://doi.org/10.1016/j.neulet.2008.09.086 CrossRefPubMedGoogle Scholar
  33. 33.
    Buchet D, Garcia C, Deboux C, Nait-Oumesmar B, Baron-Van Evercooren A (2011) Human neural progenitors from different foetal forebrain regions remyelinate the adult mouse spinal cord. Brain J Neurol 134(Pt 4):1168–1183.  https://doi.org/10.1093/brain/awr030 CrossRefGoogle Scholar
  34. 34.
    Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160.  https://doi.org/10.1016/j.mcn.2005.10.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Cacci E, Ajmone-Cat MA, Anelli T, Biagioni S, Minghetti L (2008) In vitro neuronal and glial differentiation from embryonic or adult neural precursor cells are differently affected by chronic or acute activation of microglia. Glia 56(4):412–425.  https://doi.org/10.1002/glia.20616 CrossRefPubMedGoogle Scholar
  36. 36.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82.  https://doi.org/10.1016/j.ccr.2006.11.020 CrossRefPubMedGoogle Scholar
  37. 37.
    Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402CrossRefPubMedGoogle Scholar
  38. 38.
    Cao QL, Howard RM, Dennison JB, Whittemore SR (2002) Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol 177(2):349–359CrossRefPubMedGoogle Scholar
  39. 39.
    Cao W, Yang Y, Wang Z, Liu A, Fang L, Wu F, Hong J, Shi Y, Leung S, Dong C, Zhang JZ (2011) Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 35(2):273–284.  https://doi.org/10.1016/j.immuni.2011.06.011 CrossRefPubMedGoogle Scholar
  40. 40.
    Caplan AI (1991) Mesenchymal stem cells. J Orthopaed Res Off Publ Orthopaed Res Soc 9(5):641–650.  https://doi.org/10.1002/jor.1100090504 CrossRefGoogle Scholar
  41. 41.
    Capone C, Frigerio S, Fumagalli S, Gelati M, Principato MC, Storini C, Montinaro M, Kraftsik R, De Curtis M, Parati E, De Simoni MG (2007) Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 2(4):e373.  https://doi.org/10.1371/journal.pone.0000373 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173.  https://doi.org/10.1056/NEJMoa010994 CrossRefPubMedGoogle Scholar
  43. 43.
    Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24(11):2466–2477.  https://doi.org/10.1634/stemcells.2006-0071 CrossRefPubMedGoogle Scholar
  44. 44.
    Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, Li H, Lu M, Ren Y, He X (2016) Anti-inflammatory mechanism of neural stem cell transplantation in spinal cord injury. Int J Mol Sci 17(9).  https://doi.org/10.3390/ijms17091380 CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chiu AY, Rao MS (2011) Cell-based therapy for neural disorders – anticipating challenges. Neurotherapeutics J Am Soc Exp NeuroTherap 8(4):744–752.  https://doi.org/10.1007/s13311-011-0066-9 CrossRefGoogle Scholar
  46. 46.
    Cohen JA, Imrey PB, Planchon SM, Bermel RA, Fisher E, Fox RJ, Bar-Or A, Sharp SL, Skaramagas TT, Jagodnik P, Karafa M, Morrison S, Reese Koc J, Gerson SL, Lazarus HM (2017) Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler 24(4):501–511.  https://doi.org/10.1177/1352458517703802 CrossRefPubMedGoogle Scholar
  47. 47.
    Comi G (2013) Disease-modifying treatments for progressive multiple sclerosis. Mult Scler 19(11):1428–1436.  https://doi.org/10.1177/1352458513502572 CrossRefPubMedGoogle Scholar
  48. 48.
    Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156.  https://doi.org/10.1016/S1474-4422(11)70305-2 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, Gini B, Bach SD, Martinello M, Bifari F, Galie M, Turano E, Budui S, Sbarbati A, Krampera M, Bonetti B (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27(10):2624–2635.  https://doi.org/10.1002/stem.194 CrossRefPubMedGoogle Scholar
  50. 50.
    Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106.  https://doi.org/10.1111/j.1476-5381.2011.01302.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Correale J, Gaitan MI, Ysrraelit MC, Fiol MP (2017) Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain J Neurol 140(3):527–546.  https://doi.org/10.1093/brain/aww258 CrossRefGoogle Scholar
  52. 52.
    Cossetti C, Alfaro-Cervello C, Donega M, Tyzack G, Pluchino S (2012) New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies. Cell Tissue Res 349(1):321–329.  https://doi.org/10.1007/s00441-012-1341-8 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Crang AJ, Gilson J, Blakemore WF (1998) The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol 27(7):541–553CrossRefPubMedGoogle Scholar
  54. 54.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313.  https://doi.org/10.1016/j.stem.2008.07.003 CrossRefPubMedGoogle Scholar
  55. 55.
    Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102(39):14069–14074.  https://doi.org/10.1073/pnas.0507063102 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cusimano M, Biziato D, Brambilla E, Donega M, Alfaro-Cervello C, Snider S, Salani G, Pucci F, Comi G, Garcia-Verdugo JM, De Palma M, Martino G, Pluchino S (2012) Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135(Pt 2):447–460.  https://doi.org/10.1093/brain/awr339 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26(3):605–614.  https://doi.org/10.1111/j.1460-9568.2007.05702.x CrossRefPubMedGoogle Scholar
  58. 58.
    de Oliveira GL, de Lima KW, Colombini AM, Pinheiro DG, Panepucci RA, Palma PV, Brum DG, Covas DT, Simoes BP, de Oliveira MC, Donadi EA, Malmegrim KC (2015) Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. Cell Transplant 24(2):151–165.  https://doi.org/10.3727/096368913X675142 CrossRefPubMedGoogle Scholar
  59. 59.
    Decimo I, Bifari F, Krampera M, Fumagalli G (2012) Neural stem cell niches in health and diseases. Curr Pharm Des 18(13):1755–1783CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20(5):655–667.  https://doi.org/10.3727/096368910X536473 CrossRefPubMedGoogle Scholar
  61. 61.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843CrossRefPubMedGoogle Scholar
  62. 62.
    Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844.  https://doi.org/10.1182/blood-2003-04-1193 CrossRefPubMedGoogle Scholar
  63. 63.
    Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134.  https://doi.org/10.1038/nn1144 CrossRefPubMedGoogle Scholar
  64. 64.
    Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034CrossRefPubMedGoogle Scholar
  65. 65.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317.  https://doi.org/10.1080/14653240600855905 CrossRefPubMedGoogle Scholar
  66. 66.
    Donders R, Vanheusden M, Bogie JF, Ravanidis S, Thewissen K, Stinissen P, Gyselaers W, Hendriks JJ, Hellings N (2015) Human Wharton’s Jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant 24(10):2077–2098.  https://doi.org/10.3727/096368914X685104 CrossRefPubMedGoogle Scholar
  67. 67.
    Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48(1):9–12.  https://doi.org/10.1016/j.neuron.2005.09.004 CrossRefPubMedGoogle Scholar
  68. 68.
    Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981) Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 49(2):241–252CrossRefPubMedGoogle Scholar
  69. 69.
    Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci U S A 106(16):6832–6836.  https://doi.org/10.1073/pnas.0812500106 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Duncan ID, Hammang JP, Jackson KF, Wood PM, Bunge RP, Langford L (1988) Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J Neurocytol 17(3):351–360CrossRefPubMedGoogle Scholar
  71. 71.
    Duncan ID, Paino C, Archer DR, Wood PM (1992) Functional capacities of transplanted cell-sorted adult oligodendrocytes. Dev Neurosci 14(2):114–122CrossRefPubMedGoogle Scholar
  72. 72.
    Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, Lavon I, Baniyash M, Lassmann H, Ben-Hur T (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61(3):209–218.  https://doi.org/10.1002/ana.21033 CrossRefPubMedGoogle Scholar
  73. 73.
    Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T (2009) Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 29(50):15694–15702.  https://doi.org/10.1523/JNEUROSCI.3364-09.2009 CrossRefPubMedGoogle Scholar
  74. 74.
    Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, Milonas I, Karussis D, Abramsky O, Ben-Hur T (2006) Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol 198(2):275–284.  https://doi.org/10.1016/j.expneurol.2005.11.007 CrossRefPubMedGoogle Scholar
  75. 75.
    Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, Ben-Hur T (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24(4):1074–1082CrossRefPubMedGoogle Scholar
  76. 76.
    Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100(23):13632–13637.  https://doi.org/10.1073/pnas.2234031100 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75(5):321–341.  https://doi.org/10.1016/j.pneurobio.2005.04.002 CrossRefPubMedGoogle Scholar
  78. 78.
    Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242CrossRefPubMedGoogle Scholar
  79. 79.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317.  https://doi.org/10.1038/3305 CrossRefPubMedGoogle Scholar
  80. 80.
    Espagnolle N, Balguerie A, Arnaud E, Sensebe L, Varin A (2017) CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Reports 8(4):961–976.  https://doi.org/10.1016/j.stemcr.2017.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M, Ben-Hur T (2008) Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci 39(3):335–341.  https://doi.org/10.1016/j.mcn.2008.07.007 CrossRefPubMedGoogle Scholar
  82. 82.
    Ferrari D, Binda E, De Filippis L, Vescovi AL (2010) Isolation of neural stem cells from neural tissues using the neurosphere technique. Curr Protoc Stem Cell Biol. Chapter 2:Unit2D 6.  https://doi.org/10.1002/9780470151808.sc02d06s15
  83. 83.
    Fisher-Shoval Y, Barhum Y, Sadan O, Yust-Katz S, Ben-Zur T, Lev N, Benkler C, Hod M, Melamed E, Offen D (2012) Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J Mol Neurosci 48(1):176–184.  https://doi.org/10.1007/s12031-012-9805-6 CrossRefPubMedGoogle Scholar
  84. 84.
    Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111(4):769–781.  https://doi.org/10.1002/jcb.22775 CrossRefPubMedGoogle Scholar
  85. 85.
    Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128(Pt 3):528–539.  https://doi.org/10.1093/brain/awh417 CrossRefPubMedGoogle Scholar
  86. 86.
    Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3(9):705–714.  https://doi.org/10.1038/nrn917 CrossRefPubMedGoogle Scholar
  87. 87.
    Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855.  https://doi.org/10.1038/nrn2480 CrossRefPubMedGoogle Scholar
  88. 88.
    Franklin RJ, ffrench-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8(11):624–634.  https://doi.org/10.1038/nrneurol.2012.200 CrossRefPubMedGoogle Scholar
  89. 89.
    Franklin RJ, Gallo V (2014) The translational biology of remyelination: past, present, and future. Glia 62(11):1905–1915.  https://doi.org/10.1002/glia.22622 CrossRefPubMedGoogle Scholar
  90. 90.
    Frantz S (2012) Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotechnol 30(1):12–13.  https://doi.org/10.1038/nbt0112-12 CrossRefPubMedGoogle Scholar
  91. 91.
    Freedman MS, Bar-Or A, Atkins HL, Karussis D, Frassoni F, Lazarus H, Scolding N, Slavin S, Le Blanc K, Uccelli A, Group MS (2010) The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler 16(4):503–510.  https://doi.org/10.1177/1352458509359727 CrossRefPubMedGoogle Scholar
  92. 92.
    Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340CrossRefPubMedGoogle Scholar
  93. 93.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMedGoogle Scholar
  94. 94.
    Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438CrossRefPubMedGoogle Scholar
  95. 95.
    Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192.  https://doi.org/10.1146/annurev.ne.18.030195.001111 CrossRefPubMedGoogle Scholar
  96. 96.
    Galipeau J (2013) The mesenchymal stromal cells dilemma – does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15(1):2–8.  https://doi.org/10.1016/j.jcyt.2012.10.002 CrossRefPubMedGoogle Scholar
  97. 97.
    Garber K (2015) RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol 33(9):890–891.  https://doi.org/10.1038/nbt0915-890 CrossRefPubMedGoogle Scholar
  98. 98.
    Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227.  https://doi.org/10.1002/ana.21076 CrossRefPubMedGoogle Scholar
  99. 99.
