Advertisement

RNAi Approach: A Powerful Technique for Gene Function Studies and Enhancing Abiotic Stress Tolerance in Crop Plants

  • Ajay Kumar Singh
  • Mahesh Kumar
  • Deepika Choudhary
  • Lalitkumar Aher
  • Jagadish Rane
  • Narendra Pratap Singh
Chapter

Abstract

RNA interference (RNAi) is a versatile tool frequently used for gene function studies in plants. RNAi phenomenon involves small interfering RNA (siRNA) or short hairpin or microRNA (miRNA) to suppress the expression of sequence-specific gene at posttranscriptional or translational level. This technology has been used to study functional relevance of genes, enhancing crop yield, improving nutritional quality, and increasing crop productivity through suppression of expression of genes responsive to abiotic stress, involved in biomass and grain yield. Here, we describe mechanism of RNAi-mediated gene silencing and application of RNAi technique involving siRNA, shRNA, and microRNA for elucidating function of genes responsive to abiotic stress in crops and also for improving abiotic stress tolerance in crop plants.

Keywords

siRNA- small interfering RNA miRNA- microRNA RNAi- RNA interference Drought stress Salinity stress Abiotic stress tolerance Dicer Argonaute Gene silencing Posttranscriptional gene silencing 

References

  1. Ali N, Datta KS, Datta K (2010) RNA interference in designing transgenic crops. Landes Biosci 1:207–213Google Scholar
  2. Cai B, Li Q, Liu F, Bi H, Ai X (2018) Decreasing fructose 1,6-bisphosphate aldolase activity reduces plant growth and tolerance to chilling stress in tomato seedlings. Physiol Plant. https://doi.org/10.1111/ppl.12682
  3. Campbell TN (2005) Choy FYM, RNA interference: past, present and future. Mol Biol 7:1–6Google Scholar
  4. Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, Wang JH, Han N, Bian HW, Zhu MY (2011) Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 77:619–629CrossRefPubMedGoogle Scholar
  5. Chen L, Luan Y, Zhai J (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34:2013–2025CrossRefPubMedGoogle Scholar
  6. Chung PJ, Park BS, Wang H, Liu J, Jang IC, Chua NH (2016) Light-inducible MiR163 targets PXMT1 transcripts to promote seed germination and primary root elongation in Arabidopsis. Plant Physiol 170:1772–1782PubMedPubMedCentralGoogle Scholar
  7. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38CrossRefPubMedGoogle Scholar
  8. Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X (2017) microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91:977–994CrossRefPubMedGoogle Scholar
  9. Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123(11):1819–1823CrossRefPubMedGoogle Scholar
  10. Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65:2119–2135CrossRefPubMedPubMedCentralGoogle Scholar
  11. Guo C, Yao L, You C, Wang S, Cui J, Ge X, Ma H (2016) MID1 plays an important role in response to drought stress during reproductive development. Plant J 88:280–293CrossRefPubMedGoogle Scholar
  12. Gupta K, Sengupta A, Saha J, Gupta B (2014) The attributes of RNA interference in relation to plant abiotic stress tolerance. Gene Technol 3:110. https://doi.org/10.4172/2329-6682.1000110 CrossRefGoogle Scholar
  13. Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 over-expression causes increased drought tolerance in chickpea. Gene 555:186–193CrossRefPubMedGoogle Scholar
  14. Huang L, Wang Y, Wang W, Zhao X, Qin Q, Sun F, Hu F, Zhao Y, Li Z, Fu B, Li Z (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00094
  15. Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongue CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9:e107678CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492CrossRefPubMedGoogle Scholar
  17. Ji X, Nie X, Liu Y, Zheng L, Zhao H, Zhang B, Huo L, Wang Y (2016) A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol 36:193–207PubMedGoogle Scholar
  18. Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811CrossRefPubMedGoogle Scholar
  19. Kumar P, Kamle M, Pandey A (2012) RNAi: new era of functional genomics for crop improvement. Frontiers Recent Dev Plant Sci 1:24–38Google Scholar
