Advertisement

The Relevance of Induced Pluripotent Stem Cells for the Study of Physiological and Premature Aging

  • Dido Carrero
  • Carlos López-Otín
Chapter

Abstract

Aging is a process characterized by several alterations, such as accumulation of macromolecular damage, genomic instability, and loss of heterochromatin, which leads to a decline in stem cell function and reduced regenerative capacity. Recently, reprogramming of aged cells has been achieved, which illustrates the reversible potential of aging and evokes the idea of rejuvenation. In this chapter, we summarize the main advances in the field of reprogramming in aging, both in vitro and in vivo, which have contributed to further understand the molecular mechanisms underlying physiological and pathological aging. We also describe candidate therapeutic strategies that demolish age-associated reprogramming barriers and alleviate normal and premature aging.

Keywords

Aging Progeria Stem cells iPSCs 

Notes

Acknowledgments

This work was supported by grants from European Union (DeAge, ERC Advanced Grant), Ministerio de Economía y Competitividad, Instituto de Salud Carlos III; CIBERONC, Plan Feder, and EDP Foundation. We also thank the generous support by J. I. Cabrera and Associazione Italiana Progeria Sammy Basso. The Instituto Universitario de Oncología is supported by Fundación Bancaria Caja de Ahorros de Asturias.

Bibliography

  1. 1.
    Khan SS, Singer BD, Vaughan DE (2017) Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 16:624–633PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Carrero D, Soria-Valles C, Lopez-Otin C (2016) Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 9:719–735PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gordon LB, Rothman FG, Lopez-Otin C, Misteli T (2014) Progeria: a paradigm for translational medicine. Cell 156:400–407PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela I et al (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3:106ra107PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J et al (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14:767–772PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Phanthong P, Raveh-Amit H, Li T, Kitiyanant Y, Dinnyes A (2013) Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology 14:591–602PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben-Harush K, Dubrovsky-Gaupp A, Sapra KT, Goldman RD, Medalia O (2017) The molecular architecture of lamins in somatic cells. Nature 543:261–264PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ungricht R, Kutay U (2017) Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol 18:229–245PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Levy N (2014) Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 29:125–147PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Agarwal AK, Fryns JP, Auchus RJ, Garg A (2003) Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 12:1995–2001PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Barthelemy F, Navarro C, Fayek R, Da Silva N, Roll P, Sigaudy S, Oshima J, Bonne G, Papadopoulou-Legbelou K, Evangeliou AE et al (2015) Truncated prelamin A expression in HGPS-like patients: a transcriptional study. Eur J Hum Genet 23:1051–1061PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M et al (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300:2055PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Navarro CL, Cadinanos J, De Sandre-Giovannoli A, Bernard R, Courrier S, Boccaccio I, Boyer A, Kleijer WJ, Wagner A, Giuliano F et al (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of lamin A precursors. Hum Mol Genet 14:1503–1513PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Osorio FG, Ugalde AP, Marino G, Puente XS, Freije JM, Lopez-Otin C (2011) Cell autonomous and systemic factors in progeria development. Biochem Soc Trans 39:1710–1714PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadinanos J, Fraile JM, Ordonez GR, Puente DA, Gutierrez-Fernandez A, Fanjul-Fernandez M et al (2011) Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet 88:650–656PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Soria-Valles C, Carrero D, Gabau E, Velasco G, Quesada V, Barcena C, Moens M, Fieggen K, Mohrcken S, Owens M et al (2016) Novel LMNA mutations cause an aggressive atypical neonatal progeria without progerin accumulation. J Med GenetPubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gonzalo S, Kreienkamp R (2015) DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol 34:75–83PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J, Richard JM, Alvarez R, Duran NS, Illan R, Gonzalez DJ et al (2011) Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A 155A:2617–2625PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Vijg J, Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75:645–668PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bernstein KA, Gangloff S, Rothstein R (2010) The RecQ DNA helicases in DNA repair. Annu Rev Genet 44:393–417PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A 104:2205–2210PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cheung HH, Liu X, Canterel-Thouennon L, Li L, Edmonson C, Rennert OM (2014) Telomerase protects