Identification and Conservation of Reptiles Through DNA Barcoding

  • Subrata Trivedi
  • Hasibur Rehman
  • Shalini Saggu
  • Al Thabiani Aziz
  • Chellasamy Panneerselvam
  • Sankar K. Ghosh


Reptiles are cold-blooded vertebrates that play very important ecological role in the environment. They dominated the world in the Mesozoic era and many of them have become extinct, and some are facing extinction. Poaching, overexploitation, secondary poisoning, habitat loss, climate change, etc. are causing serious threats to the biodiversity of the reptiles. The taxonomic position of the reptiles also makes this group evolutionarily very significant. In this chapter, we discuss the role of DNA barcoding in the identification, phylogenetic assessment, and conservation of reptiles. Special emphasis is given on the role of DNA barcoding in the identification and conservation of endangered reptile species. We also assessed the DNA barcoding scenario in all the four modern reptile orders—Crocodilia, Squamata, Testudines, and Sphenodontia. In conjugation with DNA barcoding, the amino acid informative sites within the barcode gene can be effectively used in the proper identification of different Testudine species. In contrast to other vertebrate groups, there is no DNA barcoding initiative exclusively for the reptiles, and there is a need to conduct more DNA barcoding studies on this important cold-blooded vertebrate group. The recent global barcoding initiative called “cold code” is expected to produce promising barcoding data on all cold-blooded vertebrates.


Biodiversity Crocodilia DNA barcoding Reptiles Squamata Sphenodontia Testudines 



We acknowledge the Deanship of Scientific Research, University of Tabuk, Saudi Arabia, for the support provided through the Project No. S-1436-0252. We also express our gratitude to the Saudi Digital Library (SDL).

Conflict of Interest

No conflict of interest reported in the current work.


