Advertisement

Implications and Utility of DNA Barcoding

  • J. Suriya
  • M. Krishnan
  • S. Bharathiraja
  • V. Sekar
  • V Sachithanandam
Chapter

Abstract

Classical way of practicing taxonomy is in endangered race in the era of genomics. In recent years taxonomy became fashionable that is owing to the revolutionary approaches in taxonomy called DNA barcoding. It is a novel approach that has generated optimism in enhancing biodiversity assessments. In DNA barcoding, complete data can be retrieved from a single specimen regardless of life stage or morphological characters. The core idea behind the DNA barcoding is the fact of minor variation in highly conserved region of DNA during the evolution within the species. Sequences have successfully been utilized for DNA barcoding which include cytoplasmic mitochondrial DNA (cox1), chloroplast DNA (trnL-F, matK, ndhF, atpB and rbcL) and nuclear DNA (ITS and housekeeping genes). Now it has been used for diverse applications such as biodiversity assessment, life history and ecological studies, forensic analysis and many more. In this chapter, we discuss the significance and utility of DNA barcoding in various fields.

Keywords

DNA barcoding Molecular taxonomy Biodiversity Mitochondrial genes Gene sequencing 

Notes

Acknowledgements

The authors are grateful to the University Grants Commission (UGC), New Delhi—Dr. D.S. Kothari Post-Doctoral Fellowship—for their financial support.

References

  1. Ahmad I, Fatma Z, Yazdani SS (2013) DNA barcode and lipid analysis of new marine algae potential for biofuel. Algal Res 2:10–15CrossRefGoogle Scholar
  2. Ajmal Ali M, Gyulai G, Hidvégi N, Kerti B, Al Hemaid FM, Pandey AK, Lee J (2014) The changing epitome of species identification – DNA barcoding. Saudi J Biol Sci 21:204–231PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alfonsi E, Meheust E, Fuchs S (2013) The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research, vol 365. ZooKeys, pp 5–24Google Scholar
  4. An J, Lee M-Y, Min M-S, Lee M-H, Lee H (2007) A molecular genetic approach for species identification of mammals and sex determination of birds in a forensic case of poaching from South Korea. Forensic Sci Int 167:59–61PubMedCrossRefGoogle Scholar
  5. Ardura A, Planes S, Garcia-Vazquez E (2013) Applications of DNA barcoding to fish landings: authentication and diversity assessment. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research, vol 365. ZooKeys, pp 49–65Google Scholar
  6. Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1813–1823CrossRefGoogle Scholar
  7. Ashfaq M, Hebert PDN, Mirza JH, Khan AM, Zafar Y, Mirza S (2014) Analyzing mosquito (Diptera: Culicidae) diversity in Pakistan by DNA barcoding. PLoS One 9:e97268PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aylagas E, Borja A, Rodríguez-Ezpeleta N (2014) Environmental status assessment using DNA metabarcoding: towards a genetics based marine biotic index (gAMBI). PLoS One 9(3):e90529PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baker CS, Steel D, Choi Y, Lee H, Kim KS, Choi SK et al (2010) Genetic evidence of illegal trade in protected whales links Japan with the US and South Korea. Biol Lett 6(5):647–650.  https://doi.org/10.1098/rsbl.2010.0239CrossRefPubMedPubMedCentralGoogle Scholar
  10. Balajee SA, Houbraken J, Verweij PE, Hong SB, Yaghuchi T, Varga J, Samson RA (2007) Aspergillus species identification in the clinical setting. Stud Mycol 59:39–46PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baldo L, Hotopp JCD, Jolley KA et al (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ball SL, Armstrong KF (2006) DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Can J For Res 36:337–350CrossRefGoogle Scholar
  13. Barbanera F, Guerrini M, Beccani C, Forcina G, Anayiotos P, Panayides P (2012) Case report. Conservation of endemic and threatened wildlife: molecular forensic DNA against poaching of the Cypriot mouflon (Ovis orientalis ophion, Bovidae). Forensic Sci Int Genet 6:671–675PubMedCrossRefGoogle Scholar
