Advertisement

Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration

  • E. Martínez-Sarrà
  • S. Montori
  • C. Gil-Recio
  • R. Núñez-Toldrà
  • N. Carrio Bertran
  • A. Al Madhoun
  • M. Sampaolesi
  • M. Atari
Chapter

Abstract

Stem cells (SC) are unspecialized cells that can self-renew and generate specialized progeny through differentiation. These cells are found in almost all multicellular organisms and are capable of renewing themselves through cell division. Moreover, under certain stimuli, they can differentiate into tissue-specific cells. Therefore, stem cells serve as a reservoir and repair system capable of replacing differentiated cells lost either naturally through apoptosis or as a result of trauma or disease. Consequently, the potential of stem cells to renew and differentiate makes them attractive candidates for regenerative medicine. These basic stem cell properties differ among various sources of stem cells, and they can be classified based on their origin and/or differentiation potential. The capacity to differentiate into specialized cell types and be able to originate a mature cell type is referred to as potency. Stem cells can be classified depending on their differentiation potential. Totipotent stem cells can differentiate into embryonic and extraembryonic cell types; such cells can construct a complete, viable organism. Pluripotent stem cells produce all cells of an organism and have the capacity to form representative tissues of all three germ layers of the developing embryo: ectoderm, mesoderm and endoderm. Multipotent stem cells can self-renew and differentiate only in a closely related family of cells from the same germ layer tissues, while unipotent stem cells exhibit limited development potential, giving rise to only a single cell type. Stem cells can be also classified according to the type of cells. Embryonic Stem Cells (ESC) are cells derived from blastocyst, Adult Stem Cells (ASC) refer to any cell found in a developed organism that has the ability to divide and create another cell like itself or even to create a cell more differentiated than itself, and Induced Pluripotent Stem Cells (iPSC) are reprogrammed somatic cells with pluripotent capabilities. Several types of adult stem cells have been isolated from teeth, including Stem Cells from Human Exfoliated Deciduous Teeth (SHED), Periodontal Ligament Stem Cells (PDLSC), Dental Follicle Precursor Cells (DFPC), Stem Cells from Apical Papilla (SCAP) and Dental Pulp Stem Cells (DPSC). These post-natal populations have mesenquimal-like qualities such as the capacity for self-renewal and the potential to differentiate into multiple tissues including adipose, bone, endothelial and neural-like tissue. Dental Pulp Pluripotent-like Stem Cells (DPPSC) are also isolated from the dental pulp of the third molars, express pluripotency markers, and show embryonic-like behaviour differentiating into tissues of the three embryonic layers. Mesoderm-derived cell types are osteogenic cells, chondrogenic cells, adipogenic cells, skeletal muscle cells, smooth muscle cells, cardiac muscle cells and endothelial cells. To date, there exist two commonly used methods to induce vascular cell differentiation from human pluripotent stem cells: embryoid body (EB) formation and monolayer-directed differentiation. The two major cellular components of blood vessels are Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC). A better understanding of the cellular and molecular mechanisms that control VSMC differentiation is essential to help develop new approaches to both prevent and treat several related diseases. Another important mesoderm-derived tissue for regenerative medicine is skeletal muscle, which is responsible for the voluntary movement of the body. Many diseases that affect the musculature belong to the group of muscular dystrophies (MD). Development of reliable and reproducible in vitro cellular models to study these tissues is needed, yet it has been problematic due to intrinsic peculiarities of them.

