Advertisement

Stem Cells and Cancer

  • Meredith Davis
  • Katja Gassner
  • Ruth Rodriguez-Barrueco
  • David Llobet-Navas
Chapter

Abstract

The plasticity of cancer stem cells (CSCs) is one of the greatest challenges in cancer therapeutics. CSCs not only foster tumour development, but they also activate mechanisms of tumour immune surveillance evasion, metabolic reprogramming, and metastatic colonization. The clinical significance of CSCs involves their resistance to chemotherapy and their major role in tumour relapse after treatment. Mechanisms that are essential for the induction, maintenance, and survival of CSCs are ambiguous. A deeper understanding of what triggers CSCs, and helps them survive and spread, will provide insight into new treatment strategies in the field of clinical oncology. 

Keyword

Cancer stem cells 

Abbreviations

ABC

ATP-binding cassette

ADC

Antibody-drug conjugate

ALDH1

Aldehyde dehydrogenase 1

ALL

Acute lymphoblastic leukaemia

AML

Acute myeloid leukaemia

BCL-2

B-cell lymphoma-2

CML

Chronic myeloid leukaemia

CSC

Cancer stem cell

DRP1

Dynamin-related protein 1

EMT

Epithelial-mesenchymal transition

ESC

Embryonic stem cell

GSC

Glioma stem cell

HIF

Hypoxia-inducible factor

HNSCC

Head and neck squamous cell carcinoma

HSC

Haematopoietic stem cell

iPSC

Induced pluripotent stem cell

LSC

Leukemic stem cell

MET

Mesenchymal-epithelial transition

miRNA

MicroRNA

mtDNA

Mitochondrial DNA

OXPHOS

Oxidative phosphorylation

PKM

Pyruvate kinase muscle

PDK1

Pyruvate dehydrogenase kinase 1

ROS

Reactive oxygen species

TF

Transcription factor

References

  1. 1.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2006) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Damjanov I (1993) Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int J Dev Biol 37:39–46PubMedPubMedCentralGoogle Scholar
  8. 8.
    Karsten U, Goletz S (2013) What makes cancer stem cell markers different? Springerplus 2:301PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ghatak S, Misra S, Toole BP (2005) Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280:8875–8883PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Misra S, Toole BP, Ghatak S (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem 281:34936–34941PubMedCrossRefGoogle Scholar
  12. 12.
    Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12:1241–1251PubMedCrossRefGoogle Scholar
  13. 13.
    Mizrak D, Brittan M, Alison M (2008) CD133: molecule of the moment. J Pathol 214:3–9PubMedCrossRefGoogle Scholar
  14. 14.
    Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52:735–746PubMedCrossRefGoogle Scholar
  15. 15.
    Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344PubMedCrossRefGoogle Scholar
  16. 16.
    Masters JR, Foley CL, Bisson I, Ahmed A (2003) Cancer stem cells. BJU Int 92:661–662PubMedCrossRefGoogle Scholar
  17. 17.
    Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M (2017) Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol 232:2008–2018PubMedCrossRefGoogle Scholar
  18. 18.
    Moserle L, Ghisi M, Amadori A, Indraccolo S (2010) Side population and cancer stem cells: therapeutic implications. Cancer Lett 288:1–9PubMedCrossRefGoogle Scholar
  19. 19.
    Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13:497–512PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Song J, Chang I, Chen Z, Kang M, Wang CY (2010) Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One 5:e11456PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Goodell MA, McKinney-Freeman S, Camargo FD (2005) Isolation and characterization of side population cells. Methods Mol Biol 290:343–352PubMedGoogle Scholar
  23. 23.
    Feuring-Buske M, Hogge DE (2001) Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(−) progenitor cells from patients with acute myeloid leukemia. Blood 97:3882–3889PubMedCrossRefGoogle Scholar
  24. 24.
    Huang FF, Zhang L, Wu DS, Yuan XY, Yu YH, Zhao XL et al (2014) PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PLoS One 9:e88298PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jiang Y, Gao H, Liu M, Mao Q (2016) Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma. Am J Cancer Res 6:1890–1905PubMedPubMedCentralGoogle Scholar
  26. 26.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A 103:11154–11159PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yasuda K, Torigoe T, Morita R, Kuroda T, Takahashi A, Matsuzaki J et al (2013) Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population. PLoS One 8:e68187PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shen G, Shen F, Shi Z, Liu W, Hu W, Zheng X et al (2008) Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev Biol Anim 44:280–289PubMedCrossRefGoogle Scholar
  29. 29.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833PubMedCrossRefGoogle Scholar
  30. 30.
    Nakanishi T, Chumsri S, Khakpour N, Brodie AH, Leyland-Jones B, Hamburger AW et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102:815–826PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G (2008) Isolation and culture of colon cancer stem cells. Methods Cell Biol 86:311–324PubMedCrossRefGoogle Scholar
  33. 33.
    Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62:1499–1509PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rao GH, Liu HM, Li BW, Hao JJ, Yang YL, Wang MR et al (2013) Establishment of a human colorectal cancer cell line P6C with stem cell properties and resistance to chemotherapeutic drugs. Acta Pharmacol Sin 34:793–804PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F et al (2012) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22:248–258PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337PubMedCrossRefGoogle Scholar
