DNA Databases: Promises and Limitations for Plant DNA Barcoding

  • Selvaraj Dhivya
  • Mohanasundaram Saravanan
  • Ramalingam Sathishkumar


DNA barcoding provides a rapid, accurate, and standardized method for species level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth as DNA sequencing technology has become cheaper now. Using this technique, it is possible to map the Earth’s immense biodiversity resources, and entries can enrich the databases (DB). Hence, in this review all the available DNA barcode databases have been reviewed for its promises and limitations. The important DNA barcode databases are International Nucleotide Sequence Database Collaboration (INSDC), Barcode of Life Database (BOLD), BioBarcode, Medicinal Materials DNA Barcode Database (MMDBD), Herbarium of Med Plants of India, and PLANTS Database. All these DBs possess a vast number of specimen entries and also help in understanding their genetic relationships and evolution. Some databases also contain a chromatogram viewer, which helps the DNA sequence analysis. These barcode database servers provide bioinformatics tools as one stop solution. It promotes the rapid acquisition of biological species and to reach global standards in the aspects of standardization, depository, management, and analysis.


Database BOLD Specimen Biodiversity MMDB Resources 



The authors are gratefully acknowledging Bharathiar University, UGC-SAP, UGC WMPDF, DST-FIST, and DBT-Twinning NER for the financial support.


  1. Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Sunderland (Massachusetts), p 684Google Scholar
  2. Blaxter ML (2004) The promise of a DNA taxonomy. Philos Trans R Soc Lond Ser B Biol Sci 359(1444):669–679. Scholar
  3. Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746CrossRefPubMedGoogle Scholar
  4. Ekrem T, Willassen E, Stur E (2007) A comprehensive DNA sequence library is essential for identification with DNA barcodes. Mol Phylogenet Evol 43:530–542CrossRefPubMedGoogle Scholar
  5. Hebert PDN, Ratnasingham S, DeWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Biol Sci 270:96–99CrossRefGoogle Scholar
  6. Jeongheui L, Sang-Yoon K, Sungmin K, Eo H-S, Chang-Bae K, Woon Kee P, Won K, Jong B (2009) Proceedings BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources. BMC Genomics 10(Suppl 3):S8CrossRefGoogle Scholar
  7. Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14(2):221–232. Scholar
  8. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928CrossRefPubMedGoogle Scholar
  9. Lou SK, Wong KL, Li M, Hay-But PP, Wing Tsui SK, Shaw PC (2010) An integrated web medicinal materials DNA database: MMDBD (medicinal materials DNA barcode database). BMC Genomics 11:402CrossRefPubMedPubMedCentralGoogle Scholar
  10. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:2229–2238Google Scholar
  11. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2(10):e354CrossRefPubMedPubMedCentralGoogle Scholar
  12. Pennisi E (2007) Wanted: a barcode for plants. Science 318:190–191CrossRefPubMedGoogle Scholar
  13. Ruzicka J, Lukas B, Merza L, Göhler I, Abel G, Popp M, Novak J (2009) Identification of verbena officinalis based on ITS sequence analysis and RAPD-derived molecular markers. Planta Med 75:1271–1276CrossRefPubMedGoogle Scholar
  14. Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond 360:1889–1895CrossRefGoogle Scholar
  15. Simon JT, Jonathan D, Annie A, Anne B, Alison D, Steven WK, Pedro PN, Jana V, Terry AW (2013) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour.
  16. Stoeckle M (2009) Taxonomy, DNA and the barcode of life. Bioscience 53:796–797.[0796:TDATBC]2.0.CO;2CrossRefGoogle Scholar
  17. Sujeevan R, Hebert PDN (2007) Bold: the barcode of life data system ( Mol Ecol Notes 7(3):355–364
  18. Valentini AS, Mattiucci P, Bondanelli SC, Webb AA, Mignucci-Giannone MM, Llavina C, Nascetti G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial COX2 sequences and comparison with allozyme data. J Parasitol 92:156–166CrossRefPubMedGoogle Scholar
  19. van der Sande CAFM, Kwa M, van Nues RW, van Heerikhuizan H, Raue HA, Planta RJ (1992) Functional analysis of internal transcribed spacer2 of Saccharomyces cerevisiae ribosomal DNA. J Mol Biol 223:899–910CrossRefPubMedGoogle Scholar
  20. Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford, p 85Google Scholar
  21. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  22. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Selvaraj Dhivya
    • 1
  • Mohanasundaram Saravanan
    • 1
  • Ramalingam Sathishkumar
    • 1
  1. 1.Plant Genetic Engineering Laboratory, Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations