Advertisement

Understanding the Phytohormones Biosynthetic Pathways for Developing Engineered Environmental Stress-Tolerant Crops

  • Sameh Soliman
  • Ali El-Keblawy
  • Kareem A. Mosa
  • Mohamed Helmy
  • Shabir Hussain Wani
Chapter

Abstract

Plants are significantly subject of diverse environmental stresses. Abiotic stresses are mainly due to nonliving environmental factors such as drought, heat, cold, and salinity, whereas biotic stresses are mainly caused by other living organisms in the surrounding environment such as bacteria, fungi, viruses, nematodes, and insects. A long series of investigations has now developed beyond the doubt that major phytohormones such as auxins, cytokinins (CK), gibberellins (GAs), abscisic acid (ABA), ethylene (ET), brassinosteroids (BRs), salicylic acid (SA), jasmonates (JAs), and strigolactones and their biosynthetic and signaling pathways play central roles in integrating and coordinating the whole plant stress responses. Understanding the mechanisms and the biosynthetic pathways of different phytohormones that can enhance plant stress tolerance could lead to developing an environmental stress-tolerant crop through engineering the target phytohormones biosynthetic pathways. This chapter provides an overview on the relationships between different types of phytohormones and plant response to environmental stresses. We emphasize the significant contribution of transgenerational effects (maternal and epigenetic) on phytohormones biosynthesis. Additionally, the molecular mechanisms and regulation of phytohormones biosynthetic pathways are discussed in details. Omics and metabolic engineering prospective for developing environmental stress-tolerant crops are also highlighted.

Keywords

Phytohormones Stress Tolerance Crops Metabolic engineering Biosynthetic pathways 

References

  1. Aach H, Bode H, Robinson DG, Graebe JE (1997) ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202:211–219CrossRefGoogle Scholar
  2. Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(80):91–94. https://doi.org/10.1126/science.1118642 CrossRefPubMedGoogle Scholar
  3. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186CrossRefPubMedGoogle Scholar
  4. Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014) Hormonal and metabolic regulation of source–sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30. https://doi.org/10.1016/j.biotechadv.2013.10.005 CrossRefPubMedGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 CrossRefPubMedGoogle Scholar
  6. Arata Y, Nagasawa-Iida A, Uneme H et al (2010) The phenylquinazoline compound S-4893 is a non-competitive cytokinin antagonist that targets Arabidopsis cytokinin receptor CRE1 and promotes root growth in Arabidopsis and rice. Plant Cell Physiol 51:2047–2059CrossRefPubMedGoogle Scholar
  7. Arc E, Sechet J, Corbineau F et al (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00063
  8. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. https://doi.org/10.1007/s11103-008-9435-0 CrossRefPubMedGoogle Scholar
  9. Bartel B, Fink GR (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268(80):1745–1748. https://doi.org/10.1126/science.7792599 CrossRefPubMedGoogle Scholar
  10. Bartrina I, Otto E, Strnad M et al (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80. https://doi.org/10.1105/tpc.110.079079 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a019471
  12. Benech-Arnold RL, Fenner M, Edwards PJ (1991) Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytol 118:339–347. https://doi.org/10.1111/j.1469-8137.1991.tb00986.x CrossRefGoogle Scholar
  13. Benech-Arnold RL, Fenner M, Edwards PJ (1992) Changes in dormancy level in Sorghum halepense seeds induced by water stress during seed development. Funct Ecol 6:596–605. https://doi.org/10.2307/2390058 CrossRefGoogle Scholar
  14. Berkowitz O, De Clercq I, Van Breusegem F, Whelan J (2016) Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ 39:1127–1139CrossRefPubMedGoogle Scholar
  15. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066. https://doi.org/10.1105/tpc.9.7.1055 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bishopp A, Help H, El-Showk S et al (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21:917–926. https://doi.org/10.1016/j.cub.2011.04.017 CrossRefPubMedGoogle Scholar