  39. 39.
    Gou S, Liu T, Wang C, Yin T, Li K, Yang M et al (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34:429–435PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34:153–161PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J et al (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7:e1000121PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O'Brien CA, Kreso A, Jamieson CH (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16:3113–3120PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Carrasco E, Alvarez PJ, Prados J, Melguizo C, Rama AR, Aranega A et al (2014) Cancer stem cells and their implication in breast cancer. Eur J Clin Investig 44:678–687CrossRefGoogle Scholar
  46. 46.
    Jackson M, Hassiotou F, Nowak A (2015) Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36:177–185PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Botchkina G (2013) Colon cancer stem cells--from basic to clinical application. Cancer Lett 338:127–140PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  49. 49.
    Tseng JY, Yang CY, Yang SH, Lin JK, Lin CH, Jiang JK (2015) Circulating CD133(+)/ESA(+) cells in colorectal cancer patients. J Surg Res 199:362–370PubMedCrossRefGoogle Scholar
  50. 50.
    Cervello I, Mirantes C, Santamaria X, Dolcet X, Matias-Guiu X, Simon C (2011) Stem cells in human endometrium and endometrial carcinoma. Int J Gynecol Pathol 30:317–327PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15:4299–4311PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Li Z (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2:17PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Qian X, Tan C, Wang F, Yang B, Ge Y, Guan Z et al (2016) Esophageal cancer stem cells and implications for future therapeutics. Onco Targets Ther 9:2247–2254PubMedPubMedCentralGoogle Scholar
  54. 54.
    Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM et al (2009) Identification of cancer stem cells in Ewing's sarcoma. Cancer Res 69:1776–1781PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Krishnamurthy S, Nor JE (2012) Head and neck cancer stem cells. J Dent Res 91:334–340PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22:3696–3705PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C et al (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30:1714–1725PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lindgren D, Bostrom AK, Nilsson K, Hansson J, Sjolund J, Moller C et al (2011) Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 178:828–837PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U et al (2006) CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 169:2223–2235PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lim SD, Young AN, Paner GP, Amin MB (2008) Prognostic role of CD44 cell adhesion molecule expression in primary and metastatic renal cell carcinoma: a clinicopathologic study of 125 cases. Virchows Arch 452:49–55PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sun JH, Luo Q, Liu LL, Song GB (2016) Liver cancer stem cell markers: progression and therapeutic implications. World J Gastroenterol 22:3547–3557PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lundin A, Driscoll B (2013) Lung cancer stem cells: progress and prospects. Cancer Lett 338:89–93PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lang D, Mascarenhas JB, Shea CR (2013) Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol 31:166–178PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhan Q, Wang C, Ngai S (2013) Ovarian cancer stem cells: a new target for cancer therapy. Biomed Res Int 2013:916819PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhan HX, Xu JW, Wu D, Zhang TP, Hu SY (2015) Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett 357:429–437PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sharpe B, Beresford M, Bowen R, Mitchard J, Chalmers AD (2013) Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev 9:721–730PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Brungs D, Aghmesheh M, Vine KL, Becker TM, Carolan MG, Ranson M (2016) Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol 51:313–326PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nagayama Y, Shimamura M, Mitsutake N (2016) Cancer stem cells in the thyroid. Front Endocrinol 7:20CrossRefGoogle Scholar
  74. 74.
    Shimamura M, Nagayama Y, Matsuse M, Yamashita S, Mitsutake N (2014) Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines. Endocr J 61:481–490PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Horton SJ, Huntly BJ (2012) Recent advances in acute myeloid leukemia stem cell biology. Haematologica 97:966–974PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104:2919–2925PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11:630–637PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109:674–682PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Singh D, Minz AP, Sahoo SK (2017) Nanomedicine-mediated drug targeting of cancer stem cells. Drug Discov Today 22(6):952–959. https://doi.org/10.1016/j.drudis.2017.04.005PubMedCrossRefGoogle Scholar
  81. 81.
    Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890PubMedCrossRefGoogle Scholar
  83. 83.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefGoogle Scholar
  84. 84.
    Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807PubMedCrossRefGoogle Scholar
  85. 85.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291PubMedCrossRefGoogle Scholar
  86. 86.
    Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP (2012) The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol 13:e83–e89PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ashkenazi R, Gentry SN, Jackson TL (2008) Pathways to tumorigenesis—modeling mutation acquisition in stem cells and their progeny. Neoplasia 10:1170–1182PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al (2004) Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134PubMedCrossRefGoogle Scholar
  91. 91.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902PubMedCrossRefGoogle Scholar
  92. 92.
    Abollo-Jimenez F, Jimenez R, Cobaleda C (2010) Physiological cellular reprogramming and cancer. Semin Cancer Biol 20:98–106PubMedCrossRefGoogle Scholar
  93. 93.
    Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17:413–425PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Aguilar-Gallardo C, Simon C (2013) Cells, stem cells, and cancer stem cells. Semin Reprod Med 31:5–13PubMedCrossRefGoogle Scholar
  95. 95.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jilkine A, Gutenkunst RN (2014) Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers. PLoS Comput Biol 10:e1003481PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Iglesias JM, Gumuzio J, Martin AG (2017) Linking pluripotency reprogramming and cancer. Stem Cells Transl Med 6:335–339PubMedCrossRefGoogle Scholar
  99. 99.
    Yamada Y, Haga H (2014) Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl Med:1182–1187PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648PubMedCrossRefGoogle Scholar
  102. 102.
    Maki N, Martinson J, Nishimura O, Tarui H, Meller J, Tsonis PA et al (2010) Expression profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. Mol Vis 16:72–78PubMedPubMedCentralGoogle Scholar
  103. 103.
    Thitoff AR, Call MK, Del Rio-Tsonis K, Tsonis PA. Unique expression patterns of the retinoblastoma (Rb) gene in intact and lens regeneration-undergoing newt eyes. Anat Rec A: Discov Mol Cell Evol Biol 2003; 271A:185–188CrossRefGoogle Scholar
  104. 104.
    Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ et al (2014) Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–618PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S et al (2010) Conversion of adult pancreatic [agr]-cells to [bgr]-cells after extreme [bgr]-cell loss. Nature 464:1149–1154PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS et al (2016) A predictive computational framework for direct reprogramming between human cell types. Nat Genet 48:331–335PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000PubMedCrossRefGoogle Scholar
  108. 108.
    Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S et al (2012) Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 122:2911–2915PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB et al (2012) Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int 32:38–47PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Yin J, Oh YT, Kim J-Y, Kim SS, Choi E, Kim TH et al (2017) Transglutaminase 2 inhibition reverses mesenchymal transdifferentiation of glioma stem cells by regulating C/EBPβ signaling. Cancer Res 77:4973–4984Google Scholar
  113. 113.
    Hay ED (1995) An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154:8–20CrossRefGoogle Scholar
  114. 114.
    Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16:488–494PubMedCrossRefGoogle Scholar
  116. 116.
    Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H et al (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527:525–530PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong STC et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527:472–476PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E et al (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525:256–260PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Huang RYJ, Wong MK, Tan TZ, Kuay KT, Ng AHC, Chung VY et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C et al (2016) Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 14:2281–2288PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Celià-Terrassa T, Kang Y (2016) Distinctive properties of metastasis-initiating cells. Genes Dev 30:892–908PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nieto MA, Huang Ruby Y-J, Jackson Rebecca A, Thiery Jean P (2016) EMT: 2016. Cell 166:21–45PubMedCrossRefGoogle Scholar
  124. 124.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000) The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A et al (2011) Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res 1:897–912PubMedPubMedCentralGoogle Scholar
  126. 126.
    Martin A, Cano A (2010) Tumorigenesis: Twist1 links EMT to self-renewal. Nat Cell Biol 12:924–925PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Yang M-H, Hsu DS-S, Wang H-W, Wang H-J, Lan H-Y, Yang W-H et al (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12:982–992PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Chaffer Christine L, Marjanovic Nemanja D, Lee T, Bell G, Kleer Celina G, Reinhardt F et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pang R, Law WL, Chu ACY, Poon JT, Lam CSC, Chow AKM et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6:603–615PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Chen Y-C, Chen Y-W, Hsu H-S, Tseng L-M, Huang P-I, Lu K-H et al (2009) Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 385:307–313PubMedCrossRefGoogle Scholar
  132. 132.
    Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K, Delafaille S et al (2015) Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16:67–79PubMedCrossRefGoogle Scholar
  134. 134.
    Hao J, Zhang Y, Deng M, Ye R, Zhao S, Wang Y et al (2014) MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer 135:1019–1027PubMedCrossRefGoogle Scholar
