Bioinformatics and Translation Termination in Bacteria

  • Xuhua Xia


The codon-anticodon adaptation theory is applicable to the coevolution between stop codons and their decoders (release factors). In most prokaryotes, UAA and UAG are decoded by release factor 1 (RF1) and UAA and UGA by release factor 2 (RF2). Stop codon usage is strongly affected by both mutation bias and differential abundance of RF1 and RF2, and to a less extent by the abundance of tRNAs that may misread stop codons, e.g., misreading of UGA by tRNATrp that decodes UGG. An explanation is offered for the nearly universal rarity of UAG usage in bacterial species. Empirical evidence is also presented to demonstrate the strong effect of flanking nucleotides on stop codon signal strength.


  1. Abolbaghaei A, Silke JR, Xia X (2017) How changes in anti-SD sequences would affect SD sequences in Escherichia coli and Bacillus subtilis. G3 (Bethesda, Md) 7(5):1607–1615CrossRefGoogle Scholar
  2. Adamski FM, McCaughan KK, Jorgensen F, Kurland CG, Tate WP (1994) The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J Mol Biol 238(3):302–308PubMedCrossRefPubMedCentralGoogle Scholar
  3. Beier H, Grimm M (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29(23):4767–4782PubMedPubMedCentralCrossRefGoogle Scholar
  4. Benzer S, Champe SP (1962) A change from nonsense to sense in the genetic code. Proc Natl Acad Sci USA 48:1114–1121PubMedCrossRefPubMedCentralGoogle Scholar
  5. Betney R, de Silva E, Krishnan J, Stansfield I (2010) Autoregulatory systems controlling translation factor expression: thermostat-like control of translational accuracy. RNA 16(4):655–663PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beznoskova P, Gunisova S, Valasek LS (2016) Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22(3):456–466PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bjornsson A, Isaksson LA (1996) Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res 24(9):1753–1757PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42(15):10061–10072PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bossi L (1983) Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol 164(1):73–87PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bossi L, Ruth JR (1980) The influence of codon context on genetic code translation. Nature 286(5769):123–127PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brown CM, Stockwell PA, Trotman CN, Tate WP (1990) Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18(21):6339–6345PubMedPubMedCentralCrossRefGoogle Scholar
  12. Calderone TL, Stevens RD, Oas TG (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262(4):407–412PubMedCrossRefPubMedCentralGoogle Scholar
  13. Capecchi MR (1967) Polypeptide chain termination in vitro: isolation of a release factor. Proc Natl Acad Sci USA 58(3):1144–1151PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carlini DB (2005) Context-dependent codon bias and messenger RNA longevity in the yeast transcriptome. Mol Biol Evol 22(6):1403–1411PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cesar Sanchez J, Padron G, Santana H, Herrera L (1998) Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translational stop signal. J Biotechnol 63(3):179–186PubMedCrossRefPubMedCentralGoogle Scholar
  16. Craigen WJ, Caskey CT (1986) Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322(6076):273–275PubMedCrossRefPubMedCentralGoogle Scholar
  17. Craigen WJ, Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69(10):1031–1041PubMedCrossRefPubMedCentralGoogle Scholar
  18. Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82(11):3616–3620PubMedCrossRefPubMedCentralGoogle Scholar
  19. Craigen WJ, Lee CC, Caskey CT (1990) Recent advances in peptide chain termination. Mol Microbiol 4(6):861–865PubMedCrossRefPubMedCentralGoogle Scholar
  20. Curran JF, Yarus M (1988) Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol 203(1):75–83PubMedCrossRefPubMedCentralGoogle Scholar
  21. Davies J, Jones DS, Khorana HG (1966) A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol 18(1):48–57PubMedCrossRefPubMedCentralGoogle Scholar
  22. Donly BC, Edgar CD, Adamski FM, Tate WP (1990) Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement. Nucleic Acids Res 18(22):6517–6522PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ehrenberg M, Tenson T (2002) A new beginning of the end of translation. Nat Struct Biol 9(2):85–87PubMedCrossRefPubMedCentralGoogle Scholar
  24. Engelberg-Kulka H (1981) UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9(4):983–991PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157(7):1605–1618PubMedPubMedCentralCrossRefGoogle Scholar