  17. Blilou I, Xu J, Wildwater M et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi: http://www.nature.com/nature/journal/v433/n7021/suppinfo/nature03184_S1.html CrossRefPubMedGoogle Scholar
  18. Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification-heritable responses to environmental stress? Curr Opin Plant Biol 14:260–266CrossRefPubMedGoogle Scholar
  19. Braun N, de Saint Germain A, Pillot J-P et al (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238CrossRefPubMedGoogle Scholar
  20. Browse J (2009a) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546. https://doi.org/10.1016/j.phytochem.2009.08.004 CrossRefPubMedGoogle Scholar
  21. Browse J (2009b) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205CrossRefPubMedGoogle Scholar
  22. Caballero R, Utrilla RG, Amorós I et al (2017) Tbx20 controls the expression of the KCNH2 gene and of hERG channels. Proc Natl Acad Sci 114:E416–E425. https://doi.org/10.1073/pnas.1612383114 CrossRefPubMedGoogle Scholar
  23. Caño-Delgado A, Yin Y, Yu C et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351. https://doi.org/10.1242/dev.01403 CrossRefPubMedGoogle Scholar
  24. Casimiro I, Beeckman T, Graham N et al (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171. https://doi.org/10.1016/S1360-1385(03)00051-7 CrossRefPubMedGoogle Scholar
  25. Chaudhury AM, Berger F (2001) Maternal control of seed development. Semin Cell Dev Biol 12:381–386. https://doi.org/10.1006/scdb.2001.0267 CrossRefPubMedGoogle Scholar
  26. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  27. Chen S, Li J, Wang S et al (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica, a hybrid in response to increasing soil NaCl. Trees – Struct Funct 15:186–194. https://doi.org/10.1007/s004680100091 CrossRefGoogle Scholar
  28. Chickarmane VS, Gordon SP, Tarr PT et al (2012) Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci 109:4002–4007. https://doi.org/10.1073/pnas.1200636109 CrossRefPubMedGoogle Scholar
  29. Chini A (2014) Application of yeast-two hybrid assay to chemical genomic screens: a high-throughput system to identify novel molecules modulating plant hormone receptor complexes. Methods Mol Biol (Clifton, NJ) 1056:35–43CrossRefGoogle Scholar
  30. Chini A, Fonseca S, Fernandez G et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671. doi: http://www.nature.com/nature/journal/v448/n7154/suppinfo/nature06006_S1.html CrossRefPubMedGoogle Scholar
  31. Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139. https://doi.org/10.1016/j.pbi.2008.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Choi HW, Kim YJ, Lee SC et al (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904. https://doi.org/10.1104/pp.107.103325 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Christensen M, Meyer SE, Allen PS (1996) A hydrothermal time model of seed after-ripening in Bromus tectorum L. Seed Sci Res 6:155–164. https://doi.org/10.1017/S0960258500003214 CrossRefGoogle Scholar
  34. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451CrossRefPubMedGoogle Scholar
  35. Conti L, Nelis S, Zhang C, et al (2014) Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin. Dev Cell 28:102–110. doi: https://doi.org/10.1016/j.devcel.2013.12.004CrossRefPubMedGoogle Scholar
  36. Coquoz J-L, Buchala A, Métraux J-P (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117:1095–1101CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cushman JC, Meyer G, Michalowski CB et al (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1:715–725. https://doi.org/10.1105/tpc.1.7.715 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Daudi A, Cheng Z, O’Brien JA et al (2012) The apoplastic oxidative burst peroxidase in arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287. https://doi.org/10.1105/tpc.111.093039 CrossRefPubMedPubMedCentralGoogle Scholar
  39. de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111:381–391. https://doi.org/10.1104/pp.111.2.381 CrossRefPubMedPubMedCentralGoogle Scholar
