Advertisement

Stem Cell Applications in Spinal Cord Injury: A Primer

  • James Hong
  • Christopher E. Rodgers
  • Michael G. Fehlings
Chapter

Abstract

Despite advances in perioperative care, spinal cord injury (SCI) continues to be a devastating neurological condition. As SCI pathophysiology is multifaceted and time-dependent, the adaptive nature of cell therapy has been considered a promising approach for addressing these issues. In this chapter, we review the primary therapeutic targets of stem cell therapy including neuroprotection and neuroregeneration. Further, we present an in-depth review of the primary stem cell candidates (neural stem/progenitor and mesenchymal stem cells), a brief discussion of other cell types, and the status of combinatorial therapies for SCI. In closing, we discuss the translational challenges at the frontier and the progress made at the trial stage.

Keywords

Spinal Cord Injury Stem cells Transplantation 

References

  1. 1.
    Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M, Boué S, Belmonte JCI (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284PubMedCrossRefGoogle Scholar
  2. 2.
    Abrajano JJ, Qureshi IA, Gokhan S, Molero AE, Zheng D, Bergman A, Mehler MF (2010) Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc Natl Acad Sci U S A 107(38):16685–16690PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Agbay, Andrew; Edgar, John M; Robinson, Meghan; Styan, Tara; Wilson, Krista; Schroll, Julian; Ko, Junghyuk; Khadem Mohtaram, Nima, ; Jun, Martin Byung-Guk; Willerth, Stephanie M.(2016). Biomaterial strategies for delivering stem cells as a treatment for spinal cord injury. Cells Tissues Organs 202(1–2): 42–51PubMedCrossRefGoogle Scholar
  4. 4.
    Ahuja CS, Fehlings M (2016) Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med 5(7):914–924PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG (2017) Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80(3S):S9–S22PubMedCrossRefGoogle Scholar
  6. 6.
    Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018PubMedCrossRefGoogle Scholar
  7. 7.
    Akkermann R, Beyer F, Küry P (2017) Heterogeneous populations of neural stem cells contribute to myelin repair. Neural Regen Res 12(4):509–517PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    de Almeida PE, Meyer EH, Kooreman NG, Diecke S, Dey D, Sanchez-Freire V, Hu S, Ebert A, Odegaard J, Mordwinkin NM, Brouwer TP, Lo D, Montoro DT, Longaker MT, Negrin RS, Wu JC (2014) Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 5:3903PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Alunni A, Bally-Cuif L (2016) A comparative view of regenerative neurogenesis in vertebrates. Development 143(5):741–753PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Anderson AJ, Piltti KM, Hooshmand MJ, Nishi RA, Cummings BJ (2017) Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Reports 8(2):249–263PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104PubMedCrossRefGoogle Scholar
  14. 14.
    Assinck P, Duncan GJ, Plemel JR, Lee MJ, Stratton JA, Manesh SB, Liu J, Ramer LM, Kang SH, Bergles DE, Biernaskie J, Tetzlaff W (2017) Myelinogenic plasticity of oligodendrocyte precursor cells following spinal cord contusion injury. J Neurosci 37(36):8635–8654PubMedCrossRefGoogle Scholar
  15. 15.
    Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, Dragas R, Fehlings M (2016) Early intravenous delivery of human brain stromal cells modulates systemic inflammation and leads to vasoprotection in traumatic spinal cord injury. Stem Cells Transl Med 5(8):991–1003PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Badner A, Siddiqui AM, Fehlings MG (2017) Spinal cord injuries: how could cell therapy help? Expert Opin Biol Ther 17(5):529–541PubMedCrossRefGoogle Scholar
  17. 17.
    Barbosa JS, Ninkovic J (2016) Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. Neurogenesis (Austin, TX) 3(1):e1148101CrossRefGoogle Scholar
  18. 18.
    Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7(4):470–482PubMedCrossRefGoogle Scholar
  19. 19.
    Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454PubMedCrossRefGoogle Scholar
  20. 20.
    Berberoglu MA, Dong Z, Li G, Zheng J, Trejo Martinez L d CG, Peng J, Wagle M, Reichholf B, Petritsch C, Li H, Pleasure SJ, Guo S (2014) Heterogeneously expressed fezf2 patterns gradient Notch activity in balancing the quiescence, proliferation, and differentiation of adult neural stem cells. J Neurosci Off J Soc Neurosci 34(42):13911–13923CrossRefGoogle Scholar
  21. 21.
    Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming G-l, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bond AM, Ming G-L, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Breunig JJ, Haydar TF, Rakic P (2011) Neural stem cells: historical perspective and future prospects. Neuron 70(4):614–625PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Briggs SF, Reijo Pera RA (2014) X chromosome inactivation: recent advances and a look forward. Curr Opin Genet Dev 28:78–82PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brommer B, Engel O, Kopp MA, Watzlawick R, Müller S, Prüss H, Chen Y, DeVivo MJ, Finkenstaedt FW, Dirnagl U, Liebscher T, Meisel A, Schwab JM (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain J Neurol 139(Pt 3):692–707CrossRefGoogle Scholar