werner syndrome lineage-specific stem cells from premature aging. Stem Cell Reports 2:534–546PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ellis NA, Sander M, Harris CC, Bohr VA (2008) Bloom’s syndrome workshop focuses on the functional specificities of RecQ helicases. Mech Ageing Dev 129:681–691PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Puzianowska-Kuznicka M, Kuznicki J (2005) Genetic alterations in accelerated ageing syndromes. Do they play a role in natural ageing? Int J Biochem Cell Biol 37:947–960PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15:465–481PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Tan WH, Baris H, Robson CD, Kimonis VE (2005) Cockayne syndrome: the developing phenotype. Am J Med Genet A 135:214–216PubMedCrossRefGoogle Scholar
  31. 31.
    Cleaver JE (2005) Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5:564–573PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Itin PH, Sarasin A, Pittelkow MR (2001) Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 44:891–920. quiz 921-894PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Deakyne JS, Mazin AV (2011) Fanconi anemia: at the crossroads of DNA repair. Biochemistry (Mosc) 76:36–48CrossRefGoogle Scholar
  34. 34.
    Bogliolo M, Surralles J (2015) Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 33:32–40PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Uziel O, Reshef H, Ravid A, Fabian I, Halperin D, Ram R, Bakhanashvili M, Nordenberg J, Lahav M (2008) Oxidative stress causes telomere damage in Fanconi anaemia cells - a possible predisposition for malignant transformation. Br J Haematol 142:82–93PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shanske A, Caride DG, Menasse-Palmer L, Bogdanow A, Marion RW (1997) Central nervous system anomalies in Seckel syndrome: report of a new family and review of the literature. Am J Med Genet 70:155–158PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stanley SE, Armanios M (2015) The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev 33:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Signer RA, Morrison SJ (2013) Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12:152–165PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardi M, Ballestar E, Gonzalez S, Serrano AL et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang J, Lu X, Sakk V, Klein CA, Rudolph KL (2014) Senescence and apoptosis block hematopoietic activation of quiescent hematopoietic stem cells with short telomeres. Blood 124:3237–3240PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Espada J, Varela I, Flores I, Ugalde AP, Cadinanos J, Pendas AM, Stewart CL, Tryggvason K, Blasco MA, Freije JM et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181:27–35PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pacheco LM, Gomez LA, Dias J, Ziebarth NM, Howard GA, Schiller PC (2014) Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Aging (Albany NY) 6:1049–1063CrossRefGoogle Scholar
  44. 44.
    Rosengardten Y, McKenna T, Grochova D, Eriksson M (2011) Stem cell depletion in Hutchinson-Gilford progeria syndrome. Aging Cell 10:1011–1020PubMedCrossRefGoogle Scholar
  45. 45.
    Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF et al (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Neves J, Sousa-Victor P, Jasper H (2017) Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell 20:161–175PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ren R, Ocampo A, Liu GH, Izpisua Belmonte JC (2017) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab 26:460–474PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A et al (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Stockklausner C, Raffel S, Klermund J, Bandapalli OR, Beier F, Brummendorf TH, Burger F, Sauer SW, Hoffmann GF, Lorenz H et al (2015) A novel autosomal recessive TERT T1129P mutation in a dyskeratosis congenita family leads to cellular senescence and loss of CD34+ hematopoietic stem cells not reversible by mTOR-inhibition. Aging (Albany NY) 7:911–927CrossRefGoogle Scholar
  51. 51.
    Zhang X, Sejas DP, Qiu Y, Williams DA, Pang Q (2007) Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence. J Cell Sci 120:1572–1583PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Soria-Valles C, Osorio FG, Gutierrez-Fernandez A, De Los Angeles A, Bueno C, Menendez P, Martin-Subero JI, Daley GQ, Freije JM, Lopez-Otin C (2015) NF-kappaB activation impairs somatic cell reprogramming in ageing. Nat Cell Biol 17:1004–1013PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rohani L, Johnson AA, Arnold A, Stolzing A (2014) The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell 13:2–7PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Soria-Valles C, Lopez-Otin C (2016) iPSCs: on the road to reprogramming aging. Trends Mol Med 22:713–724PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Freije JM, Lopez-Otin C (2012) Reprogramming aging and progeria. Curr Opin Cell Biol 24:757–764PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ho JC, Zhou T, Lai WH, Huang Y, Chan YC, Li X, Wong NL, Li Y, Au KW, Guo D et al (2011) Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3:380–390CrossRefGoogle Scholar
  57. 57.
    Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci U S A 108:12325–12330PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Andrade LN, Nathanson JL, Yeo GW, Menck CF, Muotri AR (2012) Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet 21:3825–3834PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lo CY, Tjong YW, Ho JC, Siu CW, Cheung SY, Tang NL, Yu S, Tse HF, Yao X (2014) An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca(2)(+) rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria. PLoS One 9:e87273PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nissan X, Blondel S, Navarro C, Maury Y, Denis C, Girard M, Martinat C, De Sandre-Giovannoli A, Levy N, Peschanski M (2012) Unique preservation of neural cells in Hutchinson- Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep 2:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, Oshimura M, Ishigaki Y, Hamasaki K, Kodama Y et al (2014) Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS One 9:e112900PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Xiong Z, Lu Y, Xue J, Luo S, Xu X, Zhang L, Peng H, Li W, Chen D, Hu Z et al (2013) Hutchinson-Gilford progeria syndrome accompanied by severe skeletal abnormalities in two Chinese siblings: two case reports. J Med Case Rep 7:63PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Brunauer R, Kennedy BK (2015) Medicine Progeria accelerates adult stem cell aging. Science 348:1093–1094PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Petrini S, Borghi R, D'Oria V, Restaldi F, Moreno S, Novelli A, Bertini E, Compagnucci C (2017) Aged induced pluripotent stem cell (iPSCs) as a new cellular model for studying premature aging. Aging (Albany NY) 9:1453–1469Google Scholar
  67. 67.
    Ohnishi H, Kawasaki T, Deguchi T, Yuba S (2015) Generation of xeroderma pigmentosum-A patient-derived induced pluripotent stem cell line for use as future disease model. Cell Reprogram 17:268–274PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Fu L, Xu X, Ren R, Wu J, Zhang W, Yang J, Ren X, Wang S, Zhao Y, Sun L et al (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell 7:210–221PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vessoni AT, Herai RH, Karpiak JV, Leal AM, Trujillo CA, Quinet A, Agnez Lima LF, Menck CF, Muotri AR (2016) Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Hum Mol Genet 25:1271–1280PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Muller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park IH, London WB et al (2012) Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119:5449–5457PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Suzuki NM, Niwa A, Yabe M, Hira A, Okada C, Amano N, Watanabe A, Watanabe K, Heike T, Takata M et al (2015) Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl Med 4:333–338PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yung SK, Tilgner K, Ledran MH, Habibollah S, Neganova I, Singhapol C, Saretzki G, Stojkovic M, Armstrong L, Przyborski S et al (2013) Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors. Stem Cells 31:1022–1029PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Nayler S, Gatei M, Kozlov S, Gatti R, Mar JC, Wells CA, Lavin M, Wolvetang E (2012) Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype. Stem Cells Transl Med 1:523–535PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fukawatase Y, Toyoda M, Okamura K, Nakamura K, Nakabayashi K, Takada S, Yamazaki-Inoue M, Masuda A, Nasu M, Hata K et al (2014) Ataxia telangiectasia derived iPS cells show preserved x-ray sensitivity and decreased chromosomal instability. Sci Rep 4:5421PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lee P, Martin NT, Nakamura K, Azghadi S, Amiri M, Ben-David U, Perlman S, Gatti RA, Hu H, Lowry WE (2013) SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nat Commun 4:1824PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, Crary SM, Choi J, Sebastiano V, Cherry A et al (2011) Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474:399–402PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, Huo H, Okuka M, Dos Reis RM, Loewer S et al (2010) Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464:292–296PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, Grana O, Megias D, Dominguez O, Martinez D et al (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502:340–345PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T et al (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:663–677PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Pareja-Galeano H, Sanchis-Gomar F, Perez LM, Emanuele E, Lucia A, Galvez BG, Gallardo ME (2016) iPSCs-based anti-aging therapies: recent discoveries and future challenges. Ageing Res Rev 27:37–41PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kurian L, Sancho-Martinez I, Nivet E, Aguirre A, Moon K, Pendaries C, Volle-Challier C, Bono F, Herbert JM, Pulecio J et al (2013) Conversion of human fibroblasts to angioblast-like progenitor cells. Nat Methods 10:77–83PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Pulecio J, Nivet E, Sancho-Martinez I, Vitaloni M, Guenechea G, Xia Y, Kurian L, Dubova I, Bueren J, Laricchia-Robbio L et al (2014) Conversion of human fibroblasts into monocyte-like progenitor cells. Stem Cells 32:2923–2938PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–479PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ocampo A, Reddy P, Izpisua Belmonte JC (2016) Anti-aging strategies based on cellular reprogramming. Trends Mol Med 22:725–738PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E et al (2016) In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167:1719–1733.e12PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Munoz-Martin M, Blanco-Aparicio C, Pastor J et al (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354Google Scholar