Keywords

DPPSC Stem cells Dental pulp Tissue engineering Mesoderm tissue 

Abbreviations

αSMA

Alpha smooth muscle actin

γc

Common gamma chain/interleukin-2 receptor subunit gamma

AP/ALP

Alkaline phosphatase

ASC

Adult stem cells

BM

Bone marrow

BM-MSC

Bone marrow mesenchymal stromal cells

BMP-4

Bone morphogenetic protein 4

CD31/PECAM-1

Cluster of differentiation 31/platelet endothelial cell adhesion molecule 1

DFPC

Dental follicle precursor cells

DMD

Duchenne muscular dystrophy

DMEM

Dulbecco’s Modified Eagle’s Medium

DNMT3B

DNA methyltransferase 3 beta

DPMSC

Dental pulp mesenchymal stem cells

DPSC

Dental pulp stem cells

DPPSC

Dental pulp pluripotent-like stem cells

EC

Endothelial cells

EGF

Epidermal growth factor

EGM-2

Endothelial growth medium 2

ESC

Embryonic stem cells

FBS

Fetal bovine serum

FGF

Fibroblast growth factor

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

GMP

Good manufacturing practices

hESC

Human embryonic stem cells

HLA-DR

Human leukocyte antigen-antigen D related

HS

Human serum

HUVEC

Human umbilical endothelial cells

iPS/iPSC

Induced pluripotent stem (cells)