  26. 26.
    Bulstrode H, Johnstone E, Marques-Torrejon MA, Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, Gangoso E, Gagrica S, Ender C, Fotaki V, Sproul D, Bertone P, Pollard SM (2017) Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 31(8):757–773PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bunge MB (2016) Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies: improving Schwann cell transplantation. J Physiol 594(13):3533–3538PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DSK, Xu X-M, Kim DH, Whittemore SR (2010) Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci Off J Soc Neurosci 30(8):2989–3001CrossRefGoogle Scholar
  29. 29.
    Chambers SM, Studer L (2011) Cell fate plug and play: direct reprogramming and induced pluripotency. Cell 145(6):827–830PubMedCrossRefGoogle Scholar
  30. 30.
    Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, Chaturvedi D, Arora M, Aggarwal A, Kapur R, Khan TAH (2009) Autologous mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 47:887–895PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dlouhy BJ, Awe O, Rao RC, Kirby PA, Hitchon PW (2014) Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient. J Neurosurg Spine 21:618–622PubMedPubMedCentralGoogle Scholar
  32. 32.
    Dominguez AA, Lim WA, Qi LS (2015) Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fan C, Li X, Xiao Z, Zhao Y, Liang H, Wang B, Han S, Li X, Xu B, Wang N, Liu S, Xue W, Dai J (2017) A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51:304–316PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Farrukh A, Ortega F, Fan W, Marichal N, Paez JI, Berninger B, Campo AD, Salierno MJ (2017) Bifunctional hydrogels containing the laminin motif IKVAV promote neurogenesis. Stem Cell Reports 9(5):1432–1440PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Faulkner SD, Vawda R, Fehlings MG (2014) Adult-derived pluripotent stem cells. World Neurosurg 82(3–4):500–508PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fehlings MG, Tator CH (1995) The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 132(2):220–228PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796PubMedCrossRefGoogle Scholar
  39. 39.
    Féron F, Perry C, Cochrane J et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128(Pt 12):2951–2960PubMedCrossRefGoogle Scholar
  40. 40.
    Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270PubMedCrossRefGoogle Scholar
  41. 41.
    Gwak S-J, Macks C, Jeong DU, Kindy M, Lynn M, Webb K, Lee JS (2017) RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 121:155–166PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Han H-W, Hsu S-H (2017) Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration. Colloids Surf B Biointerfaces 158:527–538PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Han Q, Jin W, Xiao Z, Ni H, Wang J, Kong J, Wu J, Liang W, Chen L, Zhao Y, Chen B, Dai J (2010) The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31(35):9212–9220PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    His W Sr (1874) Unsere Körperform und das physiologische Problem ihrer Entstehung : Briefe an einen befreundeten Naturforscher. F.C.W. Vogel, LeipzigCrossRefGoogle Scholar
  45. 45.
    His W Sr (1886) Zur Geschichte der menschlichen Rückenmarkes und der Nervenwurzeln. Bei S. Hirzel, Leipzig, p 13Google Scholar
  46. 46.
    His W Sr (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate : Untersuchungsergebnisse. Leipzig, HirzelCrossRefGoogle Scholar
  47. 47.
    Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ibarra A, Jiménez A, Cortes C, Correa D (2007) Influence of the intensity, level and phase of spinal cord injury on the proliferation of T cells and T-cell-dependent antibody reactions in rats. Spinal Cord 45(5):380–386PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kamada T, Koda M, Dezawa M, Anahara R, Toyama Y, Yoshinaga K, Hashimoto M, Koshizuka S, Nishio Y, Mannoji C, Okawa A, Yamazaki M (2011) Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord. Neuropathology Off J Japanese Soc Neuropathol 31(1):48–58CrossRefGoogle Scholar
  51. 51.
    Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci Off J Soc Neurosci 26(13):3377–3389CrossRefGoogle Scholar
  52. 52.
    Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci Off J Soc Neurosci 30(5):1657–1676CrossRefGoogle Scholar
  53. 53.