  14. Barbuto M, Galimberti A, Ferri E, Labra M, Malandra R, Galli P et al (2010) DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian case of “palombo” (Mustelus spp.). Food Res Int 43:376–381CrossRefGoogle Scholar
  15. Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491CrossRefGoogle Scholar
  16. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87(1):99–108PubMedCrossRefGoogle Scholar
  17. Besansky NJ, Severson DW, Ferdig MT (2003) DNA barcoding of parasites and invertebrate disease vectors: what you don’t know can hurt you. Trends Parasitol 19:545–546PubMedCrossRefGoogle Scholar
  18. Bhattacharjee MJ, Ghosh SK (2014) Design of mini-barcode for catfishes for assessment of archival biodiversity. Mol Ecol Resour 14:469–477PubMedCrossRefGoogle Scholar
  19. Bhattacharyya P, Kumaria S, Tandon P (2015) Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid. Phytochemistry 117:306–316PubMedCrossRefGoogle Scholar
  20. Blaxter M, Elsworth B, Daub J (2004) DNA taxonomy of a neglected animal phylum: an unexpected diversity of tardigrades. Proc R Soc B 271:189–192CrossRefGoogle Scholar
  21. Bourke BP, Oliveira TP, Suesdek L, Bergo ES, Sallum MA (2013) A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae). Parasit Vectors 6:111PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carreon-Martinez L, Johnson TB, Ludsin SA, Heath DD (2011) Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J Fish Biol 78:1170–1182PubMedCrossRefGoogle Scholar
  23. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR (2014) The Aspergillus genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–D710PubMedCrossRefGoogle Scholar
  24. Chakraborty M, Ghosh SK (2014) An assessment of the DNA barcodes of Indian freshwater fishes. Gene 537:20–28PubMedCrossRefGoogle Scholar
  25. Chandramohan A, Divya SR, Dhanarajan MS (2013) Matk gene based molecular characterization of medicinal plant—Croton bonplandianum Baill. Int J Biosci Res 2:1–7Google Scholar
  26. Chang C-H, James S (2011) A critique of earthworm molecular phylogenetics. Pedobiologia 54S:S3–S9CrossRefGoogle Scholar
  27. Chen J, Li Q, Kong L (2011) How DNA barcodes complement taxonomy and explore species diversity: the case study of a poorly understood marine fauna. PLoS One 6(6):e21326PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chin TC, Bakar AA, Abidin DHZ, Nor SAM (2016) Detection of mislabelled seafood products in Malaysia by DNA barcoding: improving transparency in food market. Food Control 64:247–256CrossRefGoogle Scholar
  29. Clarkston BE, Saunders GW (2010) A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. Botany 88:119–131CrossRefGoogle Scholar
  30. Cohen NJ, Deeds JR, Wong ES, Hanner RH, Yancy HF, White KD et al (2009) Public health response to puffer fish (Tetrodotoxin) poisoning from mislabeled product. J Food Prot 72:810–817PubMedCrossRefGoogle Scholar
  31. Corse E, Costedoat C, Chappaz R, Pech N, Martin J, Gilles A (2010) A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Resour 10:96–108PubMedCrossRefGoogle Scholar
  32. Costa FO, de Waard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295CrossRefGoogle Scholar
  33. Dalton DL, Kotze A (2011) DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Sci Int 207:e51–e54PubMedCrossRefPubMedCentralGoogle Scholar
  34. Daru BH, Yessoufou K, Mankga LT, Davies TJ (2013) A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS One 8(6):e66686PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Pasquale PP, Galimberti A (2014) New records of the Alcathoe bat, Myotis alcathoe (Vespertilionidae) for Italy. Barbastella 7:1Google Scholar
  36. Decaëns T, Porco D, Rougerie R, Brown GG, James SW (2013) Potential of DNA barcoding for earthworm research in taxonomy and ecology. Appl Soil Ecol 65:35–42CrossRefGoogle Scholar
  37. Dentinger BTM, Didukh MY, Moncalvo J-M (2011) Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 6:e25081PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dhananjeyan KJ, Paramasivan R, Tewari SC, Rajendran R, Thenmozhi V, Jerald V, Leo S et al (2010) Molecular identification of mosquito vectors using genomic DNA isolated from eggshells, larval and pupal exuvium. Trop Biomed 27:47–53PubMedGoogle Scholar