  26. Eyre-Walker A (1996) The close proximity of Escherichia coli genes: consequences for stop codon and synonymous codon use. J Mol Evol 42(2):73–78PubMedCrossRefPubMedCentralGoogle Scholar
  27. Eyre-Walker A, Bulmer M (1993) Reduced synonymous substitution rate at the start of enterobacterial genes. Nucleic Acids Res 21:4599–4603PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM, Tatkov SI, Kisselev LL (1999) Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5(8):1014–1020PubMedPubMedCentralCrossRefGoogle Scholar
  29. Geller AI, Rich A (1980) A UGA termination suppression tRNATrp active in rabbit reticulocytes. Nature 283(5742):41–46PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gonzalez B, Ceciliani F, Galizzi A (2003) Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli. J Biotechnol 101(2):173–180PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gouy M (1987) Codon contexts in enterobacterial and coliphage genes. Mol Biol Evol 4(4):426–444PubMedPubMedCentralGoogle Scholar
  32. Haas J, Park E-C, Seed B (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6(3):315–324PubMedCrossRefPubMedCentralGoogle Scholar
  33. Higashi K, Kashiwagi K, Taniguchi S, Terui Y, Yamamoto K, Ishihama A, Igarashi K (2006) Enhancement of +1 frameshift by polyamines during translation of polypeptide release factor 2 in Escherichia coli. J Biol Chem 281(14):9527–9537PubMedCrossRefGoogle Scholar
  34. Hirsh D, Gold L (1971) Translation of the UGA triplet in vitro by tryptophan transfer RNA’s. J Mol Biol 58(2):459–468PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC (1958) A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231(1):241–257PubMedPubMedCentralGoogle Scholar
  36. Hughes D (1987) Mutant forms of tufA and tufB independently suppress nonsense mutations. J Mol Biol 197(4):611–615PubMedCrossRefGoogle Scholar
  37. Igarashi K, Kashiwagi K (2006) Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 139(1):11–16PubMedCrossRefGoogle Scholar
  38. Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119–142PubMedCrossRefGoogle Scholar
  39. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213PubMedCrossRefGoogle Scholar
  40. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the Genome. Cell 165(1):22–33PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ito K, Uno M, Nakamura Y (2000) A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403(6770):680–684PubMedCrossRefPubMedCentralGoogle Scholar
  43. Jacob F (1982) The possible and the actual. University of Washington Press, Seattle, p 70Google Scholar
  44. Jacob F (1988) The statue within: an autobiography. Basic Books, Inc., New YorkGoogle Scholar
  45. Jia W, Higgs PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25(2):339–351PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jorgensen F, Adamski FM, Tate WP, Kurland CG (1993) Release factor-dependent false stops are infrequent in Escherichia coli. J Mol Biol 230(1):41–50PubMedCrossRefPubMedCentralGoogle Scholar
  47. Keeling PJ, Doolittle WF (1996) A non-canonical genetic code in an early diverging eukaryotic lineage. EMBO J 15(9):2285–2290PubMedPubMedCentralCrossRefGoogle Scholar
  48. Korkmaz G, Holm M, Wiens T, Sanyal S (2014) Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J Biol Chem 289(44):30334–30342PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kurland CG (1987) Strategies for efficiency and accuracy in gene expression. Trends Biochem Sci 12:126CrossRefGoogle Scholar
  50. Lin JP, Aker M, Sitney KC, Mortimer RK (1986) First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA. Gene 49(3):383–388PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ma B, Nussinov R (2004) Release factors eRF1 and RF2: a universal mechanism controls the large conformational changes. J Biol Chem 279(51):53875–53885PubMedCrossRefPubMedCentralGoogle Scholar
  52. McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF (2003) Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 27(2):365–374PubMedCrossRefGoogle Scholar
  53. McPherson DT (1988) Codon preference reflects mistranslational constraints: a proposal. Nucleic Acids Res 16(9):4111–4120PubMedPubMedCentralCrossRefGoogle Scholar
  54. Meng SY, Hui JO, Haniu M, Tsai LB (1995) Analysis of translational termination of recombinant human methionyl-neurotrophin 3 in Escherichia coli. Biochem Biophys Res Commun 211(1):40–48PubMedCrossRefPubMedCentralGoogle Scholar
  55. Miller JH, Albertini AM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164(1):59–71PubMedCrossRefPubMedCentralGoogle Scholar