  1. Alfonsi E, Me ME, Fuchs S (2013) The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research, ZooKeys, vol 365, pp 5–24Google Scholar
  2. Aliabadian M, Beentjes KK, Roselaar CS (2013) DNA barcoding of Dutch birds. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research, ZooKeys, vol 365, pp 25–48Google Scholar
  3. Arevalo E, Davis SK, Sites JW (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst Biol 43:387–418CrossRefGoogle Scholar
  4. Blanco-Bercial L, Cornils A, Copley N, Bucklin A (2014) DNA barcoding of marine Copepods: assessment of analytical approaches to species identification. PLoS Curr 6.
  5. Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ et al (2010) A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Res II 57:2234–2247CrossRefGoogle Scholar
  6. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine Metazoa. Annu Rev Mar Sci 3: 471 47171 3: 471tazoa.
  7. Daugherty CH, Cree A, Hay JM, Thompson MB (1990) Neglected taxonomy and continuing extinctions of tuatara (Sphenodon). Nature 347:177–179CrossRefGoogle Scholar
  8. Derycke S, Fonseca G, Vierstraete A, Vanfleteren J, Vincx M, Moens T (2008) Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zool J Linnean Soc 152:1–15CrossRefGoogle Scholar
  9. Eaton MJ, Meyers GL, Kolokotronis SO, Leslie MS, Martin AP, Amato G (2010) Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conserv Genet 11:1389–1404CrossRefGoogle Scholar
  10. Engstrom TN, Shaffer HB, McCord WP (2004) Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst Biol 53(5):693–710CrossRefPubMedGoogle Scholar
  11. Fujita MK, Engstrom TN, Starkey DE, Shaffer HB (2004) Turtle phylogeny: insights from a novel nuclear intron. Mol Phylogenet Evol 31:1031–1040CrossRefPubMedGoogle Scholar
  12. Gaur A, Singh CS, Sreenivas A, Singh L (2012) DNA-based identification of a snake in a wine bottle using universal primers: a case of mistaken identity. Forensic Sci Int 214:e51–e53CrossRefGoogle Scholar
  13. Gibbons JW, Scott DE, Ryan TJ et al (2000) The global decline of reptiles, deJa vu amphibians. Bioscience 50:653–666CrossRefGoogle Scholar
  14. Gong S, Wang J, Shi H, Song R, Xu R (2006) Illegical trade and conservation requirements of freshwater turtles in Nanmao, Hainan province, China. Oryx 40:331–336CrossRefGoogle Scholar
  15. Hawlitschek O, Nagy ZT, Berger J, Glaw F (2013) Reliable DNA barcoding performance proved for species and island populations of comoran squamate reptiles. PLoS One 8(9):e73368. Scholar
  16. Hawlitschek O et al (2015) Comprehensive DNA barcoding of the herpetofauna of Germany. Mol Ecol Resour.
  17. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jeong TJ et al (2013) DNA barcode reference data for the Korean herpetofauna and their applications. Mol Ecol Resour.
  19. Jones MEH, Worthy TH, Tennyson AJD, Evans SE (2008) The first pre-Pleistocene record of a tuatara (Sphenodon)-like animal from New Zealand and implications for the Oligocene drowning. J Vertebr Paleontol 28:97–98Google Scholar
  20. Kim JB, Min MS, Park DS, Song JY (2011) Red Data Book of Endangered Amphibians and Reptiles in Korea. National Institute of Biological Resources, Incheon, South KoreaGoogle Scholar
  21. Kundu S, Das KC, Ghosh SK (2013a) Taxonomic rank of Indian tortoise: revisit with DNA barcoding perspective. DNA Barcodes 1:39–45. Scholar
  22. Kundu S, Das KC, Ghosh SK (2013b) Amino acid analysis of cytochrome c oxidase subunit 1(COI) of Indian testudines. J Environ Sociobiol 10(1):43–48Google Scholar
  23. Kundu S, Das KC, Ghosh SK (2013c) Identification of commercialized turtle samples through DNA barcoding. J Environ Sociobiol 10(1):37–42Google Scholar
  24. Larsson K, Ahmadzadeh A, Jondelius U (2008) DNA taxonomy of Swedish Catenulida (Platyhelminthes) and a phylogenetic framework for catenulid classification. Org Divers Evol 8:399–412CrossRefGoogle Scholar
  25. May RM (1990) Taxonomy as destiny. Nature 347:129–130CrossRefGoogle Scholar
  26. McAliley LR, Willis RE, Ray DA, White PS et al (2006) Are crocodiles really monophyletic? Evidence for subdivisions from sequence and morphological data. Mol Phylogenet Evol 39(1):16–32CrossRefPubMedGoogle Scholar
  27. Meganathan PR, Dubey B, Jogayya KN, Haque I (2013) Identification of Indian crocodile species through DNA barcodes. J Forensic Sci 58(4):993–998CrossRefPubMedGoogle Scholar
  28. Morlais I, Severson DW (2002) Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome c oxidase subunit 1 (COI) from Aides aegypti. DNA Seq 13:123–127CrossRefPubMedGoogle Scholar
  29. Moura CJ, Harris DJ, Cunha MR, Rogers AD (2007) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37(1):93–108Google Scholar
  30. Murphy RW, Berry KH, Edwards T et al (2011) The dazed and confused identity of Agassizsiz. The dazise, Gopherus agassizii, the description of a new species, and its consequences for conservation. ZooKeys 113:39–71CrossRefGoogle Scholar
  31. Nagy ZT, Sonet G, Glaw F (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS One 7(3):e34506CrossRefPubMedPubMedCentralGoogle Scholar
  32. Naro-Maciel E, Reid B, Fitzsimmons NN (2009) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Mol Ecol Resour 10:252–263CrossRefPubMedGoogle Scholar
  33. Nijman V, Shepherd CR, Mumpuni SKL (2012) Over-exploitation and illegal trade of reptile in Indonesia. Herpetol J 22:83–89Google Scholar