  39. Dubey B, Meganathan PR, Haque I (2011) DNA mini-barcoding: an approach for forensic identification of some endangered Indian snake species. Forensic Sci Int Genet 5:181–184PubMedCrossRefGoogle Scholar
  40. Dudgeon D, Arthigton AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182PubMedCrossRefGoogle Scholar
  41. Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804PubMedCrossRefGoogle Scholar
  42. Eaton MJ, Meyers GL, Kolokotronis S-O, Leslie MS, Martin AP, Amato G (2010) Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conserv Genet 11:1389–1404CrossRefGoogle Scholar
  43. Enan MR, Ahamed A (2014) DNA barcoding based on plastid matK and RNA polymerase for assessing the genetic identity of date (Phoenix dactylifera L.) cultivars. Genet Mol Res 13:3527–3536PubMedCrossRefGoogle Scholar
  44. Ermakov OA, Simonov E, Surin VL, Titov SV, Brandler OV, Ivanova NV, Borisenko AV (2015) Implications of hybridization, NUMTs, and overlooked diversity for DNA barcoding of Eurasian ground squirrels. PLoS One 10(1):e0117201PubMedPubMedCentralCrossRefGoogle Scholar
  45. Eva B, Harmony P, Thomas G, Francois G, Alice V, Claude M, Tonya D (2016) Trails of river monsters: detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA. Glob Ecol Conserv 7:148–156CrossRefGoogle Scholar
  46. Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158:349–364PubMedCrossRefGoogle Scholar
  47. Filonzi L, Chiesa S, Vaghi M, Marzano FN (2010) Molecular barcoding reveals mislabeling of commercial fish products in Italy. Food Res Int 43:1383–1388CrossRefGoogle Scholar
  48. Finn DS, Zamora-Muñoz C, Múrria C, Sáinz-Bariáin M, Alba-Tercedor J (2014) Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose significant genetic diversity as alpine glaciers disappear. Freshw Sci 33(1):207–216CrossRefGoogle Scholar
  49. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850PubMedCrossRefGoogle Scholar
  50. Francis CM, Borisenk AV, Ivanova NV, Eger JL, Lim BK, Guillen-Servent A, Kruskop SV, Mackie I, Hebert PDN (2010) The role of DNA barcode in understanding and conservation of mammal diversity in southeast Asia. PLoS One 5(9):e12575PubMedPubMedCentralCrossRefGoogle Scholar
  51. Galan M, Pagès M, Cosson JF (2012) Next-generation sequencing for rodent barcoding: species identification from fresh, degraded and environmental samples. PLoS One 7(11):e48374PubMedPubMedCentralCrossRefGoogle Scholar
  52. Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, Martellos S, Labra M (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50:55–63CrossRefGoogle Scholar
  53. Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gilmore SR, Gräfenhan T, Louis-Seize G, Seifert KA (2009) Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium. Mol Ecol Resour 9(Suppl S1):90–98PubMedCrossRefGoogle Scholar
  55. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175CrossRefGoogle Scholar
  56. Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14:3247–3266PubMedCrossRefGoogle Scholar
  57. Gupta SK, Verma SK, Singh L (2005) Molecular insight into a wildlife crime: the case of a peafowl slaughter. Forensic Sci Int 154:214–217PubMedCrossRefGoogle Scholar
  58. Gupta SK, Bhagavatula J, Thangaraj K, Singh L (2011) Case report. Establishing the identity of the massacred tigress in a case of wildlife crime. Forensic Sci Int Genet 5:74–75PubMedCrossRefGoogle Scholar
  59. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971PubMedCrossRefGoogle Scholar
  60. Hanner R, Becker S, Ivanova NV, Steinke D (2011) FISH-BOL and seafood identification: geographically dispersed case studies reveal systemic market substitution across Canada. Mitochondrial DNA 22(S1):106–122PubMedCrossRefGoogle Scholar
  61. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859PubMedCrossRefGoogle Scholar
  62. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA Barcodes. Proc Biol Sci 270(1512):313–321PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663CrossRefGoogle Scholar
  64. Hebert PDN, de Waard JR, Landry J-F (2010) DNA barcodes for 1/1,000 of the animal kingdom. Biol Lett 6:359–362PubMedCrossRefGoogle Scholar
