Stem Cell Genetics for Biomedical Research pp 221-240 | Cite as
Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration
Abstract
Stem cells (SC) are unspecialized cells that can self-renew and generate specialized progeny through differentiation. These cells are found in almost all multicellular organisms and are capable of renewing themselves through cell division. Moreover, under certain stimuli, they can differentiate into tissue-specific cells. Therefore, stem cells serve as a reservoir and repair system capable of replacing differentiated cells lost either naturally through apoptosis or as a result of trauma or disease. Consequently, the potential of stem cells to renew and differentiate makes them attractive candidates for regenerative medicine. These basic stem cell properties differ among various sources of stem cells, and they can be classified based on their origin and/or differentiation potential. The capacity to differentiate into specialized cell types and be able to originate a mature cell type is referred to as potency. Stem cells can be classified depending on their differentiation potential. Totipotent stem cells can differentiate into embryonic and extraembryonic cell types; such cells can construct a complete, viable organism. Pluripotent stem cells produce all cells of an organism and have the capacity to form representative tissues of all three germ layers of the developing embryo: ectoderm, mesoderm and endoderm. Multipotent stem cells can self-renew and differentiate only in a closely related family of cells from the same germ layer tissues, while unipotent stem cells exhibit limited development potential, giving rise to only a single cell type. Stem cells can be also classified according to the type of cells. Embryonic Stem Cells (ESC) are cells derived from blastocyst, Adult Stem Cells (ASC) refer to any cell found in a developed organism that has the ability to divide and create another cell like itself or even to create a cell more differentiated than itself, and Induced Pluripotent Stem Cells (iPSC) are reprogrammed somatic cells with pluripotent capabilities. Several types of adult stem cells have been isolated from teeth, including Stem Cells from Human Exfoliated Deciduous Teeth (SHED), Periodontal Ligament Stem Cells (PDLSC), Dental Follicle Precursor Cells (DFPC), Stem Cells from Apical Papilla (SCAP) and Dental Pulp Stem Cells (DPSC). These post-natal populations have mesenquimal-like qualities such as the capacity for self-renewal and the potential to differentiate into multiple tissues including adipose, bone, endothelial and neural-like tissue. Dental Pulp Pluripotent-like Stem Cells (DPPSC) are also isolated from the dental pulp of the third molars, express pluripotency markers, and show embryonic-like behaviour differentiating into tissues of the three embryonic layers. Mesoderm-derived cell types are osteogenic cells, chondrogenic cells, adipogenic cells, skeletal muscle cells, smooth muscle cells, cardiac muscle cells and endothelial cells. To date, there exist two commonly used methods to induce vascular cell differentiation from human pluripotent stem cells: embryoid body (EB) formation and monolayer-directed differentiation. The two major cellular components of blood vessels are Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC). A better understanding of the cellular and molecular mechanisms that control VSMC differentiation is essential to help develop new approaches to both prevent and treat several related diseases. Another important mesoderm-derived tissue for regenerative medicine is skeletal muscle, which is responsible for the voluntary movement of the body. Many diseases that affect the musculature belong to the group of muscular dystrophies (MD). Development of reliable and reproducible in vitro cellular models to study these tissues is needed, yet it has been problematic due to intrinsic peculiarities of them.