  34. Oaks JR (2011) A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution.
  35. Oh JG (2006) The herpatofauna of Jeju island. In: Chung SH, Oh JG, Kim WB (eds) The fauna of Mr. Halla. Halla Institute of Ecology and Culture, Jeju, South Korea, pp 23–71Google Scholar
  36. Panday R, Jha DK, Thapa N, Pokharel BR, Aryal NK (2014) Forensic wildlife parts and their product identification and individualization using DNA barcoding. Open Forensic Sci J 7:6–13CrossRefGoogle Scholar
  37. Pook CE, McEwing R (2005) Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. Toxicon 46:711–715CrossRefPubMedGoogle Scholar
  38. Praschag P, Stuckas H, Packert M, Maran J, Fritz U (2011) Mitochondrial DNA sequences suggest a revised taxonomy of Asian flapshell turtles (Lissemys SMITH, 1931) and the validity of previously unrecognized taxa (Testudines: Trionychidae). Vertebr Zool 6(1):147–160Google Scholar
  39. Rauhut OWM, Heyng AM, López-Arbarello A, Hecker A (2012) A new rhynchocephalian from the Late Jurassic of Germany with a dentition that is unique amongst tetrapods. PLoS One 7(10):e46839. Scholar
  40. Reid BN, Le M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R, Naro-Maciel E (2011) Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol Ecol Resour 11:956–967CrossRefPubMedGoogle Scholar
  41. Rhodin AJ, van Dijk PP, Iverson JB, Shaffer HB (2010) Turtles of the world, 2010 update: annotated checklist of taxonomy, synonymy, distribution and conservation status. Chelonian Res Monogr 5:000.85–000.1 64Google Scholar
  42. Schmitz A, Mansfeld P, Hekkala E, Shine T et al (2003) Molecular evidence for species level divergence in African Nile Crocodiles Crocodylus niloticus (Laurenti, 1786). C R Palevol 2:703–712CrossRefGoogle Scholar
  43. Schuster A, Erpenbeck D, Pisera A, Hooper J, Bryce M, Fromont J et al (2015) Deceptive desmas: molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistid demosponges. PLoS One 10(1):e116038. Scholar
  44. Shirley MH, Vliet KA, Carr AN, Austin JD (2013) Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc B 281:20132483CrossRefPubMedGoogle Scholar
  45. Sterli J (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles. Contrib Zool 79(3):93–106Google Scholar
  46. Trivedi S, Ghosh SK, Choudhury A (2011) Cytochrome c oxidase subunit 1 (COI) sequence of Macrobrachium rosenbergii collected from Sunderbans. J Environ Sociobiol 8(2):169–172Google Scholar
  47. Trivedi S, Ghosh SK, Choudhury A (2012) Mitochondrial DNA sequence of Cytochrome c oxidase subunit 1 (COI) region of an oyster Crassostrea cuttakensis collected from Sunderbans. J Environ Sociobiol 9(1):13–16Google Scholar
  48. Trivedi S, Ghosh SK, Choudhury A (2013) DNA sequence of Cytochrome c oxidase subunit 1 (COI) region of an oyster Saccostrea cucullata collected from Sunderbans. J Environ Sociobiol 10(1):77–81Google Scholar
  49. Trivedi S, Affan R, Alessa AHA et al (2014) DNA barcoding of Red Sea fishes from Saudi Arabia – the first approach. DNA Barcodes 2:17–20CrossRefGoogle Scholar
  50. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2015a) Molecular phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding. J Entomol Zool Stud 3(1):21–26Google Scholar
  51. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2015b) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci 23:161–171. Scholar
  52. Trombulak CS, Frissel AC (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14(18):14. Scholar
  53. Uthicke S, Byrne M, Conand C (2010) Genetic barcoding of commercial Bêche-de-mer species (Echinodermata: Holothuroidea). Mol Ecol Resour 10(4):634–646. Scholar
  54. Vargas SM, Arauas FCF, Santos FR (2009) DNA barcoding of Brazilian sea turtles (Testudines). Genet Mol Biol 32(3):608–612CrossRefPubMedPubMedCentralGoogle Scholar
  55. Vences M, Nagy ZT, Sonet G, Verheyen E (2012) DNA barcoding amphibians and reptiles. In: Kress WJ, Erickson DL (eds) DNA barcodes: methods and protocol. SpringerGoogle Scholar
  56. Vences M, Lima A, Miralles A, Glaw F (2014) DNA barcoding assessment of genetic variation in two widespread skinks from Madagascar, Trachylepis elegans and T. gravenhorstii (Squamata: Scincidae). Zootaxa 3755(5):477–484CrossRefPubMedGoogle Scholar
  57. Ward RD, Zemlak TS, Innes BH (2005) Barcoding Australia’s fish species. Philos Trans R Soc Lond B 360:1847–1857CrossRefGoogle Scholar
  58. Ward RD, Holmes BH, O’hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Resour 8(6):1202–1211CrossRefPubMedGoogle Scholar
  59. Wong KL, Wang J, But PP, Shaw PC (2004) Application of cytrochrome b DNA sequences for the authentication of endangered snake species. Forensic Sci Int 139:49–55CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Subrata Trivedi
    • 1
  • Hasibur Rehman
    • 1
    • 4
  • Shalini Saggu
    • 1
    • 3
  • Al Thabiani Aziz
    • 1
  • Chellasamy Panneerselvam
    • 1
  • Sankar K. Ghosh
    • 2
  1. 1.Faculty of Science, Department of BiologyUniversity of TabukTabukKingdom of Saudi Arabia
  2. 2.Department of BiotechnologyAssam UniversitySilcharIndia
  3. 3.Departments of DermatologySchool of Medicine, The University of Alabama at Birmingham (UAB)BirminghamUSA
  4. 4.Departments of PathologySchool of Medicine, The University of Alabama at Birmingham (UAB)BirminghamUSA

Personalised recommendations