    Glenn JD, Smith MD, Kirby LA, Baxi EG, Whartenby KA (2015) Disparate effects of mesenchymal stem cells in experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. PLoS One 10(9):e0139008.  https://doi.org/10.1371/journal.pone.0139008 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827.  https://doi.org/10.1182/blood-2004-09-3696 CrossRefPubMedGoogle Scholar
  101. 101.
    Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 80(8):2390–2394CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gomez-Nicola D, Valle-Argos B, Pallas-Bazarra N, Nieto-Sampedro M (2011) Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol Biol Cell 22(12):1960–1970.  https://doi.org/10.1091/mbc.E11-01-0053 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Goodman AD (2016) Stem cell therapy for MS. Mult Scler J 22:28Google Scholar
  104. 104.
    Gordon D, Pavlovska G, Uney JB, Wraith DC, Scolding NJ (2010) Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 69(11):1087–1095.  https://doi.org/10.1097/NEN.0b013e3181f97392 CrossRefPubMedGoogle Scholar
  105. 105.
    Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67.  https://doi.org/10.1038/nature09805 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Grigoriadis N, Lourbopoulos A, Lagoudaki R, Frischer JM, Polyzoidou E, Touloumi O, Simeonidou C, Deretzi G, Kountouras J, Spandou E, Kotta K, Karkavelas G, Tascos N, Lassmann H (2011) Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp Neurol 230(1):78–89.  https://doi.org/10.1016/j.expneurol.2011.02.021 CrossRefPubMedGoogle Scholar
  107. 107.
    Guan Y, Jiang Z, Ciric B, Rostami AM, Zhang GX (2008) Upregulation of chemokine receptor expression by IL-10/IL-4 in adult neural stem cells. Exp Mol Pathol 85(3):232–236.  https://doi.org/10.1016/j.yexmp.2008.07.003 CrossRefPubMedGoogle Scholar
  108. 108.
    Guo J, Li H, Yu C, Liu F, Meng Y, Gong W, Yang H, Shen X, Ju G, Li Z, Wang J (2010) Decreased neural stem/progenitor cell proliferation in mice with chronic/nonremitting experimental autoimmune encephalomyelitis. Neurosignals 18(1):1–8.  https://doi.org/10.1159/000242424 CrossRefPubMedGoogle Scholar
  109. 109.
    Guo Y, Chan KH, Lai WH, Siu CW, Kwan SC, Tse HF, Wing-Lok Ho P, Wing-Man Ho J (2013) Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis. Neuroimmunomodulation 20(5):294–303.  https://doi.org/10.1159/000351450 CrossRefPubMedGoogle Scholar
  110. 110.
    Halfpenny CA, Scolding NJ.​ Immune-modifying agents do not impair the survival, migration or proliferation of oligodendrocyte progenitors (CG-4) in vitro. J Neuroimmunol. 2003 Jun;139(1-2):9-16CrossRefPubMedGoogle Scholar
  111. 111.
    Hammang JP, Archer DR, Duncan ID (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp Neurol 147(1):84–95.  https://doi.org/10.1006/exnr.1997.6592 CrossRefPubMedGoogle Scholar
  112. 112.
    Hedayatpour A, Ragerdi I, Pasbakhsh P, Kafami L, Atlasi N, Pirhajati Mahabadi V, Ghasemi S, Reza M (2013) Promotion of remyelination by adipose mesenchymal stem cell transplantation in a cuprizone model of multiple sclerosis. Cell J 15(2):142–151PubMedPubMedCentralGoogle Scholar
  113. 113.
    Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 25(1):24–32.  https://doi.org/10.1016/j.tibtech.2006.10.010 CrossRefPubMedGoogle Scholar
  114. 114.
    Hoch AI, Leach JK (2014) Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 3(5):643–652.  https://doi.org/10.5966/sctm.2013-0196 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Honmou O, Felts PA, Waxman SG, Kocsis JD (1996) Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 16(10):3199–3208CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular T (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395.  https://doi.org/10.1080/14653240500319234 CrossRefPubMedGoogle Scholar
  117. 117.
    Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, Serafini B, Aloisi F, Roncaroli F, Magliozzi R, Reynolds R (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain J Neurol 134(Pt 9):2755–2771.  https://doi.org/10.1093/brain/awr182 CrossRefGoogle Scholar
  118. 118.
    Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH (2004) IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164(1):111–122.  https://doi.org/10.1083/jcb.200308101 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Huang JK, Fancy SP, Zhao C, Rowitch DH, Ffrench-Constant C, Franklin RJ (2011) Myelin regeneration in multiple sclerosis: targeting endogenous stem cells. Neurotherapeutics 8(4):650–658.  https://doi.org/10.1007/s13311-011-0065-x CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62.  https://doi.org/10.1038/nature09871 CrossRefPubMedGoogle Scholar
  121. 121.
    Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131(Pt 6):1464–1477.  https://doi.org/10.1093/brain/awn080 CrossRefPubMedGoogle Scholar
  122. 122.
    Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298(5593):601–604.  https://doi.org/10.1126/science.1073823 CrossRefPubMedGoogle Scholar
  123. 123.
    Jaramillo-Merchan J, Jones J, Ivorra JL, Pastor D, Viso-Leon MC, Armengol JA, Molto MD, Geijo-Barrientos E, Martinez S (2013) Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model. Cell Death Dis 4:e779.  https://doi.org/10.1038/cddis.2013.304 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Jeffery ND, Crang AJ, O’Leary MT, Hodge SJ, Blakemore WF (1999) Behavioural consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur J Neurosci 11(5):1508–1514CrossRefPubMedGoogle Scholar
  125. 125.
    Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126.  https://doi.org/10.1182/blood-2004-02-0586 CrossRefPubMedGoogle Scholar
  126. 126.
    Jordan JD, Ma DK, Ming GL, Song H (2007) Cellular niches for endogenous neural stem cells in the adult brain. CNS Neurol Disord Drug Targets 6(5):336–341CrossRefPubMedGoogle Scholar
  127. 127.
    Jose AM (2002) Multiple sclerosis: can Schwann cells wrap it up? Yale J Biol Med 75(2):113–116PubMedPubMedCentralGoogle Scholar
  128. 128.