  65. Hebert PDN, Ratnasingham S, Zakharov EV, Telfer AC, Levesque-Beaudin V, Milton MA, Pedersen S, Jannetta P, de Waard JR (2016) Counting animal species with DNA barcodes: Canadian insects. Philos Trans R Soc B 371:20150333CrossRefGoogle Scholar
  66. Hendrich L, Moriniere J, Haszprunar G, Hebert PDN, Hausmann A, Kohler F, Balke M (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour 15:795–818PubMedCrossRefGoogle Scholar
  67. Hogg ID, Hebert PDN (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can J Zool 82:749–754CrossRefGoogle Scholar
  68. Holmes BH, Steinke D, Ward RD (2009) Identification of shark and ray fins using DNA barcoding. Fish Res 95:280–288CrossRefGoogle Scholar
  69. Hou DY, Song JY, Shi LC, Ma XC, Xin TY, Han JP (2013) Stability and accuracy assessment of identification of traditional Chinese materia medica using DNA barcoding: a case study on Flos Lonicerae japonica. Biomed Res Int 2013:549037PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hubert N, Hanner RH, Holm E, Mandrak NE, Taylor EB, Burridge M et al (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3:e2490PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774PubMedPubMedCentralGoogle Scholar
  72. Hurwood DA, Dammannagoda S, Krosch MN, Jung H, Salin KR, Youssef MA-BH, de Bruyn M, Mather PB (2014) Impacts of climatic factors on evolution of molecular diversity and the natural distribution of wild stocks of the giant freshwater prawn (Macrobrachium rosenbergii). Freshw Sci 33(1):217–231CrossRefGoogle Scholar
  73. Jo H, Gim J-A, Jeong K-S, Kim H-S, Joo G-J (2014) Application of DNA barcoding for identification of freshwater carnivorous fish diets: is number of prey items dependent on size class for Micropterus salmoides? Ecol Evol 4(2):219–229PubMedCrossRefGoogle Scholar
  74. Johnsen A, Rindal E, Ericson PGP et al (2010) DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J Ornithol 151:565–578CrossRefGoogle Scholar
  75. Jose D, Nidhin B, Anil Kumar KP, Pradeep PJ, Harikrishnan M (2016) A molecular approach towards the taxonomy of fresh water prawns Macrobrachium striatum and M. equidens (Decapoda, Palaemonidae) using mitochondrial markers. Mitochondrial DNA 27(4):2585–2593PubMedGoogle Scholar
  76. Kermarrec L, Franc A, Rimet F, Chaumeil P, Frigerio J-M, Humbert J-F, Bouchez A (2014) A next-generation sequencing approach to river biomonitoring using benthic diatoms. Freshw Sci 33(1):349–363CrossRefGoogle Scholar
  77. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kerr KCR, Lijtmaer DA, Barreira AS et al (2009) Probing evolutionary patterns in Neotropical birds through DNA barcodes. PLoS One 4:e4379PubMedPubMedCentralCrossRefGoogle Scholar
  79. Keskin E, Atar HH (2013) DNA barcoding commercially important fish species of Turkey. Mol Ecol Resour 13(5):788–797PubMedCrossRefGoogle Scholar
  80. Kim MS, Yang MY, Cho GY (2010) Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta) Cryptogamie. Algologie 31(4):387–401Google Scholar
  81. Kondo T, Gullan PJ, Williams DJ (2008) Coccidolog. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Revista Corpoica – Ciencia Y Tecnologia Agropecuaria 9:55–61CrossRefGoogle Scholar
  82. Kruger A, Obermayr U, Czajka C, Bueno-Mari R, Jost A, Rose A (2014) COI sequencing for invasive mosquito surveillance in Germany reveals genetically divergent specimens near Aedes geniculatus (Diptera: Culicidae). J Eur Mosq Control Assoc 32:22–26Google Scholar
  83. Kumar NP, Rajavel AR, Natarajan R, Jambulingam P (2007) DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entomol 44:1–7PubMedCrossRefGoogle Scholar
  84. Kumar NP, Krishnamoorthy N, Sahu SS, Rajavel AR, Sabesan S, Jambulingam P (2013) DNA barcodes indicate members of the Anopheles fluviatilis (Diptera: Culicidae) species complex to be conspecific in India. Mol Ecol Resour 13:354–361CrossRefGoogle Scholar
  85. Lakra WS, Singh M, Goswami M, Gopalakrishnan A, Lal KK, Mohindra V, Sarkar UK, Punia PP, Singh KV, Bhatt JP, Ayyappan S (2016) DNA barcoding Indian freshwater fishes. Mitochondrial DNA 27(6):4510–4517PubMedCrossRefGoogle Scholar
  86. Lambert DM, Baker A, Huynen L, Haddrath O, Hebert PDN, Millar CD (2005) Is a large-scale DNA-based inventory of ancient life possible? J Hered 96:279–284PubMedCrossRefGoogle Scholar
  87. Laramie MB, Pilliod DS, Goldberg CS (2015) Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol Conserv 183:29–37CrossRefGoogle Scholar
  88. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307:80–86PubMedPubMedCentralCrossRefGoogle Scholar
  89. Layton KKS, Martel AL, Hebert PDN (2014) Patterns of DNA barcode variation in Canadian marine Molluscs. PLoS One 9(4):e95003PubMedPubMedCentralCrossRefGoogle Scholar
  90. Les DH, Moody ML, Jacobs SWL, Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27:468–484Google Scholar
  91. Li J, Han H, Gao Q, Jin Q, Chi M, Wu C, Zhang A (2012) Species identification of Noctuidae (Insecta: Lepidoptera) with DNA barcoding of support vector machine and neighbor-joining method. J Biosafety 21:308–314Google Scholar
  92. Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, Meier R, Yeo DCJ (2016) Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R Soc Open Sci 3:160635PubMedPubMedCentralCrossRefGoogle Scholar
  93. Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE (2012) The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. PLoS One 7(11):e49755PubMedPubMedCentralCrossRefGoogle Scholar
  94. Little DP (2014) Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome 57:513–516PubMedCrossRefGoogle Scholar
  95. Lohman DJ, Ingram KK, Prawiradilaga DM et al (2010) Cryptic genetic diversity in “widespread” Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. Biol Conserv 143:1885–1890CrossRefGoogle Scholar
  96. Lorenz JG, Jackson WE, Beck JC, Hanner R (2005) The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philos Trans R Soc B 360:1869–1877CrossRefGoogle Scholar
  97. Lowenstein JH, Amato G, Kolokotronis S-O (2009) The real maccoyii: identifying tuna sushi with DNA barcodes – contrasting characteristic attributes and genetic distances. PLoS One 4(11):e7866PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lu L, Chesters D, Zhang W, Li G, Ma Y, Ma H, Song X, Wu H, Meng F, Zhu C, Liu Q (2012) Small mammal investigation in spotted fever focus with DNA-barcoding and taxonomic implications on rodents species from Hainan of China. PLoS One 7(8):e43479PubMedPubMedCentralCrossRefGoogle Scholar
  99. Luo AR, Zhang AB, Ho SYW, Xu WJ, Zhang YZ, Shi WF et al (2011) Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics 12:84PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maas AE, Blanco-Bercial L, Lawson GL (2013) Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding. PLoS One 8(1):e53889PubMedPubMedCentralCrossRefGoogle Scholar
  101. Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M (2012) DNA barcoding for identification of “Candidatus phytoplasmas” using a fragment of the elongation factor Tu gene. PLoS One 7(12):e52092PubMedPubMedCentralCrossRefGoogle Scholar
  102. Marie-Stephane T, Mireille O, Serge K (2012) An integrative morphological and moleculardiagnostics for Typhlodromus pyri (Acari: Phytoseiidae). Zool Scr 41:68–78CrossRefGoogle Scholar
  103. Marín JC, Saucedo CE, Corti P, González BA (2009) Application of DNA forensic techniques for identifying poached guanacos (Lama guanicoe) in Chilean Patagonia. J Forensic Sci 54(5):1073–1076PubMedCrossRefGoogle Scholar
  104. Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc B 360:1917–1924CrossRefGoogle Scholar
  105. Molnar JL, Gamboa RL, Revenga C (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492CrossRefGoogle Scholar
  106. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mouquet N, Devictor V, Meynard CN et al (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87(4):769–785PubMedCrossRefGoogle Scholar
  108. Naddaf SR, Oshaghi MA, Vatandoost H (2012) Confirmation of two sibling species among Anopheles fluviatilis mosquitoes in South and Southeastern Iran by analysis of cytochrome oxidase I gene. J Arthropod-Borne Dis 6:144–150PubMedPubMedCentralGoogle Scholar