Keywords
DPPSC Stem cells Dental pulp Tissue engineering Mesoderm tissueAbbreviations
- αSMA
Alpha smooth muscle actin
- γc
Common gamma chain/interleukin-2 receptor subunit gamma
- AP/ALP
Alkaline phosphatase
- ASC
Adult stem cells
- BM
Bone marrow
- BM-MSC
Bone marrow mesenchymal stromal cells
- BMP-4
Bone morphogenetic protein 4
- CD31/PECAM-1
Cluster of differentiation 31/platelet endothelial cell adhesion molecule 1
- DFPC
Dental follicle precursor cells
- DMD
Duchenne muscular dystrophy
- DMEM
Dulbecco’s Modified Eagle’s Medium
- DNMT3B
DNA methyltransferase 3 beta
- DPMSC
Dental pulp mesenchymal stem cells
- DPSC
Dental pulp stem cells
- DPPSC
Dental pulp pluripotent-like stem cells
- EC
Endothelial cells
- EGF
Epidermal growth factor
- EGM-2
Endothelial growth medium 2
- ESC
Embryonic stem cells
- FBS
Fetal bovine serum
- FGF
Fibroblast growth factor
- GAPDH
Glyceraldehyde 3-phosphate dehydrogenase
- GMP
Good manufacturing practices
- hESC
Human embryonic stem cells
- HLA-DR
Human leukocyte antigen-antigen D related
- HS
Human serum
- HUVEC
Human umbilical endothelial cells
- iPS/iPSC
Induced pluripotent stem (cells)
- KLF4
Kruppel-like factor 4
- LA-BSA
Linoleic acid-bovine serum albumin
- LMNA
Lamin A/C
- LEFTY2/EBAF
Left-right determination factor 2
- LIF
Leukemia inhibitory factor
- DGC
Dystrophin glycoprotein complex
- DYS
Dystrophin
- MAPC
Multipotent adult progenitor cells
- MD
Muscular dystrophy
- MyHC
Myosin heavy chain
- MIAMI
Marrow-isolated adult multilineage inducible
- MPC
Mesenchymal progenitor cells
- MSC
Mesenchymal stromal cells
- OCT4/POU5F1
Octamer-binding transcription factor 4
- PBS
Phosphate-buffered saline
- PCR
Polymerase chain reaction
- PDGF
Human platelet-derived growth factor
- PDLSC
Periodontal ligament stem cells
- Rag2
Recombination activating gene 2
- REX1
ZFP42 zinc finger protein
- RT-PCR
Retrotranscriptase PCR
- SC
Stem cells
- SCAP
Stem cells from apical papilla
- sCGH
Short-comparative genomic hybridization
- Scid
Severe combined immunodeficiency
- Sgcb
Beta-sarcoglycan
- SHED
Stem cells from human exfoliated deciduous teeth
- SMC
Smooth muscle cells
- SOX2
Sex-determining region Y-box2
- SSEA
Stage-specific embryonic antigen
- TDGF1
Teratocarcinoma-derived growth factor 1
- tGFP
Turbo green fluorescent protein
- TGF-β
Transforming growth factor beta
- TRA-1-60
Tumor rejection antigen-1-60
- TRA-1-81
Tumor rejection antigen-1-81
- VE-CAD
Vascular cadherin
- VEGFR2/FLK1/KDR
Endothelial growth factor receptor 2
- VSEL
Very small embryonic-like
- VSMC
Vascular smooth muscle cells
- vWF
von Willebrand factor endothelial vascular
References
- 1.Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100(1):143–155PubMedCrossRefGoogle Scholar
- 2.Bhattacharya N, Stubblefield PG (2012) Regenerative medicine: using non-fetal sources of stem cells. Springer Springer-Verlag LondonGoogle Scholar
- 3.Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82(3):252–264PubMedCrossRefGoogle Scholar
- 4.Medvedev SP, Shevchenko AI, Zakian SM (2010) Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Nat 2(2):18–28Google Scholar
- 5.Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345PubMedCrossRefGoogle Scholar
- 7.Baldwin T (2009) Morality and human embryo research. Introduction to the talking point on morality and human embryo research. EMBO Rep 10(4):299–300PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22(1):51–64PubMedCrossRefGoogle Scholar
- 9.Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 318(5858):1917–1920CrossRefGoogle Scholar
- 10.Watts C, McConkey H, Anderson L, Caldwell M (2005) Anatomical perspectives on adult neural stem cells. J Anat 207(3):197–208PubMedPubMedCentralCrossRefGoogle Scholar
- 11.Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835PubMedCrossRefGoogle Scholar
- 12.Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85(4):1373–1416PubMedCrossRefGoogle Scholar
- 13.Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL et al (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204(8):1973–1987PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al (2004) Defining the epithelial stem cell niche in skin. Science (New York, NY) 303(5656):359–363CrossRefGoogle Scholar