  20. Li S, Castillo-González C, Yu B, Zhang X (2017a) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670CrossRefPubMedGoogle Scholar
  21. Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK (2017b) The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J 89:85–103CrossRefPubMedGoogle Scholar
  22. Ma H, Chen J, Zhang Z, Ma L, Yang Z, Zhang Q, Li X, Xiao J, Wang S (2017) MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J 92:557–570CrossRefPubMedGoogle Scholar
  23. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187CrossRefPubMedGoogle Scholar
  24. Mao C, Ding J, Zhang B, Xi D, Ming F (2018) OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters. Plant J. https://doi.org/10.1111/tpj.13867
  25. Meena AK, Verma LK, Kumhar BL (2017) RNAi, It’s mechanism and potential use in crop improvement : a review. Int J Pure App Biosci 5:294–311CrossRefGoogle Scholar
  26. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into Petunia results in reversible co suppression of homologous genes intrans. Plant Cell 2:279–289CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pradhan A, Naik N, Sahoo KK (2015) RNAi mediated drought and salinity stress tolerance in plants. Am J Plant Sci 6:1990–2008CrossRefGoogle Scholar
  28. Qin H, Wang Y, Wang J, Liu H, Zhao H, Deng Z et al (2016) Knocking down the expression of GMPase gene OsVTC1-1 decreases salt tolerance of Rice at seedling and reproductive stages. PLoS ONE 11(12):e0168650. https://doi.org/10.1371/journal.pone.0168650 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR, Li X et al (2013) RNA-induced silencing complex (RISC) proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci USA 110:6536–6541CrossRefPubMedGoogle Scholar
  30. Riley KJ, Yario TA, Steitz JA (2012) Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 18(9):1581–1585CrossRefPubMedPubMedCentralGoogle Scholar
  31. Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol 13:210CrossRefPubMedPubMedCentralGoogle Scholar
  32. Srivastava AK, Zhang C, Caine RS, Gray J, Sadanandom A (2017) Rice SUMO protease overly tolerant to salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J 92:1031–1043CrossRefPubMedGoogle Scholar
  33. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tripathi AK, Pareek A, Singla-Pareek SL (2016) A NAP-family histone chaperone functions in abiotic stress response and adaptation. Plant Physiol 171:2854–2868PubMedPubMedCentralGoogle Scholar
  35. Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, Ma B, Bi YD, Lai YC, Liu XL, Man WQ, Zhang JS, Chen SY (2015) GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J 83:224–236CrossRefPubMedGoogle Scholar
  36. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q et al (2001) Construct design for efficient, effective and high through put gene silencing in plants. Plant J 27:581–590CrossRefPubMedGoogle Scholar
  37. Williams M, Clark G, Sathasivan K, Islam AS (2004) RNA interference and its application in crop improvement. Plant Tissue Cult 14(1):1–18Google Scholar
  38. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wu BF, LiWF XHY, Qi LW, Han SY (2015a) Role of cinmiR2118 in drought stress responses in Caragana intermedia and Tobacco. Gene 574:34–40CrossRefPubMedGoogle Scholar
  40. Wu J, Yang Z, Wang Y et al (2015b) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4:1–19Google Scholar
  41. Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 10:1150–1158CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–593CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170:1578–1594PubMedPubMedCentralGoogle Scholar
  44. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhou X, Li L, Xiang J, Gao G, Xu F, Liu A, Zhang X, Peng Y, Chen X, Wan X (2015) OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS ONE 10(1):e116676. https://doi.org/10.1371/journal.pone.0116676 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ajay Kumar Singh
    • 1
  • Mahesh Kumar
    • 1
  • Deepika Choudhary
    • 1
  • Lalitkumar Aher
    • 1
  • Jagadish Rane
    • 1
  • Narendra Pratap Singh
    • 1
  1. 1.ICAR-National Institute of Abiotic Stress Management, MalegaonBaramatiIndia

Personalised recommendations