KLF4

Kruppel-like factor 4

LA-BSA

Linoleic acid-bovine serum albumin

LMNA

Lamin A/C

LEFTY2/EBAF

Left-right determination factor 2

LIF

Leukemia inhibitory factor

DGC

Dystrophin glycoprotein complex

DYS

Dystrophin

MAPC

Multipotent adult progenitor cells

MD

Muscular dystrophy

MyHC

Myosin heavy chain

MIAMI

Marrow-isolated adult multilineage inducible

MPC

Mesenchymal progenitor cells

MSC

Mesenchymal stromal cells

OCT4/POU5F1

Octamer-binding transcription factor 4

PBS

Phosphate-buffered saline

PCR

Polymerase chain reaction

PDGF

Human platelet-derived growth factor

PDLSC

Periodontal ligament stem cells

Rag2

Recombination activating gene 2

REX1

ZFP42 zinc finger protein

RT-PCR

Retrotranscriptase PCR

SC

Stem cells

SCAP

Stem cells from apical papilla

sCGH

Short-comparative genomic hybridization

Scid

Severe combined immunodeficiency

Sgcb

Beta-sarcoglycan

SHED

Stem cells from human exfoliated deciduous teeth

SMC

Smooth muscle cells

SOX2

Sex-determining region Y-box2

SSEA

Stage-specific embryonic antigen

TDGF1

Teratocarcinoma-derived growth factor 1

tGFP

Turbo green fluorescent protein

TGF-β

Transforming growth factor beta

TRA-1-60

Tumor rejection antigen-1-60

TRA-1-81

Tumor rejection antigen-1-81

VE-CAD

Vascular cadherin

VEGFR2/FLK1/KDR

Endothelial growth factor receptor 2

VSEL

Very small embryonic-like

VSMC

Vascular smooth muscle cells

vWF

von Willebrand factor endothelial vascular

References

  1. 1.
    Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100(1):143–155PubMedCrossRefGoogle Scholar
  2. 2.
    Bhattacharya N, Stubblefield PG (2012) Regenerative medicine: using non-fetal sources of stem cells. Springer Springer-Verlag LondonGoogle Scholar
  3. 3.
    Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82(3):252–264PubMedCrossRefGoogle Scholar
  4. 4.
    Medvedev SP, Shevchenko AI, Zakian SM (2010) Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Nat 2(2):18–28Google Scholar
  5. 5.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345PubMedCrossRefGoogle Scholar
  7. 7.
    Baldwin T (2009) Morality and human embryo research. Introduction to the talking point on morality and human embryo research. EMBO Rep 10(4):299–300PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22(1):51–64PubMedCrossRefGoogle Scholar
  9. 9.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 318(5858):1917–1920CrossRefGoogle Scholar
  10. 10.
    Watts C, McConkey H, Anderson L, Caldwell M (2005) Anatomical perspectives on adult neural stem cells. J Anat 207(3):197–208PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835PubMedCrossRefGoogle Scholar
  12. 12.
    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85(4):1373–1416PubMedCrossRefGoogle Scholar
  13. 13.
    Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL et al (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204(8):1973–1987PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al (2004) Defining the epithelial stem cell niche in skin. Science (New York, NY) 303(5656):359–363CrossRefGoogle Scholar
  15. 15.
    Lavker RM, Tseng SC, Sun TT (2004) Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res 78(3):433–446PubMedCrossRefGoogle Scholar
  16. 16.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMedGoogle Scholar
  18. 18.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345CrossRefGoogle Scholar
  20. 20.
    Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437PubMedCrossRefGoogle Scholar
  21. 21.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155CrossRefPubMedGoogle Scholar
  25. 25.
    Vollner F, Driemel O, Reichert T, Morsczeck C (2007) Isolation and characterization of dental follicle precursor cells (DFPCs). J Stem Cells Regen Med 2(1):130PubMedGoogle Scholar
  26. 26.
    Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA (2015) A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab 33(4):371–382PubMedCrossRefGoogle Scholar
  27. 27.
    Sloan AJ, Waddington RJ (2009) Dental pulp stem cells: what, where, how? Int J Paediatr Dent / the British Paedodontic Society [and] the International Association of Dentistry for Children 19(1):61–70CrossRefGoogle Scholar
  28. 28.
    Atari M, Gil-Recio C, Fabregat M, Garcia-Fernandez D, Barajas M, Carrasco MA et al (2012) Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 125(Pt 14):3343–3356PubMedCrossRefGoogle Scholar
  29. 29.
    Atari M, Barajas M, Hernandez-Alfaro F, Gil C, Fabregat M, Ferres Padro E et al (2011) Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol 26(8):1057–1070PubMedGoogle Scholar
  30. 30.
    Atari M, Caballe-Serrano J, Gil-Recio C, Giner-Delgado C, Martinez-Sarra E, Garcia-Fernandez DA et al (2012) The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 50(4):930–941PubMedCrossRefGoogle Scholar
  31. 31.
    Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20(5):857–869PubMedCrossRefGoogle Scholar
  32. 32.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz- Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
  33. 33.
    Petrini M, Pacini S, Trombi L, Fazzi R, Montali M, Ikehara S et al (2009) Identification and purification of mesodermal progenitor cells from human adult bone marrow. Stem Cells Dev 18(6):857–866PubMedCrossRefGoogle Scholar
  34. 34.
    D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow- isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14):2971–2981PubMedCrossRefGoogle Scholar