    Kan I, Barhum Y, Melamed E, Offen D (2011) Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev 7(2):404–412.  https://doi.org/10.1007/s12015-010-9190-x CrossRefPubMedGoogle Scholar
  129. 129.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194.  https://doi.org/10.1001/archneurol.2010.248 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, Abramsky O, Karussis D (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65(6):753–761.  https://doi.org/10.1001/archneur.65.6.753 CrossRefPubMedGoogle Scholar
  131. 131.
    Kassis I, Petrou P, Halimi M, Karussis D (2013) Mesenchymal stem cells (MSC) derived from mice with experimental autoimmune encephalomyelitis (EAE) suppress EAE and have similar biological properties with MSC from healthy donors. Immunol Lett 154(1–2):70–76.  https://doi.org/10.1016/j.imlet.2013.06.002 CrossRefPubMedGoogle Scholar
  132. 132.
    Keirstead HS, Ben-Hur T, Rogister B, O’Leary MT, Dubois-Dalcq M, Blakemore WF (1999) Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci Off J Soc Neurosci 19(17):7529–7536CrossRefGoogle Scholar
  133. 133.
    Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N (2011) Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 37(2):166–178.  https://doi.org/10.1111/j.1365-2990.2010.01122.x CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843.  https://doi.org/10.1073/pnas.1103113108 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453.  https://doi.org/10.1016/j.exphem.2009.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Kim SY, Cho HS, Yang SH, Shin JY, Kim JS, Lee ST, Chu K, Roh JK, Kim SU, Park CG (2009) Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation. J Neurosci Res 87(10):2264–2272.  https://doi.org/10.1002/jnr.22050 CrossRefPubMedGoogle Scholar
  137. 137.
    Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RA, Goldman SA (1994) In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex 4(6):576–589CrossRefPubMedGoogle Scholar
  138. 138.
    Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15(8):1078–1087.  https://doi.org/10.1038/nn.3163 CrossRefPubMedGoogle Scholar
  139. 139.
    Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S, Yamazaki H (2012) Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One 7(11):e46436.  https://doi.org/10.1371/journal.pone.0046436 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Kondo Y, Wenger DA, Gallo V, Duncan ID (2005) Galactocerebrosidase-deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc Natl Acad Sci U S A 102(51):18670–18675.  https://doi.org/10.1073/pnas.0506473102 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105(2):751–756.  https://doi.org/10.1073/pnas.0708092105 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157(1):267–276.  https://doi.org/10.1016/S0002-9440(10)64537-3 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L, Therapy MSCCotISfC (2013) Immunological characterization of multipotent mesenchymal stromal cells – the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15(9):1054–1061.  https://doi.org/10.1016/j.jcyt.2013.02.010 CrossRefPubMedGoogle Scholar
  144. 144.
    Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729.  https://doi.org/10.1182/blood-2002-07-2104 CrossRefPubMedGoogle Scholar
  145. 145.
    Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7):1749–1758.  https://doi.org/10.1093/brain/awn096 CrossRefPubMedGoogle Scholar
  146. 146.
    Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, Parrott MB, Rosenfeld PJ, Flynn HW Jr, Goldberg JL (2017) Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med 376(11):1047–1053.  https://doi.org/10.1056/NEJMoa1609583 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kurte M, Bravo-Alegria J, Torres A, Carrasco V, Ibanez C, Vega-Letter AM, Fernandez-O’Ryan C, Irarrazabal CE, Figueroa FE, Fuentealba RA, Riedel C, Carrion F (2015) Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis. Stem Cells Int 2015:140170.  https://doi.org/10.1155/2015/140170 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Lachapelle F, Gumpel M, Baulac M, Jacque C, Duc P, Baumann N (1983) Transplantation of CNS fragments into the brain of shiverer mutant mice: extensive myelination by implanted oligodendrocytes. I. Immunohistochemical studies. Dev Neurosci 6(6):325–334CrossRefPubMedGoogle Scholar
  149. 149.
    Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci Off J Soc Neurosci 33(7):3113–3130.  https://doi.org/10.1523/JNEUROSCI.3467-12.2013 CrossRefGoogle Scholar
  150. 150.
    Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, Mancardi G, Uccelli A, Vergani L (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110(5):1674–1684.  https://doi.org/10.1111/j.1471-4159.2009.06268.x CrossRefPubMedGoogle Scholar
  151. 151.
    Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21(3):242–247.  https://doi.org/10.1097/WCO.0b013e3282fee94a CrossRefPubMedGoogle Scholar
  152. 152.
    Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656.  https://doi.org/10.1038/nrneurol.2012.168 CrossRefPubMedGoogle Scholar
  153. 153.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20CrossRefPubMedGoogle Scholar
  154. 154.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63.  https://doi.org/10.1016/j.stem.2009.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595CrossRefPubMedGoogle Scholar
  156. 156.
    Lepelletier Y, Lecourt S, Renand A, Arnulf B, Vanneaux V, Fermand JP, Menasche P, Domet T, Marolleau JP, Hermine O, Larghero J (2010) Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells Dev 19(7):1075–1079.  https://doi.org/10.1089/scd.2009.0212 CrossRefPubMedGoogle Scholar
  157. 157.
    Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F, Hequet O, Bertrand Y, Ou-Yang JP, Stoltz JF, Miossec P, Eljaafari A (2008) Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol 180(3):1598–1608CrossRefPubMedGoogle Scholar
  158. 158.
    Liang G, Zhang Y (2013) Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13(2):149–159.  https://doi.org/10.1016/j.stem.2013.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Lie DC, Song H, Colamarino SA, Ming GL, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421.  https://doi.org/10.1146/annurev.pharmtox.44.101802.121631 CrossRefPubMedGoogle Scholar
  160. 160.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73.  https://doi.org/10.1038/nature09798 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717CrossRefPubMedGoogle Scholar
  162. 162.
    Luskin MB, Zigova T, Soteres BJ, Stewart RR (1997) Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci 8(5):351–366.  https://doi.org/10.1006/mcne.1996.0592 CrossRefPubMedGoogle Scholar
  163. 163.
    Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4(3):65.  https://doi.org/10.1186/scrt216 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14(2):183–193.  https://doi.org/10.1016/S1474-4422(14)70256-X CrossRefPubMedGoogle Scholar
  165. 165.
    Mallam E, Kemp K, Wilkins A, Rice C, Scolding N (2010) Characterization of in vitro expanded bone marrow-derived mesenchymal stem cells from patients with multiple sclerosis. Mult Scler 16(8):909–918.  https://doi.org/10.1177/1352458510371959 CrossRefPubMedGoogle Scholar
  166. 166.
    Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S (2015) The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 127-128:1–22.  https://doi.org/10.1016/j.pneurobio.2015.02.003 CrossRefPubMedGoogle Scholar
  167. 167.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185.  https://doi.org/10.1002/path.4133 CrossRefPubMedGoogle Scholar
  168. 168.
    Marin-Banasco C, Suardiaz Garcia M, Hurtado Guerrero I, Maldonado Sanchez R, Estivill-Torrus G, Leyva Fernandez L, Fernandez Fernandez O (2014) Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in a relapsing-remitting multiple sclerosis model. Stem Cell Res Ther 5(6):134.  https://doi.org/10.1186/scrt524 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Martino G (2004) How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol 3(6):372–378.  https://doi.org/10.1016/S1474-4422(04)00771-9 CrossRefPubMedGoogle Scholar
  170. 170.
    Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5):395–406.  https://doi.org/10.1038/nrn1908 CrossRefPubMedGoogle Scholar
  171. 171.
    Martino G, Pluchino S, Bonfanti L, Schwartz M (2011) Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev 91(4):1281–1304.  https://doi.org/10.1152/physrev.00032.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Maslov AY, Barone TA, Plunkett RJ, Pruitt SC (2004) Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci Off J Soc Neurosci 24(7):1726–1733.  https://doi.org/10.1523/JNEUROSCI.4608-03.2004 CrossRefGoogle Scholar
  173. 173.
    Mazzanti B, Aldinucci A, Biagioli T, Barilaro A, Urbani S, Dal Pozzo S, Amato MP, Siracusa G, Crescioli C, Manuelli C, Bosi A, Saccardi R, Massacesi L, Ballerini C (2008) Differences in mesenchymal stem cell cytokine profiles between MS patients and healthy donors: implication for assessment of disease activity and treatment. J Neuroimmunol 199(1–2):142–150.  https://doi.org/10.1016/j.jneuroim.2008.05.006 CrossRefPubMedGoogle Scholar
  174. 174.
    Meinl E, Krumbholz M, Derfuss T, Junker A, Hohlfeld R (2008) Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci 274(1–2):42–44.  https://doi.org/10.1016/j.jns.2008.06.032 CrossRefPubMedGoogle Scholar
  175. 175.
    Melief SM, Geutskens SB, Fibbe WE, Roelofs H (2013) Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica 98(6):888–895.  https://doi.org/10.3324/haematol.2012.078055 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132(5):1127–1136.  https://doi.org/10.1242/dev.01615 CrossRefPubMedGoogle Scholar
  177. 177.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918.  https://doi.org/10.1523/JNEUROSCI.1299-06.2006 CrossRefPubMedGoogle Scholar
  178. 178.
    Meyer S, Worsdorfer P, Gunther K, Thier M, Edenhofer F (2015) Derivation of adult human fibroblasts and their direct conversion into expandable neural progenitor cells. J Vis Exp 101:e52831.  https://doi.org/10.3791/52831 CrossRefGoogle Scholar
  179. 179.
    Mi R, Luo Y, Cai J, Limke TL, Rao MS, Hoke A (2005) Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors. Exp Neurol 194(2):301–319.  https://doi.org/10.1016/j.expneurol.2004.07.011 CrossRefPubMedGoogle Scholar
  180. 180.
    Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250.  https://doi.org/10.1146/annurev.neuro.28.051804.101459 CrossRefPubMedGoogle Scholar
  181. 181.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218.  https://doi.org/10.1038/nn.3469 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY (2015) Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells. Int J Clin Exp Pathol 8(10):12041–12052PubMedPubMedCentralGoogle Scholar
  183. 183.
    Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5(1):49–55.  https://doi.org/10.1038/4734 CrossRefPubMedGoogle Scholar
  184. 184.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765.  https://doi.org/10.1126/science.1088417 CrossRefPubMedGoogle Scholar
  185. 185.
    Mosna F, Sensebe L, Krampera M (2010) Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 19(10):1449–1470.  https://doi.org/10.1089/scd.2010.0140 CrossRefPubMedGoogle Scholar
  186. 186.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969.  https://doi.org/10.1038/nri2448 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Mothe AJ, Tator CH (2008) Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 213(1):176–190.  https://doi.org/10.1016/j.expneurol.2008.05.024 CrossRefPubMedGoogle Scholar
  188. 188.
    Moyon S, Dubessy AL, Aigrot MS, Trotter M, Huang JK, Dauphinot L, Potier MC, Kerninon C, Melik Parsadaniantz S, Franklin RJ, Lubetzki C (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci Off J Soc Neurosci 35(1):4–20.  https://doi.org/10.1523/JNEUROSCI.0849-14.2015 CrossRefGoogle Scholar
  189. 189.
    Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, Martino G, Baron-Van Evercooren A (2015) Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Invest 125(9):3642–3656.  https://doi.org/10.1172/JCI80437 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Mueller FJ, Serobyan N, Schraufstatter IU, DiScipio R, Wakeman D, Loring JF, Snyder EY, Khaldoyanidi SK (2006) Adhesive interactions between human neural stem cells and inflamed human vascular endothelium are mediated by integrins. Stem Cells 24(11):2367–2372.  https://doi.org/10.1634/stemcells.2005-0568 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7(1):75–84.  https://doi.org/10.1038/nrn1829 CrossRefPubMedGoogle Scholar
  192. 192.
    Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102(50):18171–18176.  https://doi.org/10.1073/pnas.0508945102 CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Muraro PA, Abrahamsson SV (2010) Resetting autoimmunity in the nervous system: the role of hematopoietic stem cell transplantation. Curr Opin Investig Drugs 11(11):1265–1275PubMedGoogle Scholar
  194. 194.
    Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54.  https://doi.org/10.1038/emm.2013.94 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31(5):426–433.  https://doi.org/10.1038/nbt.2561 CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Nash B, Ioannidou K, Barnett SC (2011) Astrocyte phenotypes and their relationship to myelination. J Anat 219(1):44–52.  https://doi.org/10.1111/j.1469-7580.2010.01330.x CrossRefPubMedGoogle Scholar
  197. 197.
    Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087CrossRefPubMedGoogle Scholar
  198. 198.
    Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283.  https://doi.org/10.1038/nrn2797 CrossRefPubMedGoogle Scholar
  199. 199.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49.  https://doi.org/10.1038/nm.1905 CrossRefPubMedGoogle Scholar
  200. 200.
    Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 5(4):e10145.  https://doi.org/10.1371/journal.pone.0010145 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43(3):315–330.  https://doi.org/10.1002/(SICI)1097-4547(19960201)43:3<315::AID-JNR6>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  202. 202.
    Nottebohm F (1985) Neuronal replacement in adulthood. Ann N Y Acad Sci 457:143–161CrossRefPubMedGoogle Scholar
  203. 203.
    O’Leary MT, Blakemore WF (1997) Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J Neurosci Res 48(2):159–167CrossRefPubMedGoogle Scholar
  204. 204.
    Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W, Ellwart J, Klinkert WE, Lottaz C, Nosov M, Brinkmann V, Spang R, Lehrach H, Vingron M, Wekerle H, Flugel-Koch C, Flugel A (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488(7413):675–679.  https://doi.org/10.1038/nature11337 CrossRefPubMedGoogle Scholar
  205. 205.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317.  https://doi.org/10.1038/nature05934 CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Ontaneda D, Fox RJ, Chataway J (2015) Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol 14(2):208–223.  https://doi.org/10.1016/S1474-4422(14)70264-9 CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Papadaki HA, Tsagournisakis M, Mastorodemos V, Pontikoglou C, Damianaki A, Pyrovolaki K, Stamatopoulos K, Fassas A, Plaitakis A, Eliopoulos GD (2005) Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis. Bone Marrow Transplant 36(12):1053–1063.  https://doi.org/10.1038/sj.bmt.1705179 CrossRefPubMedGoogle Scholar
  208. 208.
    Payne NL, Sun G, Herszfeld D, Tat-Goh PA, Verma PJ, Parkington HC, Coleman HA, Tonta MA, Siatskas C, Bernard CC (2012) Comparative study on the therapeutic potential of neurally differentiated stem cells in a mouse model of multiple sclerosis. PLoS One 7(4):e35093.  https://doi.org/10.1371/journal.pone.0035093 CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Payne NL, Sun G, McDonald C, Layton D, Moussa L, Emerson-Webber A, Veron N, Siatskas C, Herszfeld D, Price J, Bernard CC (2013) Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 22(8):1409–1425.  https://doi.org/10.3727/096368912X657620 CrossRefPubMedGoogle Scholar
  210. 210.
    Pearl JI, Kean LS, Davis MM, Wu JC (2012) Pluripotent stem cells: immune to the immune system? Sci Trans Med 4(164):164ps125.  https://doi.org/10.1126/scitranslmed.3005090 CrossRefGoogle Scholar
  211. 211.
    Pincus DW, Keyoung HM, Harrison-Restelli C, Goodman RR, Fraser RA, Edgar M, Sakakibara S, Okano H, Nedergaard M, Goldman SA (1998) Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann Neurol 43(5):576–585.  https://doi.org/10.1002/ana.410430505 CrossRefPubMedGoogle Scholar
  212. 212.
    Pluchino S, Cossetti C (2013) How stem cells speak with host immune cells in inflammatory brain diseases. Glia 61(9):1379–1401.  https://doi.org/10.1002/glia.22500 CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, t Hart B, Vescovi A, Martino G (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66(3):343–354.  https://doi.org/10.1002/ana.21745 CrossRefPubMedGoogle Scholar
  214. 214.
    Pluchino S, Martino G (2008) The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci 265(1–2):105–110.  https://doi.org/10.1016/j.jns.2007.07.020 CrossRefPubMedGoogle Scholar
  215. 215.
    Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694.  https://doi.org/10.1038/nature01552 CrossRefPubMedGoogle Scholar
  216. 216.
    Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C, Borsellino G, Battistini L, Ponzoni M, Doglioni C, Garcia-Verdugo JM, Comi G, Manfredi AA, Martino G (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4(6):e5959.  https://doi.org/10.1371/journal.pone.0005959 CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271.  https://doi.org/10.1038/nature03889 CrossRefPubMedGoogle Scholar
  218. 218.
    Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Scotti G, Martino G, Pluchino S (2007) Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25(10):2583–2592.  https://doi.org/10.1634/stemcells.2007-0037 CrossRefPubMedGoogle Scholar
  219. 219.
    Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92(7):881–888CrossRefPubMedGoogle Scholar
  220. 220.
    Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams P, Birman E, Yuan S, Young YK, Boivin MN, Forner K, Basik M, Galipeau J (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002.  https://doi.org/10.4049/jimmunol.0803962 CrossRefPubMedGoogle Scholar
  221. 221.
    Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243(4897):1450–1455CrossRefPubMedGoogle Scholar
  222. 222.
    Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303(5916):390–396CrossRefPubMedGoogle Scholar
  223. 223.
    Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman SH, Silberberg DH, Gregson NA, Leibowitz S, Kennedy MC (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274(5673):813–816CrossRefPubMedGoogle Scholar
  224. 224.
    Ramos-Zuniga R, Gonzalez-Perez O, Macias-Ornelas A, Capilla-Gonzalez V, Quinones-Hinojosa A (2012) Ethical implications in the use of embryonic and adult neural stem cells. Stem Cells Int 2012:470949.  https://doi.org/10.1155/2012/470949 CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15(8):1074–1077.  https://doi.org/10.1038/nn.3168 CrossRefPubMedGoogle Scholar
  226. 226.