    Kawamura A, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ito E, Watabe T, Masuda S, Toda K, Hatazawa J, Morii E, Sawa Y (2016) Teratocarcinomas arising from allogeneic induced pluripotent stem cell-derived cardiac tissue constructs provoked host immune rejection in mice. Sci Rep 6:19464PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Keirstead HS (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Khazaei M, Siddiqui AM, Fehlings MG (2014) The potential for iPS-derived stem cells as a therapeutic strategy for spinal cord injury: opportunities and challenges. J Clin Med 4(1):37–65PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Khazaei M, Ahuja CS, Fehlings MG (2017) Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol 4:152PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, Ko S, Yang E, Cha KY, Lanza R, Kim K-S (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kim YC, Kim YH, Kim JW, Ha KY (2016) Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: comparative study between intralesional injection and scaffold based transplantation. J Korean Med Sci 31(9):1373–1382PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kizil C, Dudczig S, Kyritsis N, Machate A, Blaesche J, Kroehne V, Brand M (2012) The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Dev 7:27PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kizil C, Kyritsis N, Dudczig S, Kroehne V, Freudenreich D, Kaslin J, Brand M (2012) Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell 23(6):1230–1237PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO Rep 16(4):416–426PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kong X-B, Tang Q-Y, Chen X-Y, Tu Y, Sun S-Z, Sun Z-L (2017) Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regen Res 12(6):1003–1008PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kruse V, Hamann C, Monecke S, Cyganek L, Elsner L, Hübscher D, Walter L, Streckfuss-Bömeke K, Guan K, Dressel R, Björkström NK (2015) Human induced pluripotent stem cells are targets for allogeneic and autologous natural killer (NK) cells and killing is partly mediated by the activating NK receptor DNAM-1. PLoS One 10(5):e0125544PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kwon BK, Hillyer J, Tetzlaff W (2010) Translational research in spinal cord injury: a survey of opinion from the SCI community. J Neurotrauma 27(1):21–33PubMedCrossRefGoogle Scholar
  66. 66.
    Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24(2):128–135PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Belmonte JCI, Murry C, Keirstead HS, Park H-S, Schmidt U, Laslett AL, Muller F-J, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH, Kweon O-K (2016) Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy.  https://doi.org/10.1016/j.jcyt.2016.09.014
  69. 69.
    Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19(17):7537–7547PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Leibinger M, Müller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D (2013) Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis 4:e609PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47PubMedCrossRefGoogle Scholar
  72. 72.
    Li X, Han J, Zhao Y, Ding W, Wei J, Han S, Shang X, Wang B, Chen B, Xiao Z, Dai J (2015) Functionalized collagen scaffold neutralizing the myelin-inhibitory molecules promoted neurites outgrowth in vitro and facilitated spinal cord regeneration in vivo. ACS Appl Mater Interfaces 7(25):13960–13971PubMedCrossRefGoogle Scholar
  73. 73.
    Li X, Zhao Y, Cheng S, Han S, Shu M, Chen B, Chen X, Tang F, Wang N, Tu Y, Wang B, Xiao Z, Zhang S, Dai J (2017) Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137:73–86PubMedCrossRefGoogle Scholar
  74. 74.
    Liu X, Li W, Fu X, Xu Y (2017) The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front Immunol 8:645PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG (2007) Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol 207(1):75–84PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mackay-Sim A, Kittel P (1991) Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J Neurosci Off J Soc Neurosci 11(4):979–984CrossRefGoogle Scholar
  78. 78.
    Mackay-Sim A, Féron F, Cochrane J et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain J Neurol 131:2376–2386PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474(7350):225–229PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    März M, Schmidt R, Rastegar S, Strähle U (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn Off Publ Am Assoc Anatomists 240(9):2221–2231Google Scholar
  81. 81.
    Matyas JJ, Stewart AN, Goldsmith A, Nan Z, Skeel RL, Rossignol J, Dunbar GL (2017) Effects of bone-marrow-derived MSC transplantation on functional recovery in a rat model of spinal cord injury: comparisons of transplant locations and cell concentrations. Cell Transplant 26(8):1472–1482PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Maucksch C, Jones KS, Connor B (2013) Concise review: the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med 2(8):579–583PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    McCulloch EA, Till JE (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13:115–125PubMedCrossRefGoogle Scholar
  84. 84.
    McKerracher L, Higuchi H (2006) Targeting Rho to stimulate repair after spinal cord injury. J Neurotrauma 23(3–4):309–317PubMedCrossRefGoogle Scholar
  85. 85.