  35. 35.
    Benton G, George J, Kleinman HK, Arnaoutova IP (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221(1):18–25PubMedCrossRefGoogle Scholar
  36. 36.
    Maltman DJ, Przyborski SA (2010) Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem Soc Trans 38(4):1072–1075PubMedCrossRefGoogle Scholar
  37. 37.
    Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3(1):1–5PubMedCrossRefGoogle Scholar
  38. 38.
    Yannas IV (2007) Tissue and organ regeneration in adults. Springer Springer Science+Business Media, LLC, New YorkGoogle Scholar
  39. 39.
    Bajada S, Mazakova I, Ashton BA, Richardson JB, Ashammakhi N. (2008) Stem Cells in Regenerative Medicine. Topics in Tissue Engineering, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini 1–28Google Scholar
  40. 40.
    Greenwood HL, Thorsteinsdottir H, Perry G, Renihan J, Singer PA, Daar AS (2006) Regenerative medicine: new opportunities for developing countries. J Biotechnol 8(1–2):60–77Google Scholar
  41. 41.
    Muneoka K, Allan CH, Yang X, Lee J, Han M (2008) Mammalian regeneration and regenerative medicine. Birth Defects Res C Embryo Today 84(4):265–280PubMedCrossRefGoogle Scholar
  42. 42.
    Riazi AM, Kwon SY, Stanford WL (2009) Stem cell sources for regenerative medicine. Methods Mol Biol 482:55–90PubMedCrossRefGoogle Scholar
  43. 43.
    Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J et al (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17(3):509–518PubMedCrossRefGoogle Scholar
  44. 44.
    Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF et al (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17(8):994–1003PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tortora G, Derrickson B (2009) Chapter 21: The cardiovascular system: blood vessels and hemodynamics. In: Principles of anatomy and physiology. Wiley USAGoogle Scholar
  47. 47.
    Luo Z, Wang G, Wang W, Xiao Q, Xu Q (2011) Signalling pathways that regulate endothelial differentiation from stem cells. Front Biosci (Landmark edition) 16:472–485CrossRefGoogle Scholar
  48. 48.
    Grotendorst GR, Seppa HE, Kleinman HK, Martin GR (1981) Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor. Proc Natl Acad Sci U S A 78(6):3669–3672PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hirschi KK, Majesky MW (2004) Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol 276(1):22–33PubMedCrossRefGoogle Scholar
  50. 50.
    Luttun A, Ross JJ, Verfaillie C, Aranguren XL, Prosper F Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Curr Protoc Immunol / edited by John E Coligan [et al] 2006;Chapter 22:Unit 22F:9Google Scholar
  51. 51.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kane NM, Meloni M, Spencer HL, Craig MA, Strehl R, Milligan G et al (2010) Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 30(7):1389–1397PubMedCrossRefGoogle Scholar
  53. 53.
    Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C et al (2013) Angiogenic properties of human dental pulp stem cells. PLoS One 8(8):e71104PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans Royal Soc Lond [Biol] 243:221–240CrossRefGoogle Scholar
  55. 55.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (Bethesda, Md: 1985) 91(2):534–551CrossRefGoogle Scholar
  57. 57.
    Yablonka-Reuveni Z, Day K (2011) Chapter 11: Skeletal muscle stem cells in the spotlight: the satellite cell. In: Regenerating the heart: stem cells and the cardiovascular system springer. Humana Press, pp 173–200 Springer Science+Business Media, LLCCrossRefGoogle Scholar
  58. 58.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2013) Molecular cell biology. W. H. Freeman New YorkGoogle Scholar
  59. 59.
    Watanabe M, Shin'oka T, Tohyama S, Hibino N, Konuma T, Matsumura G et al (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7(4):429–439PubMedCrossRefGoogle Scholar
  60. 60.
    Meinhart JG, Deutsch M, Fischlein T, Howanietz N, Froschl A, Zilla P (2001) Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg 71(5 Suppl):S327–S331PubMedCrossRefGoogle Scholar
  61. 61.
    Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26(4):307–320PubMedCrossRefGoogle Scholar
  62. 62.
    James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M et al (2010) Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol 28(2):161–166PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99(7):4391–4396PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell- derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105(2):617–626PubMedCrossRefGoogle Scholar
  65. 65.
    Li Z, Suzuki Y, Huang M, Cao F, Xie X, Connolly AJ et al (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26(4):864–873PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wang H, Charles PC, Wu Y, Ren R, Pi X, Moser M et al (2006) Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ Res 98(10):1331–1339PubMedCrossRefGoogle Scholar
  67. 67.
    Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H et al (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25(3):317–318PubMedCrossRefGoogle Scholar
  68. 68.
    Sumi T, Tsuneyoshi N, Nakatsuji N (2008) Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/nodal and BMP signaling. Development (Cambridge, England) 135(17):2969–2979CrossRefGoogle Scholar
  69. 69.
    Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62(1):65–74PubMedCrossRefGoogle Scholar
  70. 70.