    Rasmusson I, Le Blanc K, Sundberg B, Ringden O (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65(4):336–343.  https://doi.org/10.1111/j.1365-3083.2007.01905.x CrossRefPubMedGoogle Scholar
  227. 227.
    Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213.  https://doi.org/10.1097/01.TP.0000082540.43730.80 CrossRefPubMedGoogle Scholar
  228. 228.
    Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328.  https://doi.org/10.4049/jimmunol.0902023 CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12(11):4565–4574CrossRefPubMedGoogle Scholar
  230. 230.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710CrossRefPubMedGoogle Scholar
  231. 231.
    Ricci-Vitiani L, Lombardi DG, Signore M, Biffoni M, Pallini R, Parati E, Peschle C, De Maria R (2007) Human neural progenitor cells display limited cytotoxicity and increased oligodendrogenesis during inflammation. Cell Death Differ 14(4):876–878.  https://doi.org/10.1038/sj.cdd.4402078 CrossRefPubMedGoogle Scholar
  232. 232.
    Rice CM, Mallam EA, Whone AL, Walsh P, Brooks DJ, Kane N, Butler SR, Marks DI, Scolding NJ (2010) Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther 87(6):679–685.  https://doi.org/10.1038/clpt.2010.44 CrossRefPubMedGoogle Scholar
  233. 233.
    Rice CM, Marks DI, Ben-Shlomo Y, Evangelou N, Morgan PS, Metcalfe C, Walsh P, Kane NM, Guttridge MG, Miflin G, Blackmore S, Sarkar P, Redondo J, Owen D, Cottrell DA, Wilkins A, Scolding NJ (2015) Assessment of bone marrow-derived Cellular Therapy in progressive Multiple Sclerosis (ACTiMuS): study protocol for a randomised controlled trial. Trials 16:463.  https://doi.org/10.1186/s13063-015-0953-1 CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Rice CM, Marks DI, Walsh P, Kane NM, Guttridge MG, Redondo J, Sarkar P, Owen D, Wilkins A, Scolding NJ (2015) Repeat infusion of autologous bone marrow cells in multiple sclerosis: protocol for a phase I extension study (SIAMMS-II). BMJ Open 5(9):e009090.  https://doi.org/10.1136/bmjopen-2015-009090 CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53(2):309–319CrossRefPubMedGoogle Scholar
  236. 236.
    Rosenbluth J, Liu Z, Guo D, Schiff R (1993) Myelin formation by mouse glia in myelin-deficient rats treated with cyclosporine. J Neurocytol 22(11):967–977CrossRefPubMedGoogle Scholar
  237. 237.
    Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11):1259–1268.  https://doi.org/10.1038/nm1495 CrossRefPubMedGoogle Scholar
  238. 238.
    Roy NS, Wang S, Harrison-Restelli C, Benraiss A, Fraser RA, Gravel M, Braun PE, Goldman SA (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci Off J Soc Neurosci 19(22):9986–9995CrossRefGoogle Scholar
  239. 239.
    Rozenberg A, Rezk A, Boivin MN, Darlington PJ, Nyirenda M, Li R, Jalili F, Winer R, Artsy EA, Uccelli A, Reese JS, Planchon SM, Cohen JA, Bar-Or A (2016) Human mesenchymal stem cells impact Th17 and Th1 responses through a prostaglandin E2 and myeloid-dependent mechanism. Stem Cells Transl Med.  https://doi.org/10.5966/sctm.2015-0243
  240. 240.
    Saccardi R, Freedman MS, Sormani MP, Atkins H, Farge D, Griffith LM, Kraft G, Mancardi GL, Nash R, Pasquini M, Martin R, Muraro PA, European B, Marrow Transplantation G, Center for International B, Marrow R, Group HiMIS (2012) A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Mult Scler 18(6):825–834.  https://doi.org/10.1177/1352458512438454 CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336.  https://doi.org/10.1016/j.cell.2007.08.025 CrossRefPubMedGoogle Scholar
  242. 242.
    Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Cossu G, Serafini M, Sampaolesi M, Tagliafico E, Tenedini E, Saggio I, Robey PG, Riminucci M, Bianco P (2016) No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports 6(6):897–913.  https://doi.org/10.1016/j.stemcr.2016.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Sakakibara S, Imai T, Hamaguchi K, Okabe M, Aruga J, Nakajima K, Yasutomi D, Nagata T, Kurihara Y, Uesugi S, Miyata T, Ogawa M, Mikoshiba K, Okano H (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176(2):230–242CrossRefPubMedGoogle Scholar
  244. 244.
    Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228–234.  https://doi.org/10.1182/blood-2006-02-002246 CrossRefPubMedGoogle Scholar
  245. 245.
    Scolding N, Barnes D, Cader S, Chataway J, Chaudhuri A, Coles A, Giovannoni G, Miller D, Rashid W, Schmierer K, Shehu A, Silber E, Young C, Zajicek J (2015) Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol 15(4):273–279.  https://doi.org/10.1136/practneurol-2015-001139 CrossRefPubMedGoogle Scholar
  246. 246.
    Scolding NJ, Pasquini M, Reingold SC, Cohen JA (2017) Cell-based therapeutic strategies for multiple sclerosis. Brain J Neurol.  https://doi.org/10.1093/brain/awx154
  247. 247.
    Selai CE, Trimble MR (1997) Patient’s assessments of disability in multiple sclerosis. Most patients have difficulty in rating themselves on visual analogue scales. BMJ 315(7118):1305–1306CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Severino V, Alessio N, Farina A, Sandomenico A, Cipollaro M, Peluso G, Galderisi U, Chambery A (2013) Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis 4:e911.  https://doi.org/10.1038/cddis.2013.445 CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113.  https://doi.org/10.1371/journal.pmed.1000113 CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Shi J, Marinovich A, Barres BA (1998) Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci Off J Soc Neurosci 18(12):4627–4636CrossRefGoogle Scholar
  251. 251.
    Sim FJ, McClain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29(10):934–941.  https://doi.org/10.1038/nbt.1972 CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Skihar V, Silva C, Chojnacki A, Doring A, Stallcup WB, Weiss S, Yong VW (2009) Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 106(42):17992–17997.  https://doi.org/10.1073/pnas.0909607106 CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280(5721):395–396CrossRefPubMedGoogle Scholar
  254. 254.