  109. Nagoshi RN, Meagher RL, Brambila J (2011) Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J Insect Sci 11:154PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nagy ZT, Sonet G, Glaw F (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS One 7(3):e34506PubMedPubMedCentralCrossRefGoogle Scholar
  111. Naro-Maciel E, Reid B, Fitzsimmons NN, Le M, Desalle R, Amato G (2010) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Mol Ecol Resour 10:252–263PubMedCrossRefGoogle Scholar
  112. Natalie JWW (2013) Determining the microbial diversity in chaparral soils before and after wildfires through DNA barcoding. Project Number-S1119, California State Science Fair, Project SummaryGoogle Scholar
  113. Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499CrossRefGoogle Scholar
  114. Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S (2013) DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 11:222PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, Mitchell TG, Vainstein MH, Meyer W (2009) Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One 4:e5862PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nieukerken EJV, Doorenweerd C, Stokvis FR, Dick SJ, Groenenberg DSJ (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemias. str. (Lepidoptera: Nepticulidae) with COI and EF1-a: two are better than one in recognizing cryptic species. Contrib Zool 81:1–24Google Scholar
  117. Nwani CD, Becker S, Braid HE, Ude EF, Okogwu OI, Hanner R (2011) DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 22(Suppl 1):43–51PubMedCrossRefGoogle Scholar
  118. Panprommin D, Panprommin N (2017) Assessment of the DNA barcoding for identification of Trigonostigma somphongsi, a critically endangered species in Thailand. Biochem Syst Ecol 70:200–204CrossRefGoogle Scholar
  119. Parvathy VA, Swetha VP, Sheeja TE, Leela NK, Chempakam B, Sasikumar B (2014) DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol 28:25–40CrossRefGoogle Scholar
  120. Parvathy VA, Swetha VP, Sheeja TE, Sasikumar B (2015) Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharm Biol 53:1774–1779PubMedCrossRefGoogle Scholar
  121. Patel S, Waugh J, Millar CD, Lambert DM (2010) Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Mol Ecol Resour 10:431–438PubMedCrossRefGoogle Scholar
  122. Pauls SU, Blahnik RJ, Zhou X, Wardwell CT, Holzenthal RW (2010) DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (trichoptera:hydropsychidae). J N Am Benthol Soc 29:1058–1074CrossRefGoogle Scholar
  123. Prendini L (2005) Comment on “Identifying spiders through DNA barcodes”. Can J Zool 83:498–504CrossRefGoogle Scholar
  124. Rai PS, Bellampalli R, Dobriyal RM, Agarwal A, Satyamoorthy K, Narayana DBA (2012) DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region. J Ayurveda Integr Med 3:136–140PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rainer J, de Hoog GS (2006) Molecular taxonomy and ecology of Pseudallescheria, Petriella and Scedosporium prolificans (Microascaceae) containing opportunistic agents on humans. Mycol Res 110:151–160PubMedCrossRefGoogle Scholar
  126. Raja HA, Baker TR, Little JG, Oberlies NH (2017) DNA barcoding for identification of consumer-relevant mushrooms: a partial solution for product certification? Food Chem 214:383–392PubMedCrossRefGoogle Scholar
  127. Rastogi G, Dharne MS, Walujkar S, Kumar A, Patole MS, Shouche YS (2007) Species identification and authentication of tissues of animal origin using mitochondrial and nuclear markers. Meat Sci 76:666–674PubMedCrossRefGoogle Scholar
  128. Rebijith KB, Asokan R, Kumar NKK, Krishna V, Chaitanya BN, Ramamurthy VV (2013) DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bull Entomol Res 3:601–610CrossRefGoogle Scholar
  129. Remigio EA, Hebert PDN (2003) Testing the utility of partial COI sequences for phylogenetic estimates of Gastropod relationships. Mol Phylogenet Evol 29:641–647PubMedCrossRefGoogle Scholar
  130. Renaud AK, Savage J, Adamowicz SJ (2012) DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits. BMC Ecol 12:24PubMedPubMedCentralCrossRefGoogle Scholar
  131. Roe AD, Rice AV, Bromilow SE, Cooke JE, Sperling FA (2010) Multilocus species identification and fungal DNA barcoding: insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 10:946–959PubMedCrossRefGoogle Scholar