  56. Milman G, Goldstein J, Scolnick E, Caskey T (1969) Peptide chain termination. 3. Stimulation of in vitro termination. Proc Natl Acad Sci U S A 63(1):183–190PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mora L, Heurgue-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH (2003) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 47(1):267–275PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mora L, Heurgue-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH (2007) Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo. J Biol Chem 282(49):35638–35645PubMedCrossRefPubMedCentralGoogle Scholar
  59. Mottagui-Tabar S, Isaksson LA (1997) Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes. FEBS Lett 414(1):165–170PubMedCrossRefPubMedCentralGoogle Scholar
  60. Nakamura Y, Ito K, Matsumura K, Kawazu Y, Ebihara K (1995) Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol 73(11–12):1113–1122PubMedCrossRefGoogle Scholar
  61. Nakamura Y, Ito K, Isaksson LA (1996) Emerging understanding of translation termination. Cell 87(2):147–150PubMedCrossRefPubMedCentralGoogle Scholar
  62. Ngumbela KC, Ryan KP, Sivamurthy R, Brockman MA, Gandhi RT, Bhardwaj N, Kavanagh DG (2008) Quantitative effect of suboptimal codon usage on translational efficiency of mRNA encoding HIV-1 gag in intact T cells. PLoS One 3(6):e2356PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270(5241):1464–1472PubMedCrossRefPubMedCentralGoogle Scholar
  64. Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53(3):273–298PubMedPubMedCentralGoogle Scholar
  65. Petrullo LA, Gallagher PJ, Elseviers D (1983) The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol Gen Genet 190(2):289–294PubMedCrossRefPubMedCentralGoogle Scholar
  66. Petry S, Brodersen DE, FVt M, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123(7):1255–1266PubMedCrossRefPubMedCentralGoogle Scholar
  67. Poole ES, Brown CM, Tate WP (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14(1):151–158PubMedPubMedCentralCrossRefGoogle Scholar
  68. Poole ES, Major LL, Mannering SA, Tate WP (1998) Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res 26(4):954–960PubMedPubMedCentralCrossRefGoogle Scholar
  69. Povolotskaya IS, Kondrashov FA, Ledda A, Vlasov PK (2012) Stop codons in bacteria are not selectively equivalent. Biol Direct 7:30PubMedPubMedCentralCrossRefGoogle Scholar
  70. Prabhakaran R, Chithambaram S, Xia X (2015) Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles. J Gen Virol 96(Pt 5):1169–1179PubMedPubMedCentralGoogle Scholar
  71. Prival MJ (1996) Isolation of glutamate-inserting ochre suppressor mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol 178(10):2989–2990PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pure GA, Robinson GW, Naumovski L, Friedberg EC (1985) Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J Mol Biol 183(1):31–42PubMedCrossRefGoogle Scholar
  73. Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G (1984) Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res 12(17):6663–6671PubMedPubMedCentralCrossRefGoogle Scholar
  74. Roth JR (1970) UGA nonsense mutations in Salmonella typhimurium. J Bacteriol 102(2):467–475PubMedPubMedCentralGoogle Scholar
  75. Ryden SM, Isaksson LA (1984) A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol Gen Genet 193(1):38–45PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sambrook JF, Fan DP, Brenner S (1967) A strong suppressor specific for UGA. Nature 214(5087):452–453PubMedCrossRefPubMedCentralGoogle Scholar
  77. Scolnick EM, Caskey CT (1969) Peptide chain termination. V. The role of release factors in mRNA terminator codon recognition. Proc Natl Acad Sci U S A 64(4):1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  78. Scolnick E, Tompkins R, Caskey T, Nirenberg M (1968) Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A 61(2):768–774PubMedPubMedCentralCrossRefGoogle Scholar
  79. Seetharam R, Heeren RA, Wong EY, Braford SR, Klein BK, Aykent S, Kotts CE, Mathis KJ, Bishop BF, Jennings MJ et al (1988) Mistranslation in IGF-1 during over-expression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem Biophys Res Commun 155(1):518–523PubMedCrossRefGoogle Scholar
  80. Sharp PM, Bulmer M (1988) Selective differences among translation termination codons. Gene 63(1):141–145PubMedCrossRefGoogle Scholar
  81. Shine J, Dalgarno L (1974a) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A 71(4):1342–1346PubMedPubMedCentralCrossRefGoogle Scholar
  82. Shpaer EG (1986) Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 188(4):555–564PubMedCrossRefGoogle Scholar