    Soares S, Sotelo C (2004) Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin. Neuroscience 128(4):807–817.  https://doi.org/10.1016/j.neuroscience.2004.07.031 CrossRefPubMedGoogle Scholar
  255. 255.
    Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4):1484–1490.  https://doi.org/10.1182/blood-2005-07-2775 CrossRefPubMedGoogle Scholar
  256. 256.
    Sun Y, Deng W, Geng L, Zhang L, Liu R, Chen W, Yao G, Zhang H, Feng X, Gao X, Sun L (2015) Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells. J Immunol Res 2015:284215.  https://doi.org/10.1155/2015/284215 CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872.  https://doi.org/10.1016/j.cell.2007.11.019 CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676.  https://doi.org/10.1016/j.cell.2006.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99(5):3024–3029.  https://doi.org/10.1073/pnas.052678899 CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479.  https://doi.org/10.1016/j.stem.2012.03.003 CrossRefPubMedGoogle Scholar
  261. 261.
    Thiruvalluvan A, Czepiel M, Kap YA, Mantingh-Otter I, Vainchtein I, Kuipers J, Bijlard M, Baron W, Giepmans B, Bruck W, t Hart BA, Boddeke E, Copray S (2016) Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl Med 5(11):1550–1561.  https://doi.org/10.5966/sctm.2016-0024 CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Thomas JL, Spassky N, Perez Villegas EM, Olivier C, Cobos I, Goujet-Zalc C, Martinez S, Zalc B (2000) Spatiotemporal development of oligodendrocytes in the embryonic brain. J Neurosci Res 59(4):471–476.  https://doi.org/10.1002/(SICI)1097-4547(20000215)59:4<471::AID-JNR1>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  263. 263.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75(3):389–397.  https://doi.org/10.1097/01.TP.0000045055.63901.A9 CrossRefPubMedGoogle Scholar
  264. 264.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736.  https://doi.org/10.1038/nri2395 CrossRefPubMedGoogle Scholar
  265. 265.
    Van Harmelen V, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53(5):632–637CrossRefPubMedGoogle Scholar
  266. 266.
    Volpe G, Bernstock JD, Peruzzotti-Jametti L, Pluchino S (2016) Modulation of host immune responses following non-hematopoietic stem cell transplantation: translational implications in progressive multiple sclerosis. J Neuroimmunol.  https://doi.org/10.1016/j.jneuroim.2016.12.005
  267. 267.
    von Bahr L, Batsis I, Moll G, Hagg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30(7):1575–1578.  https://doi.org/10.1002/stem.1118 CrossRefGoogle Scholar
  268. 268.
    Wang L, Shi J, van Ginkel FW, Lan L, Niemeyer G, Martin DR, Snyder EY, Cox NR (2009) Neural stem/progenitor cells modulate immune responses by suppressing T lymphocytes with nitric oxide and prostaglandin E2. Exp Neurol 216(1):177–183.  https://doi.org/10.1016/j.expneurol.2008.11.017 CrossRefPubMedGoogle Scholar
  269. 269.
    Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12(2):252–264.  https://doi.org/10.1016/j.stem.2012.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19(9):387–393CrossRefPubMedGoogle Scholar
  271. 271.
    Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 10(1):93–97.  https://doi.org/10.1038/nm974 CrossRefPubMedGoogle Scholar
  272. 272.
    Windrem MS, Roy NS, Wang J, Nunes M, Benraiss A, Goodman R, McKhann GM 2nd, Goldman SA (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res 69(6):966–975.  https://doi.org/10.1002/jnr.10397 CrossRefPubMedGoogle Scholar
  273. 273.
    Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565.  https://doi.org/10.1016/j.stem.2008.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Windrem MS, Schanz SJ, Morrow C, Munir J, Chandler-Militello D, Wang S, Goldman SA (2014) A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia. J Neurosci 34(48):16153–16161.  https://doi.org/10.1523/JNEUROSCI.1510-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18(2):601–609CrossRefPubMedGoogle Scholar
  276. 276.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370.  https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C CrossRefPubMedGoogle Scholar
  277. 277.
    Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, Herlopian A, Baz EK, Mahfouz R, Khalil-Hamdan R, Kreidieh NM, El-Sabban M, Bazarbachi A (2010) Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 227(1–2):185–189.  https://doi.org/10.1016/j.jneuroim.2010.07.013 CrossRefPubMedGoogle Scholar
  278. 278.
    Yaochite JN, de Lima KW, Caliari-Oliveira C, Palma PV, Couri CE, Simoes BP, Covas DT, Voltarelli JC, Oliveira MC, Donadi EA, Malmegrim KC (2016) Multipotent mesenchymal stromal cells from patients with newly diagnosed type 1 diabetes mellitus exhibit preserved in vitro and in vivo immunomodulatory properties. Stem Cell Res Ther 7:14.  https://doi.org/10.1186/s13287-015-0261-4 CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761.  https://doi.org/10.1182/blood-2005-04-1496 CrossRefPubMedGoogle Scholar
  280. 280.
    Zhang SC, Ge B, Duncan ID (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci U S A 96(7):4089–4094CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133.  https://doi.org/10.1038/nbt1201-1129 CrossRefPubMedGoogle Scholar
  282. 282.
    Zheng G, Ge M, Qiu G, Shu Q, Xu J (2015) Mesenchymal stromal cells affect disease outcomes via macrophage polarization. Stem Cells Int 2015:989473.  https://doi.org/10.1155/2015/989473 CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 103(35):13174–13179.  https://doi.org/10.1073/pnas.0603747103 CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275.  https://doi.org/10.1038/nn1629 CrossRefPubMedGoogle Scholar
  285. 285.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228.  https://doi.org/10.1089/107632701300062859 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giulio Volpe
    • 1
  • Joshua D. Bernstock
    • 1
    • 2
  • Luca Peruzzotti-Jametti
    • 1
  • Stefano Pluchino
    • 1
  1. 1.Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
  2. 2.Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH)BethesdaUSA

Personalised recommendations