  40. De Rybel B, Audenaert D, Vert G et al (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol 16:594–604CrossRefPubMedPubMedCentralGoogle Scholar
  41. Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dejonghe W, Russinova E (2017) Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol 174:5–20. https://doi.org/10.1104/pp.16.01805 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dello Ioio R, Linhares FS, Scacchi E et al Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682. https://doi.org/10.1016/j.cub.2007.02.047 CrossRefPubMedGoogle Scholar
  44. Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66:735–744. https://doi.org/10.1111/j.1365-313X.2011.04534.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ding L, Ley T, Larson D et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510. https://doi.org/10.1038/nature10738 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans R Soc B Biol Sci 364:1059–1074. https://doi.org/10.1098/rstb.2008.0291 CrossRefGoogle Scholar
  47. Donohue K, Schmitt J (1998) Maternal environmental effects in plants: adaptive plasticity. Matern Eff as Adapt:137–158Google Scholar
  48. Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci 109:E2183–E2191. https://doi.org/10.1073/pnas.1209329109 CrossRefPubMedGoogle Scholar
  49. Duan L, Dietrich D, Ng CH et al (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341. https://doi.org/10.1105/tpc.112.107227 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dyachenko OV, Zakharchenko NS, Shevchuk TV et al (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Moscow) 71:461–465. https://doi.org/10.1134/S000629790604016X CrossRefGoogle Scholar
  51. EL-Keblawy ALI, Lovett-Doust JON (1998) Persistent, non-seed-size maternal effects on life-history traits in the progeny generation in squash, Cucurbita pepo. New Phytol 140:655–665. https://doi.org/10.1046/j.1469-8137.1998.00305.x CrossRefGoogle Scholar
  52. EL-Keblawy ALI, Lovett-Doust JON (1999) Maternal effects in the progeny generation in zucchini, Cucurbita pepo (Cucurbitaceae). Int J Plant Sci 160:331–339. https://doi.org/10.1086/314136 CrossRefGoogle Scholar
  53. El-Keblawy A, Al-Ansari F, Al-Rawai A (2005) Effects of dormancy regulating chemicals on innate and salinity induced dormancy in the invasive Prosopis juliflora (Sw.) DC. shrub. Plant Growth Regul 46:161–168. https://doi.org/10.1007/s10725-005-7356-3 CrossRefGoogle Scholar
  54. El-Keblawy A, Gairola S, Bhatt A (2016) Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: a facultative desert halophyte. J Arid Land 8:254–263. https://doi.org/10.1007/s40333-015-0023-2 CrossRefGoogle Scholar
  55. El-Keblawy A, Gairola S, Bhatt A, Mahmoud T (2017) Effects of maternal salinity on salt tolerance during germination of Suaeda aegyptiaca, a facultative halophyte in the Arab Gulf desert. Plant Species Biol 32:45–53. https://doi.org/10.1111/1442-1984.12127 CrossRefGoogle Scholar
  56. El-Metwally S, Ouda OM, Helmy M (2014) Next generation sequencing technologies and challenges in sequence assembly, 1st edn. Springer New York, New YorkCrossRefGoogle Scholar
  57. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371. https://doi.org/10.1016/j.pbi.2007.04.020 CrossRefPubMedGoogle Scholar
  58. Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res. https://doi.org/10.1017/S0960258500000696
  59. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609. https://doi.org/10.1105/tpc.12.4.599 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. https://doi.org/10.1146/annurev.arplant.59.032607.092740 CrossRefPubMedGoogle Scholar
  61. Frébort I, Kowalska M, Hluska T et al (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452. https://doi.org/10.1093/jxb/err004 CrossRefPubMedGoogle Scholar
  62. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863. https://doi.org/10.1146/annurev-arplant-042811-105606 CrossRefPubMedGoogle Scholar
  63. Fu J, Sun X, Wang J et al (2011) Progress in quantitative analysis of plant hormones. Chin Sci Bull 56:355–366CrossRefGoogle Scholar
  64. Fujioka S, Noguchi T, Watanabe T et al (2000) Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 53:549–553. https://doi.org/10.1016/S0031-9422(99)00582-8 CrossRefPubMedGoogle Scholar