  89. 89.
    Chiche A, Le Roux I, von Joest M, Sakai H, Aguin SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P et al (2017) Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20:407–414.e4PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisua Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA et al (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437:564–568PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chlon TM, Hoskins EE, Mayhew CN, Wikenheiser-Brokamp KA, Davies SM, Mehta P, Myers KC, Wells JM, Wells SI (2014) High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells. J Virol 88:11315–11326PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ma H, Ow JR, Tan BC, Goh Z, Feng B, Loh YH, Fedele M, Li H, Wu Q (2014) The dosage of Patz1 modulates reprogramming process. Sci Rep 4:7519PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Camozzi D, Capanni C, Cenni V, Mattioli E, Columbaro M, Squarzoni S, Lattanzi G (2014) Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Focus on laminopathies. Nucleus 5:427–440PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lopez-Otin C, Galluzzi L, Freije JM, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166:802–821PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10:3658–3677PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sharma A, Diecke S, Zhang WY, Lan F, He C, Mordwinkin NM, Chua KF, Wu JC (2013) The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem 288:18439–18447PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chen W, Liu N, Zhang H, Qiao J, Jia W, Zhu S, Mao Z, Kang J (2017) Sirt6 promotes DNA end joining in iPSCs derived from old mice. Cell Rep 18:2880–2892PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Bárcena C, López-Otín C (2017) A fruitful liaison of ZSCAN10 and ROS on the road to rejuvenation. Nat Cell Biol 19:1012–1013PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Skamagki M, Correia C, Yeung P, Baslan T, Beck S, Zhang C, Ross CA, Dang L, Liu Z, Giunta S et al (2017) ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. Nat Cell Biol 19(9):1037–1048PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ma T, Li J, Xu Y, Yu C, Xu T, Wang H, Liu K, Cao N, Nie BM, Zhu SY et al (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17:1379–1387PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Ahlenius H, Chanda S, Webb AE, Yousif I, Karmazin J, Prusiner SB, Brunet A, Sudhof TC, Wernig M (2016) FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 113:8514–8519PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 4:166–175CrossRefGoogle Scholar
  109. 109.
    Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS et al (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JM, Lopez-Otin C (2012) Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26:2311–2324PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Liu B, Zhou S, Liu X, Zhou K, Zhang F, Zhou Z (2013) Accumulation of prelamin A compromises NF-kappaB-regulated B-lymphopoiesis in a progeria mouse model. Longev Healthspan 2:1PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Davis T, Kipling D (2006) Werner syndrome as an example of inflamm-aging: possible therapeutic opportunities for a progeroid syndrome? Rejuvenation Res 9:402–407PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Goto M, Sugimoto K, Hayashi S, Ogino T, Sugimoto M, Furuichi Y, Matsuura M, Ishikawa Y, Iwaki-Egawa S, Watanabe Y (2012) Aging-associated inflammation in healthy Japanese individuals and patients with Werner syndrome. Exp Gerontol 47:936–939PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pour M, Pilzer I, Rosner R, Smith ZD, Meissner A, Nachman I (2015) Epigenetic predisposition to reprogramming fates in somatic cells. EMBO Rep 16:370–378PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G et al (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9:575–587PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Chen X, Zhai Y, Yu D, Cui J, Hu JF, Li W (2016) Valproic acid enhances iPSC induction from human bone marrow-derived cells through the suppression of reprogramming-induced senescence. J Cell Physiol 231:1719–1727PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD et al (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 109:16666–16671PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3:89ra58PubMedPubMedCentralGoogle Scholar
  123. 123.
    Cenni V, Capanni C, Columbaro M, Ortolani M, D'Apice MR, Novelli G, Fini M, Marmiroli S, Scarano E, Maraldi NM et al (2011) Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria. Eur J Histochem e36:55Google Scholar