- 15.Lavker RM, Tseng SC, Sun TT (2004) Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res 78(3):433–446PubMedCrossRefGoogle Scholar
- 16.Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778PubMedCrossRefPubMedCentralGoogle Scholar
- 17.Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMedGoogle Scholar
- 18.Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295PubMedPubMedCentralCrossRefGoogle Scholar
- 19.In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345CrossRefGoogle Scholar
- 20.Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437PubMedCrossRefGoogle Scholar
- 21.Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812PubMedPubMedCentralCrossRefGoogle Scholar
- 23.Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155CrossRefPubMedGoogle Scholar
- 25.Vollner F, Driemel O, Reichert T, Morsczeck C (2007) Isolation and characterization of dental follicle precursor cells (DFPCs). J Stem Cells Regen Med 2(1):130PubMedGoogle Scholar
- 26.Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA (2015) A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab 33(4):371–382PubMedCrossRefGoogle Scholar
- 27.Sloan AJ, Waddington RJ (2009) Dental pulp stem cells: what, where, how? Int J Paediatr Dent / the British Paedodontic Society [and] the International Association of Dentistry for Children 19(1):61–70CrossRefGoogle Scholar
- 28.Atari M, Gil-Recio C, Fabregat M, Garcia-Fernandez D, Barajas M, Carrasco MA et al (2012) Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 125(Pt 14):3343–3356PubMedCrossRefGoogle Scholar
- 29.Atari M, Barajas M, Hernandez-Alfaro F, Gil C, Fabregat M, Ferres Padro E et al (2011) Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol 26(8):1057–1070PubMedGoogle Scholar
- 30.Atari M, Caballe-Serrano J, Gil-Recio C, Giner-Delgado C, Martinez-Sarra E, Garcia-Fernandez DA et al (2012) The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 50(4):930–941PubMedCrossRefGoogle Scholar
- 31.Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20(5):857–869PubMedCrossRefGoogle Scholar
- 32.Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz- Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
- 33.Petrini M, Pacini S, Trombi L, Fazzi R, Montali M, Ikehara S et al (2009) Identification and purification of mesodermal progenitor cells from human adult bone marrow. Stem Cells Dev 18(6):857–866PubMedCrossRefGoogle Scholar
- 34.D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow- isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14):2971–2981PubMedCrossRefGoogle Scholar
- 35.Benton G, George J, Kleinman HK, Arnaoutova IP (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221(1):18–25PubMedCrossRefGoogle Scholar
- 36.Maltman DJ, Przyborski SA (2010) Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem Soc Trans 38(4):1072–1075PubMedCrossRefGoogle Scholar
- 37.Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3(1):1–5PubMedCrossRefGoogle Scholar
- 38.Yannas IV (2007) Tissue and organ regeneration in adults. Springer Springer Science+Business Media, LLC, New YorkGoogle Scholar
- 39.Bajada S, Mazakova I, Ashton BA, Richardson JB, Ashammakhi N. (2008) Stem Cells in Regenerative Medicine. Topics in Tissue Engineering, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini 1–28Google Scholar
- 40.Greenwood HL, Thorsteinsdottir H, Perry G, Renihan J, Singer PA, Daar AS (2006) Regenerative medicine: new opportunities for developing countries. J Biotechnol 8(1–2):60–77Google Scholar
- 41.Muneoka K, Allan CH, Yang X, Lee J, Han M (2008) Mammalian regeneration and regenerative medicine. Birth Defects Res C Embryo Today 84(4):265–280PubMedCrossRefGoogle Scholar
- 42.Riazi AM, Kwon SY, Stanford WL (2009) Stem cell sources for regenerative medicine. Methods Mol Biol 482:55–90PubMedCrossRefGoogle Scholar
- 43.Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J et al (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17(3):509–518PubMedCrossRefGoogle Scholar