  132. Rossi N, Mantelatto FL (2013) Molecular analysis of the freshwater prawn macrobrachium olfersii (Decapoda, Palaemonidae) supports the existence of a single species throughout its distribution. PLoS One 8(1):e54698PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ruiz-García M, Pinedo-Castro M, Shostell JM (2014) How many genera and species of woolly monkeys (Atelidae, Platyrrhine, Primates) are there? The first molecular analysis of Lagothrix flavicauda, an endemic Peruvian primate species. Mol Phylogenet Evol 79:179–198PubMedCrossRefGoogle Scholar
  134. Sanches A, Perez WAM, Figueiredo MG, Rossini BC, Cervini M, Galetti PM Jr et al (2011) Wildlife forensic DNA and lowland tapir (Tapirus terrestris) poaching. Conserv Genet Resour 3:189–193CrossRefGoogle Scholar
  135. Schneider KL, Marrero G, Alvarez AM, Presting GG (2011) Classification of plant associated bacteria using RIF, a computationally derived DNA marker. PLoS One 6(4):e18496PubMedPubMedCentralCrossRefGoogle Scholar
  136. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517PubMedCrossRefGoogle Scholar
  137. Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA, Moncalvo JM, Louis-Seize G, Hebert PD (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104:3901–3906PubMedCrossRefGoogle Scholar
  138. Shander C, Willassen E (2005) What can biological barcoding do for marine biology. Mar Biol Res 1:79–83CrossRefGoogle Scholar
  139. Shivji MS, Chapman DD, Pikitch EK, Raymond PW (2005) Genetic profiling reveals illegal international trade in fins of the great white shark Carcharodon carcharias. Conserv Genet 6(6):1035–1039CrossRefGoogle Scholar
  140. Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc B 360:1825–1834CrossRefGoogle Scholar
  141. Smith MA, Poyarkov NA, Hebert PDN (2008a) CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour 8:235–246PubMedCrossRefGoogle Scholar
  142. Smith PJ, McVeagh SM, Steinke D (2008b) DNA barcoding for the identification of smoked fish products. J Fish Biol 72:464–471CrossRefGoogle Scholar
  143. Smith MA, Fernandez-Triana JL, Eveleigh E, Gomez J, Guclu C, Hallwachs W, Hebert PDN et al (2013) DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 20000 sequences. Mol Ecol Resour 13:168–176CrossRefGoogle Scholar
  144. Steinke D, Zemlak TS, Hebert PDN (2009) Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS One 4(7):e6300PubMedPubMedCentralCrossRefGoogle Scholar
  145. Stoeckle MY (2008) Blog: DNA identifies invasive parasitic wasp’ in the barcode of life blog. http://phe.rockefeller.edu/barcode/blog/2008/07/07/dna-identifies-invasive-parasitic-wasps/. Accessed 26 Feb 2011
  146. Stoeckle MY, Hebert PDN (2008) Barcode of life: DNA tags help classify animals. Sci Am 298(10):39–43Google Scholar
  147. Stoeckle MY, Gamble CC, Kirpekar R, Yung G, Ahmed S, Little DP (2011) Commercial teas highlight plant DNA barcode identification successes and obstacles. Nat Sci Rep 1:42CrossRefGoogle Scholar
  148. Swartz ER, Mwale M, Hanner R (2008) A role for barcoding in the study of African fish diversity and conservation. South Afr J Sci 104(4):293–298Google Scholar
  149. Sweeney BW, Battle JM, Jackson JK (2011) Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? J North Am Benthol Soc 30(1):195–216CrossRefGoogle Scholar
  150. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35(3):e14PubMedCrossRefGoogle Scholar
  151. Tack JF, Berghe E, Polk PH (1992) Ecomorphology of Crassostrea cucullata (Born, 1778) (Ostreidae) in a mangrove creek (Gazi, Kenya). Hydrobiologia 247:109–117CrossRefGoogle Scholar
  152. Thao L, James T, Alexandra B et al (2013) Bar-coded Enterobacteria: an undergraduate microbial ecology laboratory module. Am J Educ Res 1(1):26–30CrossRefGoogle Scholar
  153. Trivedi S, Ghosh SK, Choudhury A (2013) DNA sequence of cytochrome c oxidase subunit 1 (COI) region of an oyster Saccostrea cucullata collected from Sunderbans. J Environ Sociobiol 10(1):77–81Google Scholar