  135. 135.
    Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK et al (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 19:1105–1115PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273PubMedCrossRefGoogle Scholar
  137. 137.
    Chao C-H, Chang C-C, Wu M-J, Ko H-W, Wang D, Hung M-C et al (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124:3093–3106PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    George JT, Jolly MK, Xu J, Somarelli J, Levine H (2017) Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res 77:6415–6428PubMedCrossRefGoogle Scholar
  140. 140.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H (2017) EMT and MET: necessary or permissive for metastasis? Mol Oncol 11:755–769PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tian X-J, Zhang H, Xing J (2013) Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J 105:1079–1089PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Celia-Terrassa T, Meca-Cortes O, Mateo F, Martinez de Paz A, Rubio N, Arnal-Estape A et al (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 122:1849–1868PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in Cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Ocaña Oscar H, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S et al (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724PubMedCrossRefGoogle Scholar
  146. 146.
    Schmidt Johanna M, Panzilius E, Bartsch Harald S, Irmler M, Beckers J, Kari V et al (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep 10:131–139PubMedCrossRefGoogle Scholar
  147. 147.
    Tsai Jeff H, Donaher Joana L, Murphy Danielle A, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–736PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Tran HD, Luitel K, Kim M, Zhang K, Longmore GD, Tran DD (2014) Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 74:6330PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Drasin DJ, Guarnieri AL, Neelakantan D, Kim J, Cabrera JH, Wang CA et al (2015) TWIST1-induced microRNA-424 reversibly drives mesenchymal programming while inhibiting tumor initiation. Cancer Res 75:1908–1921PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Nandy SB, Orozco A, Lopez-Valdez R, Roberts R, Subramani R, Arumugam A et al (2017) Glucose insult elicits hyperactivation of cancer stem cells through miR-424-cdc42-prdm14 signalling axis. Br J Cancer 117:1665–1675PubMedCrossRefGoogle Scholar
  151. 151.
    Tsuji T, Ibaragi S, G-f H (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–7139PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Varga J, Greten FR (2017) Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 19:1133–1141PubMedCrossRefGoogle Scholar
  153. 153.
    Harner-Foreman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, Pockley AG et al (2017) A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 7:40633PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18:55PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Guppy M, Greiner E, Brand K (1993) The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212:95–99PubMedCrossRefGoogle Scholar
  158. 158.
    Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L et al (2014) Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. elife 3:e03342PubMedCentralCrossRefPubMedGoogle Scholar
  159. 159.
    Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277PubMedCrossRefGoogle Scholar
  160. 160.
    Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186PubMedCrossRefGoogle Scholar
  161. 161.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG et al (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast Cancer. Cell Metab 22:577–589PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT et al (2017) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37:1062–1074PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Pavlova Natalya N, Thompson Craig B (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Weber GF (2016) Time and circumstances: cancer cell metabolism at various stages of disease progression. Front Oncol 6Google Scholar
  167. 167.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22:168–177PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Wu J, Ocampo A, Belmonte JCI (2016) Cellular metabolism and induced pluripotency. Cell 166:1371–1385PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Hawkins KE, Joy S, Delhove JM, Kotiadis VN, Fernandez E, Fitzpatrick LM et al (2016) NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Rep 14:1883–1891PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kida YS, Kawamura T, Wei Z, Sogo T, Jacinto S, Shigeno A et al (2015) ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell 16:547–555PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Sone M, Morone N, Nakamura T, Tanaka A, Okita K, Woltjen K et al (2017) Hybrid cellular metabolism coordinated by Zic3 and Esrrb synergistically enhances induction of naive pluripotency. Cell Metab 25:1103–17.e6PubMedCrossRefGoogle Scholar
  174. 174.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edn. Section 16.1, Glycolysis is an energy-conversion pathway in many organisms, W H Freeman, New York. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22593/
  175. 175.
    Stryer JMB, John LT, Lubert S (2002) The citric acid cycle. Biochemistry. W H Freeman, New YorkGoogle Scholar
  176. 176.
    Stryer JMB, John LT, Lubert S (2002) Oxidative phosphorylation. Biochemistry. W H Freeman, New YorkGoogle Scholar
  177. 177.
    Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    San-Millán I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis 38:119–133PubMedGoogle Scholar