    Orlova VV, Drabsch Y, Freund C, Petrus-Reurer S, van den Hil FE, Muenthaisong S et al (2014) Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 34(1):177–186PubMedCrossRefGoogle Scholar
  71. 71.
    Colazzo F, Chester AH, Taylor PM, Yacoub MH (2010) Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 19(6):736–744PubMedGoogle Scholar
  72. 72.
    Konno M, Hamazaki TS, Fukuda S, Tokuhara M, Uchiyama H, Okazawa H et al (2010) Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture. Biochem Biophys Res Commun 400(4):461–465PubMedCrossRefGoogle Scholar
  73. 73.
    Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211PubMedCrossRefGoogle Scholar
  74. 74.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384PubMedCrossRefGoogle Scholar
  75. 75.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY) 284(5411):143–147CrossRefGoogle Scholar
  76. 76.
    Fischer LJ, McIlhenny S, Tulenko T, Golesorkhi N, Zhang P, Larson R et al (2009) Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg Res 152(1):157–166PubMedCrossRefGoogle Scholar
  77. 77.
    Culmes M, Eckstein HH, Burgkart R, Nussler AK, Guenther M, Wagner E et al (2013) Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur J Cell Biol 92(2):70–79PubMedCrossRefGoogle Scholar
  78. 78.
    Heeschen C, Chang E, Aicher A, Cooke JP (2006) Endothelial progenitor cells participate in nicotine-mediated angiogenesis. J Am Coll Cardiol 48(12):2553–2560PubMedCrossRefGoogle Scholar
  79. 79.
    Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC (2007) Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost 98(6):1335–1342PubMedCrossRefGoogle Scholar
  80. 80.
    Li Z, Han Z, Wu JC (2009) Transplantation of human embryonic stem cell-derived endothelial cells for vascular diseases. J Cell Biochem 106(2):194–199PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yang C, Zhang ZH, Li ZJ, Yang RC, Qian GQ, Han ZC (2004) Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation. Thromb Haemost 91(6):1202–1212PubMedGoogle Scholar
  82. 82.
    Li Z, Wilson KD, Smith B, Kraft DL, Jia F, Huang M et al (2009) Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS One 4(12):e8443PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786PubMedCrossRefGoogle Scholar
  84. 84.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801PubMedCrossRefGoogle Scholar
  85. 85.
    Shi N, Chen SY (2015) From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res 29(4):261–263PubMedPubMedCentralGoogle Scholar
  86. 86.
    Xie C, Ritchie RP, Huang H, Zhang J, Chen YE (2011) Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler Thromb Vasc Biol 31(7):1485–1494PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mahoney WM, Schwartz SM (2005) Defining smooth muscle cells and smooth muscle injury. J Clin Invest 115(2):221–224PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yoshida T, Owens G (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96(3):280–291PubMedCrossRefGoogle Scholar
  89. 89.
    Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM et al (1997) Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 20(4):469–478PubMedCrossRefGoogle Scholar
  90. 90.
    Skuk D, Goulet M, Tremblay JP (2006) Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 15(7):659–663PubMedCrossRefGoogle Scholar
  91. 91.
    Fan Y, Maley M, Beilharz M, Grounds M (1996) Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19(7):853–860PubMedCrossRefGoogle Scholar
  92. 92.
    Guerette B, Skuk D, Celestin F, Huard C, Tardif F, Asselin I et al (1997) Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol (Baltimore, Md: 1950) 159(5):2522–2531Google Scholar
  93. 93.
    Bongso A, Lee E (2005) Stem cells: from bench to bedside. Stem cells: their definition, classification and sources. SingapurCrossRefGoogle Scholar
  94. 94.
    Meirelles Lda S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci (Landmark edition). 14:4281–4298CrossRefGoogle Scholar
  95. 95.
    Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716PubMedCrossRefGoogle Scholar
  96. 96.
    Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24(1):59–64PubMedCrossRefGoogle Scholar
  97. 97.
    Meng J, Adkin CF, Arechavala-Gomeza V, Boldrin L, Muntoni F, Morgan JE (2010) The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscular disorders : NMD 20(1):6–15PubMedCrossRefGoogle Scholar
  98. 98.
    Lin H, Otsu M, Nakauchi H (2013) Stem cell therapy: an exercise in patience and prudence. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013; 368(1609):20110334. doi:10.1098/rstb.2011.0334.CrossRefGoogle Scholar
  99. 99.
    Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY et al (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20(8):1297–1308PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L et al (2015) Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 6:156PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • E. Martínez-Sarrà
    • 1
    • 2
  • S. Montori
    • 1
  • C. Gil-Recio
    • 1
  • R. Núñez-Toldrà
    • 1
  • N. Carrio Bertran
    • 1
  • A. Al Madhoun
    • 3
  • M. Sampaolesi
    • 2
    • 4
  • M. Atari
    • 1
  1. 1.Regenerative Medicine Research Institute, Universitat Internacional de CatalunyaBarcelonaSpain
  2. 2.Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and RegenerationLeuvenBelgium
  3. 3.Research Division, Dasman Diabetes InstituteDasmanKuwait
  4. 4.Human Anatomy Unit, Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly

Personalised recommendations