  124. 124.
    Cenni V, Capanni C, Mattioli E, Columbaro M, Wehnert M, Ortolani M, Fini M, Novelli G, Bertacchini J, Maraldi NM et al (2014) Rapamycin treatment of Mandibuloacral dysplasia cells rescues localization of chromatin-associated proteins and cell cycle dynamics. Aging (Albany NY) 6:755–770CrossRefGoogle Scholar
  125. 125.
    Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11:440–445PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Marino G, Ugalde AP, Fernandez AF, Osorio FG, Fueyo A, Freije JM, Lopez-Otin C (2010) Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci U S A 107:16268–16273PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin-Perez R, Enriquez JA, Lopez-Otin C, Andres V (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127:2442–2451PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Xiong ZM, Choi JY, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2016) Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell 15:279–290PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Ibrahim MX, Sayin VI, Akula MK, Liu M, Fong LG, Young SG, Bergo MO (2013) Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340:1330–1333PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM et al (2014) A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20:840–855PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Chatre L, Biard DS, Sarasin A, Ricchetti M (2015) Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne syndrome. Proc Natl Acad Sci U S A 112:E2910–E2919PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zlateska B, Ciccolini A, Dror Y (2015) Treatment of dyskeratosis congenita-associated pulmonary fibrosis with danazol. Pediatr Pulmonol 50:E48–E51PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Saadatzadeh MR, Bijangi-Vishehsaraei K, Kapur R, Haneline LS (2009) Distinct roles of stress-activated protein kinases in Fanconi anemia-type C-deficient hematopoiesis. Blood 113:2655–2660PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tivey HS, Rokicki MJ, Barnacle JR, Rogers MJ, Bagley MC, Kipling D, Davis T (2013) Small molecule inhibition of p38 MAP kinase extends the replicative life span of human ATR-Seckel syndrome fibroblasts. J Gerontol A Biol Sci Med Sci 68:1001–1009PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y et al (2012) Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16:738–750PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Labbe A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG, Lebel M (2011) Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci 66:264–278PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Levy N (2017) MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 9:1294–1313PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Lukjanenko L, Jung MJ, Hegde N, Perruisseau-Carrier C, Migliavacca E, Rozo M, Karaz S, Jacot G, Schmidt M, Li L et al (2016) Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med 22:897–905PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Rozo M, Li L, Fan CM (2016) Targeting beta1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 22:889–896PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20:1174–1181PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, Kung S, Jiang KP, Conboy IM (2014) Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 5:4082PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederlander NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ et al (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10:825–836PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R et al (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Schworer S, Becker F, Feller C, Baig AH, Kober U, Henze H, Kraus JM, Xin B, Lechel A, Lipka DB et al (2016) Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 540:428–432PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Lo Cicero A, Jaskowiak AL, Egesipe AL, Tournois J, Brinon B, Pitrez PR, Ferreira L, de Sandre-Giovannoli A, Levy N, Nissan X (2016) A high throughput phenotypic screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells. Sci Rep 6:34798PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Mahmoudi S, Brunet A (2012) Aging and reprogramming: a two-way street. Curr Opin Cell Biol 24:744–756PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Prigione A, Hossini AM, Lichtner B, Serin A, Fauler B, Megges M, Lurz R, Lehrach H, Makrantonaki E, Zouboulis CC et al (2011) Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations. PLoS One 6:e27352PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB (2010) Mitochondrial rejuvenation after induced pluripotency. PLoS One 5:e14095PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Ait-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J et al (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25:2248–2253PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Xiong ZM, LaDana C, Wu D, Cao K (2013) An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells. Aging (Albany NY) 5:288–303CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología (IUOPA), Universidad de OviedoOviedoSpain
  2. 2.Centro de Investigación en Red de CáncerMadridSpain

Personalised recommendations