    Melo FR, Bressan RB, Forner S, Martini AC, Rode M, Delben PB, Rae GA, Figueiredo CP, Trentin AG (2017) Transplantation of human skin-derived mesenchymal stromal cells improves locomotor recovery after spinal cord injury in rats. Cell Mol Neurobiol 37(5):941–947PubMedCrossRefGoogle Scholar
  86. 86.
    Morita T, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Nagahama H, Oka S, Oshigiri T, Takebayashi T, Yamashita T, Kocsis JD, Honmou O (2016) Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 335:221–231PubMedCrossRefGoogle Scholar
  87. 87.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2007) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Namba T, Huttner WB (2017) Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdiscip Rev Dev Biol 6(1):1–16CrossRefGoogle Scholar
  89. 89.
    Nashmi R, Fehlings MG (2001) Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 104(1):235–251PubMedCrossRefGoogle Scholar
  90. 90.
    Oliveri RS, Bello S, Biering-Sørensen F (2014) Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis 62:338–353PubMedCrossRefGoogle Scholar
  91. 91.
    Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Park I-H, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186PubMedCrossRefGoogle Scholar
  93. 93.
    Park H-W, Lim M-J, Jung H, Lee S-P, Paik K-S, Chang M-S (2010) Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58(9):1118–1132PubMedCrossRefGoogle Scholar
  94. 94.
    Park WB, Kim SY, Lee SH, Kim H-W, Park J-S, Hyun JK (2010) The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci 11:119PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Peng Z, Gao W, Yue B, Jiang J, Gu Y, Dai J, Chen L, Shi Q (2016) Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J Tissue Eng Regen Med 12(3):e1725–e1736CrossRefGoogle Scholar
  96. 96.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells (Dayton, Ohio) 25(11):2896–2902CrossRefGoogle Scholar
  97. 97.
    Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W (2014) Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol 117:54–74PubMedCrossRefGoogle Scholar
  98. 98.
    Priest CA, Manley NC, Denham J, Wirth ED, Lebkowski JS (2015) Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med 10(8):939–958PubMedCrossRefGoogle Scholar
  99. 99.
    Puri MC, Nagy A (2012) Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30(1):10–14PubMedCrossRefGoogle Scholar
  100. 100.
    Qu J, Zhang H (2017) Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int 2017:5251313PubMedPubMedCentralGoogle Scholar
  101. 101.
    Rahimi-Movaghar V (2009) Clinical trials for the treatment of spinal cord injury: cervical and lumbar enlargements versus thoracic area. Brain J Neurol 132(Pt 7):e115CrossRefGoogle Scholar
  102. 102.
    Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci Off J Soc Neurosci 28(34):8510–8516CrossRefGoogle Scholar
  103. 103.
    Retzius G (1893) Die Cajal’schen Zellen der Grosshirnrinde beim Menschen und bei Säugetieren. Biologische Untersuchungen 5:1–9Google Scholar
  104. 104.
    Retzius G (1893) Studien uber Ependym and Neuroglia. Biologische Untersuchungen. 5:2–26Google Scholar
  105. 105.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, NY) 255(5052):1707–1710CrossRefGoogle Scholar
  106. 106.
    Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rockowitz S, Zheng D (2015) Significant expansion of the REST/NRSF cistrome in human versus mouse embryonic stem cells: potential implications for neural development. Nucleic Acids Res 43(12):5730–5743PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rockowitz S, Lien W-H, Pedrosa E, Wei G, Lin M, Zhao K, Lachman HM, Fuchs E, Zheng D (2014) Comparison of REST cistromes across human cell types reveals common and context-specific functions. PLoS Comput Biol 10(6):e1003671PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Roet KCD, Verhaagen J (2014) Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol 261:594–609PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Rosado IR, Carvalho PH, Alves EGL, Tagushi TM, Carvalho JL, Silva JF, Lavor MSL, Oliveira KM, Serakides R, Goes AM, Melo EG (2017) Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genet Mol Res 16(1):1–24Google Scholar
  111. 111.
    Ruddy RM, Morshead CM (2017) Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res 371(1):125–141PubMedCrossRefGoogle Scholar
  112. 112.
    Saberi H, Moshayedi P, Aghayan H-R, Arjmand B, Hosseini S-K, Emami-Razavi S-H, Rahimi-Movaghar V, Raza M, Firouzi M (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443(1):46–50PubMedCrossRefGoogle Scholar
  113. 113.
    Sandler VM, Lailler N, Bouhassira EE (2011) Reprogramming of embryonic human fibroblasts into fetal hematopoietic progenitors by fusion with human fetal liver CD34+ cells. PLoS One 6(4):e18265PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish – from embryo to adult. Neural Dev 8:3PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Scott CT, Magnus D (2014) Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med 3(12):1398–1401PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26(3):125–131PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Seo DK, Kim JH, Min J, Yoon HH, Shin E-S, Kim SW, Jeon SR (2017) Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir 159(5):947–957PubMedCrossRefGoogle Scholar