- 44.Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF et al (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17(8):994–1003PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Tortora G, Derrickson B (2009) Chapter 21: The cardiovascular system: blood vessels and hemodynamics. In: Principles of anatomy and physiology. Wiley USAGoogle Scholar
- 47.Luo Z, Wang G, Wang W, Xiao Q, Xu Q (2011) Signalling pathways that regulate endothelial differentiation from stem cells. Front Biosci (Landmark edition) 16:472–485CrossRefGoogle Scholar
- 48.Grotendorst GR, Seppa HE, Kleinman HK, Martin GR (1981) Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor. Proc Natl Acad Sci U S A 78(6):3669–3672PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Hirschi KK, Majesky MW (2004) Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol 276(1):22–33PubMedCrossRefGoogle Scholar
- 50.Luttun A, Ross JJ, Verfaillie C, Aranguren XL, Prosper F Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Curr Protoc Immunol / edited by John E Coligan [et al] 2006;Chapter 22:Unit 22F:9Google Scholar
- 51.Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Kane NM, Meloni M, Spencer HL, Craig MA, Strehl R, Milligan G et al (2010) Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 30(7):1389–1397PubMedCrossRefGoogle Scholar
- 53.Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C et al (2013) Angiogenic properties of human dental pulp stem cells. PLoS One 8(8):e71104PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans Royal Soc Lond [Biol] 243:221–240CrossRefGoogle Scholar
- 55.Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (Bethesda, Md: 1985) 91(2):534–551CrossRefGoogle Scholar
- 57.Yablonka-Reuveni Z, Day K (2011) Chapter 11: Skeletal muscle stem cells in the spotlight: the satellite cell. In: Regenerating the heart: stem cells and the cardiovascular system springer. Humana Press, pp 173–200 Springer Science+Business Media, LLCCrossRefGoogle Scholar
- 58.Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2013) Molecular cell biology. W. H. Freeman New YorkGoogle Scholar
- 59.Watanabe M, Shin'oka T, Tohyama S, Hibino N, Konuma T, Matsumura G et al (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7(4):429–439PubMedCrossRefGoogle Scholar
- 60.Meinhart JG, Deutsch M, Fischlein T, Howanietz N, Froschl A, Zilla P (2001) Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg 71(5 Suppl):S327–S331PubMedCrossRefGoogle Scholar
- 61.Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26(4):307–320PubMedCrossRefGoogle Scholar
- 62.James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M et al (2010) Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol 28(2):161–166PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99(7):4391–4396PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell- derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105(2):617–626PubMedCrossRefGoogle Scholar
- 65.Li Z, Suzuki Y, Huang M, Cao F, Xie X, Connolly AJ et al (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26(4):864–873PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Wang H, Charles PC, Wu Y, Ren R, Pi X, Moser M et al (2006) Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ Res 98(10):1331–1339PubMedCrossRefGoogle Scholar
- 67.Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H et al (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25(3):317–318PubMedCrossRefGoogle Scholar
- 68.Sumi T, Tsuneyoshi N, Nakatsuji N (2008) Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/nodal and BMP signaling. Development (Cambridge, England) 135(17):2969–2979CrossRefGoogle Scholar
- 69.Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62(1):65–74PubMedCrossRefGoogle Scholar
- 70.Orlova VV, Drabsch Y, Freund C, Petrus-Reurer S, van den Hil FE, Muenthaisong S et al (2014) Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 34(1):177–186PubMedCrossRefGoogle Scholar
- 71.Colazzo F, Chester AH, Taylor PM, Yacoub MH (2010) Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 19(6):736–744PubMedGoogle Scholar
- 72.Konno M, Hamazaki TS, Fukuda S, Tokuhara M, Uchiyama H, Okazawa H et al (2010) Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture. Biochem Biophys Res Commun 400(4):461–465PubMedCrossRefGoogle Scholar