  179. 179.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Yuan S, Lu Y, Yang J, Chen G, Kim S, Feng L et al (2015) Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism. Stem Cell Res Ther 6:198PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Paola M, Alvaro M-H, Miriam G-A, Maricruz A-R, Julio R-L, Paulina C-H (2017) Mitochondrial dynamics and cancer. Tumor Biol 39:1010428317698391Google Scholar
  182. 182.
    Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733PubMedCrossRefGoogle Scholar
  183. 183.
    Prieto J, Torres J (2017) Mitochondrial dynamics: in cell reprogramming as it is in cancer. Stem Cells Int 2017:11CrossRefGoogle Scholar
  184. 184.
    Zhang J, Zhang Y, Wu W, Wang F, Liu X, Shui G et al (2017) Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis 8:e3151PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW et al (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824PubMedCrossRefGoogle Scholar
  186. 186.
    Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W et al (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18:501PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S et al (2015) Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M et al (2015) MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 22:590–605PubMedCrossRefGoogle Scholar
  189. 189.
    Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM et al (2016) NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 23:206–219PubMedCrossRefGoogle Scholar
  190. 190.
    Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 108:16062–16067PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M et al (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5:e1336PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Feng W, Gentles A, Nair RV, Huang M, Lin Y, Lee CY et al (2014) Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells 32:1734–1745PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Lee K-M, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE et al (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26:633–47.e7PubMedCrossRefGoogle Scholar
  194. 194.
    Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE et al (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16:1373–1382PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL et al (2017) Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23(10):1234–1240PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Ye X-Q, Li Q, Wang G-H, Sun F-F, Huang G-J, Bian X-W et al (2011) Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 129:820–831PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Mahanty S, Prigent A, Garraud O (2015) Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol 16:31PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Codony-Servat J, Rosell R (2015) Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res 4:689–703PubMedPubMedCentralGoogle Scholar
  203. 203.
    Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37:724–737PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Abdullah LN, Chow EK-H (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2:3PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E et al (2017) Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol 18:52–62PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF et al (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73:1635–1646PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27:6120–6130PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Seliger B, Kiessling R (2013) The two sides of HER2/neu: immune escape versus surveillance. Trends Mol Med 19:677–684PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Bianchini G, Gianni L (2014) The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol 15:e58-e68CrossRefGoogle Scholar
  210. 210.
    Sd CT, Souazé F, Basseville A, Bernard A-C, Pécot J, Lopez J et al (2017) BCL-XL directly modulates RAS signalling to favour cancer cell stemness. Nat Commun 8:1123CrossRefGoogle Scholar
  211. 211.
    Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553PubMedCrossRefGoogle Scholar
  212. 212.
    Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP et al (2010) Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res 70:4655–4665PubMedCrossRefGoogle Scholar
  213. 213.
    Worthington John J, Kelly A, Smedley C, Bauché D, Campbell S, Marie Julien C et al (2015) Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42:903–915PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Scheel C, Eaton Elinor N, Li Sophia H-J, Chaffer Christine L, Reinhardt F, Kah K-J et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Fan Q-M, Jing Y-Y, Yu G-F, Kou X-R, Ye F, Gao L et al (2014) Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cancer Lett 352:160–168PubMedCrossRefGoogle Scholar
  216. 216.
    Cortés M, Sanchez-Moral L, de Barrios O, Fernández-Aceñero MJ, Martínez-Campanario MC, Esteve-Codina A et al (2017) Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. EMBO J 36:3336–3355PubMedCrossRefGoogle Scholar
  217. 217.
    Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 14:32–44PubMedCrossRefGoogle Scholar
  218. 218.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402PubMedCrossRefGoogle Scholar
  219. 219.
    Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT et al (2017) The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogene 6:e342CrossRefGoogle Scholar
  220. 220.
    Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A et al (2017) IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition. Cancer Res 77:3268–3279PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S et al (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47:570–584PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Xie T, Li L (2007) Stem cells and their niche: an inseparable relationship. Development 134:2001–2006PubMedCrossRefGoogle Scholar
  225. 225.
    Song W, Mazzieri R, Yang T, Gobe GC (2017) Translational significance for tumor metastasis of tumor-associated macrophages and epithelial-mesenchymal transition. Front Immunol 8:1106PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746CrossRefPubMedGoogle Scholar
  227. 227.
    Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H et al (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A 108:12425–12430PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Fatrai S, van Schelven SJ, Ubink I, Govaert KM, Raats D, Koster J et al (2015) Maintenance of clonogenic KIT(+) human colon tumor cells requires secretion of stem cell factor by differentiated tumor cells. Gastroenterology 149:692–704PubMedCrossRefGoogle Scholar
  229. 229.
    Levina V, Marrangoni A, Wang T, Parikh S, Su Y, Herberman R et al (2010) Elimination of human lung cancer stem cells through targeting of the stem cell factor–c-kit autocrine signaling loop. Cancer Res 70:338–346PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS et al (2017) Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun 8:15080PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–2573PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Shi Y, Du L, Lin L, Wang Y (2017) Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16:35–52PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2:840–855PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A et al (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140PubMedCrossRefGoogle Scholar
  237. 237.
    Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X et al (2015) Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep 10:1335–1348PubMedCrossRefGoogle Scholar
  238. 238.
    Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A et al (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210:2851–2872PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497PubMedPubMedCentralGoogle Scholar
  240. 240.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Treps L, Perret R, Edmond S, Ricard D, Gavard J (2017) Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles 6:1359479PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Zhang Z, Dong Z, Lauxen IS, Filho MSA, Nör JE (2014) Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 74:2869–2881PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME et al (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70:9969–9978PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Shiina M, Bourguignon LYW (2015) Selective activation of cancer stem cells by size-specific hyaluronan in head and neck cancer. Int J Cell Biol 2015:10CrossRefGoogle Scholar
  246. 246.
    Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S et al (2012) Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res 72:537–547PubMedCrossRefGoogle Scholar
  247. 247.
    Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7:1120–1134CrossRefGoogle Scholar
  249. 249.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors. Stem Cells Their Niche Cell 116:769–778PubMedGoogle Scholar
  250. 250.
    Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16:663–673PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H (2008) Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26:1818–1830PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z et al (2014) Hypoxia inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14:592–605PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R et al (2014) HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32:364–376PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R et al (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21:65–80PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Johansson E, Grassi ES, Pantazopoulou V, Tong B, Lindgren D, Berg TJ et al (2017) CD44 interacts with HIF-2α to modulate the hypoxic phenotype of perinecrotic and perivascular glioma cells. Cell Rep 20:1641–1653PubMedCrossRefGoogle Scholar
  258. 258.
    Qin J, Liu Y, Lu Y, Liu M, Li M, Li J et al (2017) Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep 7:10592PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E et al (2016) Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7:64527–64542PubMedPubMedCentralGoogle Scholar
  260. 260.
    Shiraishi A, Tachi K, Essid N, Tsuboi I, Nagano M, Kato T et al (2017) Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci 108:362–372PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K et al (2016) CD133 modulate HIF-1α expression under hypoxia in EMT phenotype pancreatic cancer stem-like cells. Int J Mol Sci 17:1025PubMedCentralCrossRefPubMedGoogle Scholar
  262. 262.
    Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL et al (2016) Dedifferentiation of glioma cells to glioma stem-like cells by therapeutic stress-induced HIF signaling in the recurrent GBM model. Mol Cancer Ther 15:3064–3076PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89PubMedCrossRefGoogle Scholar
  264. 264.
    Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544PubMedCrossRefGoogle Scholar
  265. 265.
    Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9:357–365PubMedCrossRefGoogle Scholar
  266. 266.
    Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33:2903–2912PubMedCrossRefGoogle Scholar
  267. 267.
    Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340PubMedCrossRefGoogle Scholar
  268. 268.
    Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69:9245–9253PubMedCrossRefGoogle Scholar
  269. 269.
    Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE et al (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20:233–46.e7PubMedCrossRefGoogle Scholar
  271. 271.
    Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AMK et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548PubMedCrossRefGoogle Scholar
  272. 272.
    Oshimori N, Oristian D, Fuchs E (2015) TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160:963–976PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP et al (2014) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R et al (2013) Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A et al (2012) Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14:1099PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2010) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Tetteh Paul W, Basak O, Farin Henner F, Wiebrands K, Kretzschmar K, Begthel H et al (2016) Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K et al (2017) A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545:355–359PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M et al (2015) Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12:445–464PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells [mdash] what challenges do they pose? Nat Rev Drug Discov 13:497–512PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Li Y, Atkinson K, Zhang T (2017) Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett 396:103–109PubMedCrossRefGoogle Scholar
  282. 282.
    Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y et al (2015) Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells 33:2085–2092PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Putzer BM, Solanki M, Herchenroder O (2017) Advances in cancer stem cell targeting: how to strike the evil at its root. Adv Drug Deliv RevPubMedCrossRefPubMedCentralGoogle Scholar
  284. 284.
    Colak S, Medema JP (2014) Cancer stem cells – important players in tumor therapy resistance. FEBS J 281:4779–4791PubMedCrossRefGoogle Scholar
  285. 285.
    de Goeij BE, Lambert JM (2016) New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 40:14–23PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Maccalli C, De Maria R (2015) Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunol Immunother 64:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA (2011) Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A 108:13253–13257PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Friend C, Scher W, Holland JG, Sato T (1971) Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A 68:378–382PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Breitman TR, Selonick SE, Collins SJ (1980) Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 77:2936–2940PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E et al (1999) A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Blood 94:1192–1200PubMedPubMedCentralGoogle Scholar
  292. 292.
    Abaza Y, Kantarjian HM, Garcia-Manero G, Estey E, Borthakur G, Jabbour E et al (2016) Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 129:1275–1283PubMedCrossRefGoogle Scholar
  293. 293.
    Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G et al (2014) Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med 6:99–119PubMedCrossRefGoogle Scholar
  294. 294.
    Luo M-L, Gong C, Chen C-H, Lee DY, Hu H, Huang P et al (2014) Prolyl isomerase Pin1 acts downstream of miR-200 to promote cancer stem-like cell traits in breast cancer. Cancer Res 74:3603–3616PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497PubMedGoogle Scholar
  296. 296.
    Uchida H, Maruyama T, Nagashima T, Asada H, Yoshimura Y (2005) Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin. Endocrinology 146:5365–5373PubMedCrossRefGoogle Scholar
  297. 297.
    Kim KH, Roberts CWM (2016) Targeting EZH2 in cancer. Nat Med 22:128PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Mangraviti A, Raghavan T, Volpin F, Skuli N, Gullotti D, Zhou J et al (2017) HIF-1α- targeting acriflavine provides long term survival and radiological tumor response in brain cancer therapy. Sci Rep 7:14978PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Cheloni G, Tanturli M, Tusa I, Ho DeSouza N, Shan Y, Gozzini A et al (2017) Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood 130:655–665PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Ng SWK, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N et al (2016) A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540:433PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y (2017) Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 7:13856PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    He K, Xu T, Goldkorn A (2011) Cancer cells cyclically lose and regain drug-resistant highly tumorigenic features characteristic of a cancer stem-like phenotype. Mol Cancer Ther 10:938–948PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Meredith Davis
    • 1
  • Katja Gassner
    • 1
    • 2
  • Ruth Rodriguez-Barrueco
    • 1
    • 2
    • 3
  • David Llobet-Navas
    • 1
    • 2
  1. 1.Institute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
  2. 2.Bellvitge Biomedical Research Institute (IDIBELL)Gran via de l’Hospitalet, 199L’Hospitalet de LlobregatSpain
  3. 3.Universitat de Barcelona, Facultat de Medicina i Ciències de la Salut. Departament d’Anatomia i Terapèutica Experimental. Bellvitge Biomedical Research Institute (IDIBELL), Gran via de l’Hospitalet, 199Universitat de Barcelona, Facultat de Medicina i Ciències de la SalutL’Hospitalet de LlobregatSpain

Personalised recommendations