  65. Gallego-Bartolomé J, Alabadí D, Blázquez MA (2011) DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS One 6:e23918. https://doi.org/10.1371/journal.pone.0023918 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Galloway LF (2005) Maternal effects provide phenotypic adaptation to local environmental conditions. doi.org 166:93–100. doi: https://doi.org/10.1111/j.1469-8137.2004.01314.x CrossRefPubMedGoogle Scholar
  67. Galvan-Ampudia CS, Julkowska MM, Darwish E et al (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050. https://doi.org/10.1016/j.cub.2013.08.042 CrossRefPubMedGoogle Scholar
  68. Gälweiler L, Guan C, Müller A et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(80):2226–2230CrossRefPubMedGoogle Scholar
  69. Geng Y, Wu R, Wee CW et al (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:2132–2154. https://doi.org/10.1105/tpc.113.112896 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Goicoechea N, Antolin MC, Sánchez-D’iaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997CrossRefGoogle Scholar
  71. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00151
  72. Gómez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:401–408CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gomez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (1998) Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiol Plant 103:475–484CrossRefGoogle Scholar
  74. Griffiths J, Murase K, Rieu I et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414. https://doi.org/10.1105/tpc.106.047415 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Guan LM, Scandalios JG (2000) Catalase transcript accumulation in response to dehydration and osmotic stress in leaves of maize viviparous mutants. Redox Rep 5:377–383. https://doi.org/10.1179/135100000101535951 CrossRefPubMedGoogle Scholar
  76. Gupta S, Chattopadhyay MK, Chatterjee P et al (1998) Expression of abscisic acid-responsive element-binding protein in salt-tolerant indica rice (Oryza sativa L. cv. Pokkali). Plant Mol Biol 37:629–637. https://doi.org/10.1023/A:1005934200545 CrossRefPubMedGoogle Scholar
  77. Hagen G, Guilfoyle TJ (1985) Rapid induction of selective transcription by auxins. Mol Cell Biol 5:1197–1203. https://doi.org/10.1128/mcb.5.6.1197 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hamilton AJ, Bouzayen M, Grierson D (1991) Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci 88:7434–7437. https://doi.org/10.1073/pnas.88.16.7434 CrossRefPubMedGoogle Scholar
  79. Hawkesford MJ, Araus J-L, Park R et al (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48. https://doi.org/10.1002/fes3.15 CrossRefGoogle Scholar
  80. Hawkins C, Liu Z (2014) A model for an early role of auxin in Arabidopsis gynoecium morphogenesis. Front Plant Sci 5:327. https://doi.org/10.3389/fpls.2014.00327 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25. https://doi.org/10.1042/bj20120245 CrossRefPubMedGoogle Scholar
  82. Helliwell CA, Chandler PM, Poole A et al (2001a) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci 98:2065–2070CrossRefPubMedGoogle Scholar
  83. Helliwell CA, Sullivan JA, Mould RM et al (2001b) A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28:201–208CrossRefPubMedGoogle Scholar
  84. Herman JJ, Sultan SE (2011) Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front Plant Sci. https://doi.org/10.3389/fpls.2011.00102
  85. Hewitt FR, Hough T, O’Neill P et al (1985) Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of Prunus avium using a multiple hanging-drop assay. Funct Plant Biol 12:201–211. https://doi.org/10.1071/PP9850201 Google Scholar
  86. Hicks GR, Raikhel NV (2012) Small molecules present large opportunities in plant biology. Annu Rev Plant Biol 63:261–282CrossRefPubMedGoogle Scholar
  87. Hitoshi S (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231 CrossRefGoogle Scholar
  88. Holeski LM, Chase-Alone R, Kelly JK (2010) The genetics of phenotypic plasticity in plant defense: trichome production in Mimulus guttatus. Am Nat 175:391–400. https://doi.org/10.1086/651300 CrossRefPubMedGoogle Scholar