- 73.Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211PubMedCrossRefGoogle Scholar
- 74.Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384PubMedCrossRefGoogle Scholar
- 75.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY) 284(5411):143–147CrossRefGoogle Scholar
- 76.Fischer LJ, McIlhenny S, Tulenko T, Golesorkhi N, Zhang P, Larson R et al (2009) Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg Res 152(1):157–166PubMedCrossRefGoogle Scholar
- 77.Culmes M, Eckstein HH, Burgkart R, Nussler AK, Guenther M, Wagner E et al (2013) Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur J Cell Biol 92(2):70–79PubMedCrossRefGoogle Scholar
- 78.Heeschen C, Chang E, Aicher A, Cooke JP (2006) Endothelial progenitor cells participate in nicotine-mediated angiogenesis. J Am Coll Cardiol 48(12):2553–2560PubMedCrossRefGoogle Scholar
- 79.Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC (2007) Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost 98(6):1335–1342PubMedCrossRefGoogle Scholar
- 80.Li Z, Han Z, Wu JC (2009) Transplantation of human embryonic stem cell-derived endothelial cells for vascular diseases. J Cell Biochem 106(2):194–199PubMedPubMedCentralCrossRefGoogle Scholar
- 81.Yang C, Zhang ZH, Li ZJ, Yang RC, Qian GQ, Han ZC (2004) Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation. Thromb Haemost 91(6):1202–1212PubMedGoogle Scholar
- 82.Li Z, Wilson KD, Smith B, Kraft DL, Jia F, Huang M et al (2009) Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS One 4(12):e8443PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786PubMedCrossRefGoogle Scholar
- 84.Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801PubMedCrossRefGoogle Scholar
- 85.Shi N, Chen SY (2015) From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res 29(4):261–263PubMedPubMedCentralGoogle Scholar
- 86.Xie C, Ritchie RP, Huang H, Zhang J, Chen YE (2011) Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler Thromb Vasc Biol 31(7):1485–1494PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Mahoney WM, Schwartz SM (2005) Defining smooth muscle cells and smooth muscle injury. J Clin Invest 115(2):221–224PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Yoshida T, Owens G (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96(3):280–291PubMedCrossRefGoogle Scholar
- 89.Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM et al (1997) Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 20(4):469–478PubMedCrossRefGoogle Scholar
- 90.Skuk D, Goulet M, Tremblay JP (2006) Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 15(7):659–663PubMedCrossRefGoogle Scholar
- 91.Fan Y, Maley M, Beilharz M, Grounds M (1996) Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19(7):853–860PubMedCrossRefGoogle Scholar
- 92.Guerette B, Skuk D, Celestin F, Huard C, Tardif F, Asselin I et al (1997) Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol (Baltimore, Md: 1950) 159(5):2522–2531Google Scholar
- 93.Bongso A, Lee E (2005) Stem cells: from bench to bedside. Stem cells: their definition, classification and sources. SingapurCrossRefGoogle Scholar
- 94.Meirelles Lda S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci (Landmark edition). 14:4281–4298CrossRefGoogle Scholar
- 95.Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716PubMedCrossRefGoogle Scholar
- 96.Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24(1):59–64PubMedCrossRefGoogle Scholar
- 97.Meng J, Adkin CF, Arechavala-Gomeza V, Boldrin L, Muntoni F, Morgan JE (2010) The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscular disorders : NMD 20(1):6–15PubMedCrossRefGoogle Scholar
- 98.Lin H, Otsu M, Nakauchi H (2013) Stem cell therapy: an exercise in patience and prudence. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013; 368(1609):20110334. doi:10.1098/rstb.2011.0334.CrossRefGoogle Scholar
- 99.Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY et al (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20(8):1297–1308PubMedCrossRefPubMedCentralGoogle Scholar
- 100.Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L et al (2015) Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 6:156PubMedPubMedCentralCrossRefGoogle Scholar