  154. Trivedi S, Affan R, Alessa AHA et al (2014) DNA barcoding of Red Sea fishes from Saudi Arabia – the first approach. DNA Barcodes 2:17–20CrossRefGoogle Scholar
  155. Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268CrossRefGoogle Scholar
  156. Udayasuriyan R, Saravana Bhavan P, Vadivalagan C, Rajkumar G (2015) Efficiency of different COI markers in DNA barcoding of freshwater prawn species. J Entomol Zool Stud 3(3):98–110Google Scholar
  157. Vargas SM, Araujo FCF, Santos FR (2009) DNA barcoding of Brazilian sea turtles (Testudines). Genet Mol Biol 32(3):608–612PubMedPubMedCentralCrossRefGoogle Scholar
  158. Vassou SL, Kusuma G, Parani M (2015) DNA barcoding for species identification from dried and powdered plant parts: A case study with authentication of the raw drug market samples of Sida cordifolia. Gene 559:86–93PubMedCrossRefGoogle Scholar
  159. Vialle A, Feau N, Allaire M, Didukh M, Martin F, Moncalvo JM, Hamelin RC (2009) Evaluation of mitochondrial genes as DNA barcode for Basidiomycota. Mol Ecol Resour 9(Suppl S1):99–113PubMedCrossRefGoogle Scholar
  160. Wang J, Soininen J, He J, Shen J (2012a) Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep 4(2):217–226PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wang G, Li C, Guo X, Xing D, Dong Y (2012b) Identifying the main mosquito species in china based on DNA barcoding. PLoS One 7:e47051PubMedPubMedCentralCrossRefGoogle Scholar
  162. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B 360:1847–1857CrossRefGoogle Scholar
  163. Ward RD, Holmes BH, White WT, Last PR (2008) DNA barcoding Australasian chondrichtyans: results and potential uses in conservation. Mar Freshw Res 59(1):57–71CrossRefGoogle Scholar
  164. Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381PubMedCrossRefGoogle Scholar
  165. Weigt LA, Baldwin CC, Driskell A (2012) Using DNA barcoding to assess Caribbean Reef fish biodiversity: expanding taxonomic and geographic coverage. PLoS One 7(7):e41059PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wilson EO (ed) (1994) Biodiversity. National Academy Press, Washington, DCGoogle Scholar
  167. Wilson EO (2003) The encyclopaedia of life. Trends Ecol Evol 18:77–80CrossRefGoogle Scholar
  168. Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837CrossRefGoogle Scholar
  169. Wong KL, But PPH, Shaw PC (2013) Evaluation of seven DNA barcodes for differentiating closely related medicinal Gentiana species and their adulterants. Chin Med 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  170. Woodcock TS, Boyle EE, Roughley RE, Kevan PG, Labbee RN, Smith ABT, Goulet H et al (2013) The diversity and biogeography of the Coleoptera of Churchill: insights from DNA barcoding. BMC Ecol 13:40PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wu H, Wan Q-H, Fang S-G, Zhang S-Y (2005) Application of mitochon-drial DNA sequence analysis in the forensic identification of Chinese sika deersubspecies. Forensic Sci Int 148:101–105PubMedCrossRefGoogle Scholar
  172. Yang Q, Zhao S, Kucerova Z, Stejskal V, Opit G, Qin M, Cao Y, Li F et al (2013) Validation of the 16S rDNA and COI DNA barcoding technique for rapid molecular identification of stored product Psocids (Insecta: Psocodea: Liposcelididae). J Econ Entomol 106:419–425PubMedCrossRefGoogle Scholar
  173. Zhou J, Wang W, Liu M, Liu Z (2014) Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA – barcoding technique. Pharmacogn Mag 10:385–390PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zimmermann J, Glöckner G, Jahn R, Enke N, Gemeinholzer B (2015) Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Mol Ecol Resour 15(3):526–542PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. Suriya
    • 1
  • M. Krishnan
    • 1
  • S. Bharathiraja
    • 2
  • V. Sekar
    • 3
  • V Sachithanandam
    • 3
  1. 1.Department of Environmental Biotechnology, School of Environmental SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of Biomedical EngineeringNano-Biomedicine Lab, Pukyong National UniversityNam-GuSouth Korea
  3. 3.National Centre for Sustainable Coastal Management, Ministry of Environment, Forests & Climate ChangeChennaiIndia

Personalised recommendations