  118. 118.
    Shultz RB, Zhong Y (2017) Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 12(5):702–713PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Siddiqui AM, Khazaei M, Fehlings MG (2015) Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res 218:15–54PubMedCrossRefGoogle Scholar
  120. 120.
    Siminovitch L, Mcculloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336PubMedCrossRefGoogle Scholar
  121. 121.
    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331PubMedPubMedCentralGoogle Scholar
  122. 122.
    Sordi V, Pellegrini S, Piemonti L (2017) Immunological issues after stem cell-based β cell replacement. Curr Diab Rep 9:17Google Scholar
  123. 123.
    Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–526PubMedCrossRefGoogle Scholar
  125. 125.
    Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD (2011) Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29(4):313–314PubMedCrossRefGoogle Scholar
  126. 126.
    Tabakow P, Jarmundowicz W, Czapiga B et al (2013) Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 22:1591–1612PubMedCrossRefGoogle Scholar
  127. 127.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tan EYM, Law JWS, Wang C-H, Lee AYW (2007) Development of a cell transducible RhoA inhibitor TAT-C3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons. Pharm Res 24(12):2297–2308PubMedCrossRefGoogle Scholar
  130. 130.
    Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340(6233):471–473PubMedCrossRefGoogle Scholar
  131. 131.
    Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28(8):1611–1682PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222PubMedCrossRefGoogle Scholar
  133. 133.
    Ulndreaj A, Tzekou A, Mothe AJ, Siddiqui AM, Dragas R, Tator CH, Torlakovic EE, Fehlings MG (2017) Characterization of the antibody response after cervical spinal cord injury. J Neurotrauma 34(6):1209–1226PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Vidane AS, Zomer HD, Oliveira BMM, Guimarães CF, Fernandes CB, Perecin F, Silva LA, Miglino MA, Meirelles FV, Ambrósio CE (2013) Reproductive stem cell differentiation: extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment. Reprod Sci (Thousand Oaks, CA) 20(10):1137–1143CrossRefGoogle Scholar
  135. 135.
    Vierbuchen T, Wernig M (2011) Direct lineage conversions: unnatural but useful? Nat Biotechnol 29(10):892–907PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Wang P, Zhao D, Rockowitz S, Zheng D (2016) Divergence and rewiring of regulatory networks for neural development between human and other species. Neurogenesis (Austin, TX) 3(1):e1231495CrossRefGoogle Scholar
  138. 138.
    Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Watanabe M, Toyama Y, Nishiyama A (2002) Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69:826–836PubMedCrossRefGoogle Scholar
  140. 140.
    Wilcox JT, Satkunendrarajah K, Zuccato JA, Nassiri F, Fehlings MG (2014) Neural precursor cell transplantation enhances functional recovery and reduces astrogliosis in bilateral compressive/contusive cervical spinal cord injury. Stem Cells Transl Med 3(10):1148–1159PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Winiecka-Klimek M, Smolarz M, Walczak MP, Zieba J, Hulas-Bigoszewska K, Kmieciak B, Piaskowski S, Rieske P, Grzela DP, Stoczynska-Fidelus E (2015) SOX2 and SOX2-MYC reprogramming process of fibroblasts to the neural stem cells compromised by senescence. PLoS One 10(11):e0141688PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV (2012) Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab 32(10):1841–1852PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung H-K, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Xu Q, Wang J’A, He J, Zhou M, Adi J, Webster KA, Yu H (2011) Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. Atherosclerosis 219(1):92–99PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Xu B, Zhao Y, Xiao Z, Wang B, Liang H, Li X, Fang Y, Han S, Li X, Fan C, Dai J (2017) A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthc Mater 6(9):1–12Google Scholar
  146. 146.
    Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460(7251):49–52PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Yang L (2011) From fibroblast cells to cardiomyocytes: direct lineage reprogramming. Stem Cell Res Ther 2(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Yu J, Hu K, Smuga-otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Zhao Y, Xiao Z, Chen B, Dai J (2017) The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 13(3):63–70PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • James Hong
    • 1
  • Christopher E. Rodgers
    • 1
  • Michael G. Fehlings
    • 2
    • 3
  1. 1.University of Toronto & Krembil Research InstituteTorontoCanada
  2. 2.University of TorontoTorontoCanada
  3. 3.University Health NetworkTorontoCanada

Personalised recommendations