  83. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377PubMedCrossRefPubMedCentralGoogle Scholar
  84. Strigini P, Brickman E (1973) Analysis of specific misreading in Escherichia coli. J Mol Biol 75(4):659–672PubMedCrossRefGoogle Scholar
  85. Sund J, Ander M, Aqvist J (2010) Principles of stop-codon reading on the ribosome. Nature 465(7300):947–950PubMedCrossRefGoogle Scholar
  86. Tate WP, Brown CM (1992) Translational termination: “stop” for protein synthesis or “pause” for regulation of gene expression. Biochemistry (Mosc) 31(9):2443–2450CrossRefGoogle Scholar
  87. Tate WP, Mannering SA (1996) Three, four or more: the translational stop signal at length. Mol Microbiol 21(2):213–219PubMedCrossRefGoogle Scholar
  88. Tate WP, Mansell JB, Mannering SA, Irvine JH, Major LL, Wilson DN (1999) UGA: a dual signal for ‘stop’ and for recoding in protein synthesis. Biochemistry (Mosc) 64(12):1342–1353Google Scholar
  89. Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell 8(6):1375–1382PubMedCrossRefPubMedCentralGoogle Scholar
  90. Vestergaard B, Sanyal S, Roessle M, Mora L, Buckingham RH, Kastrup JS, Gajhede M, Svergun DI, Ehrenberg M (2005) The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structure. Mol Cell 20(6):929–938PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von Mering C (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics 11(8):492–500PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wei Y, Xia X (2017) The role of +4U as an extended translation termination signal in bacteria. Genetics 205(2):539–549PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wei Y, Wang J, Xia X (2016) Coevolution between stop codon usage and release factors in bacterial species. Mol Biol Evol 33(9):2357–2367PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wei Y, Silke JR, Xia X (2017) Elucidating the 16S rRNA 3′ boundaries and defining optimal SD/aSD pairing in Escherichia coli and Bacillus subtilis using RNA-Seq data. Sci Rep.
  95. Weiner AM, Weber K (1973) A single UGA codon functions as a natural termination signal in the coliphage q beta coat protein cistron. J Mol Biol 80(4):837–855PubMedCrossRefPubMedCentralGoogle Scholar
  96. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7(5):1503–1507PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wenthzel AM, Stancek M, Isaksson LA (1998) Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett 421(3):237–242PubMedCrossRefPubMedCentralGoogle Scholar
  98. Winston F, Botstein D, Miller JH (1979) Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol 137(1):433–439PubMedPubMedCentralGoogle Scholar
  99. Xia X (1998a) How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149(1):37–44PubMedPubMedCentralGoogle Scholar
  100. Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345(1):13–20PubMedCrossRefGoogle Scholar
  101. Xia X (2007a) The +4G site in Kozak consensus is not related to the efficiency of translation initiation. PLoS One 2:e188PubMedPubMedCentralCrossRefGoogle Scholar
  102. Xia X (2008) The cost of wobble translation in fungal mitochondrial genomes: integration of two traditional hypotheses. BMC Evol Biol 8:211PubMedPubMedCentralCrossRefGoogle Scholar
  103. Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728PubMedPubMedCentralCrossRefGoogle Scholar
  104. Xia X (2015) A major controversy in codon-anticodon adaptation resolved by a new codon usage index. Genetics 199:573–579CrossRefPubMedPubMedCentralGoogle Scholar
  105. Xia X (2017d) Self-organizing map for characterizing heterogeneous nucleotide and amino acid sequence motifs. Computation 5(4):43CrossRefGoogle Scholar
  106. Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S (1985) Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A 82(6):1618–1622PubMedPubMedCentralCrossRefGoogle Scholar
  107. You J, Cohen RE, Pickart CM (1999) Construct for high-level expression and low misincorporation of lysine for arginine during expression of pET-encoded eukaryotic proteins in Escherichia coli. BioTechniques 27(5):950–954PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang S, Ryden-Aulin M, Isaksson LA (1996) Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome. J Mol Biol 261(2):98–107PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zhou J, Korostelev A, Lancaster L, Noller HF (2012) Crystal structures of 70S ribosomes bound to release factors RF1, RF2 and RF3. Curr Opin Struct Biol 22(6):733–742PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Xuhua Xia
    • 1
  1. 1.University of Ottawa CAREG and Biology DepartmentOttawaCanada

Personalised recommendations