  89. Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626CrossRefPubMedGoogle Scholar
  90. Hou X, Lee LYC, Xia K et al (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894. https://doi.org/10.1016/j.devcel.2010.10.024 CrossRefPubMedGoogle Scholar
  91. Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048CrossRefPubMedGoogle Scholar
  92. Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci 97:2379–2384. https://doi.org/10.1073/pnas.040569997 CrossRefPubMedGoogle Scholar
  93. Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380CrossRefPubMedGoogle Scholar
  94. Imber D, Tal M (1970) Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169(80):592–593CrossRefPubMedGoogle Scholar
  95. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176. https://doi.org/10.1086/598822 CrossRefPubMedGoogle Scholar
  96. Jiang C-J, Shimono M, Sugano S et al (2012) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant Microbe Interact 26:287–296. https://doi.org/10.1094/MPMI-06-12-0152-R CrossRefGoogle Scholar
  97. Jiang WK, Liu Y, Xia EH, Gao LZ (2013) Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol 161:1844–1861. https://doi.org/10.1104/pp.112.200147 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Jones RJ, Mansfield TA (1970) Suppression of stomatal opening in leaves treated with abscisic acid. J Exp Bot 21:714–719. https://doi.org/10.1093/jxb/21.3.714 CrossRefGoogle Scholar
  99. Ju C, Yoon GM, Shemansky JM et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109:19486–19491. https://doi.org/10.1073/pnas.1214848109 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kabar K (1987) Alleviation of salinity stress by plant growth regulators on seed germination. J Plant Physiol 128:179–183. https://doi.org/10.1016/S0176-1617(87)80193-1 CrossRefGoogle Scholar
  101. Kakei Y, Mochida K, Sakurai T et al (2015) Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon. Sci Rep 5:14476. https://doi.org/10.1038/srep14476 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kang J, Hwang J-U, Lee M et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360. https://doi.org/10.1073/pnas.0909222107 CrossRefPubMedGoogle Scholar
  103. Karimmojeni H, Bazrafshan AH, Majidi MM et al (2014) Effect of maternal nitrogen and drought stress on seed dormancy and germinability of Amaranthus retroflexus. Plant Species Biol 29:E1–E8. https://doi.org/10.1111/1442-1984.12022 CrossRefGoogle Scholar
  104. Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165. https://doi.org/10.1007/BF00393650 CrossRefPubMedGoogle Scholar
  105. Karuppanapandian T, Geilfus CM, Mühling KH et al (2017) Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability. Plant Sci 255:51–58. https://doi.org/10.1016/j.plantsci.2016.11.010 CrossRefPubMedGoogle Scholar
  106. Kasahara H, Hanada A, Kuzuyama T et al (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194CrossRefPubMedGoogle Scholar
  107. Khan MA, Ungar IA (2000) Alleviation of innate and salinity-induced dormancy in Atriplex griffithii Moq. var. stocksii Boiss. Seed Sci Technol 28:29–37Google Scholar
  108. Khan MA, Gul B, Weber DJ (2002) Improving seed germination of Salicornia rubra (Chenopodiaceae) under saline conditions using germination-regulating chemicals. West North Am Nat 62:101–105Google Scholar
  109. Kieber JJ, Schaller GE (2014) Cytokinins. Arab B 12:e0168CrossRefGoogle Scholar
  110. Kim S, Song M-H, Wei W, Yun Y-S (2015) Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. J Hazard Mater 283:657–662. https://doi.org/10.1016/j.jhazmat.2014.10.008 CrossRefPubMedGoogle Scholar
  111. Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863CrossRefPubMedGoogle Scholar
  112. Koga J (1995) Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochim Biophys Acta Protein Struct Mol Enzymol 1249:1–13. https://doi.org/10.1016/0167-4838(95)00011-I CrossRefGoogle Scholar
  113. Kohlen W, Charnikhova T, Liu Q et al (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987CrossRefPubMedGoogle Scholar
  114. Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957. https://doi.org/10.1007/s00299-013-1461-y CrossRefPubMedGoogle Scholar
  115. Koornneef M, Hanhart CJ, Hilhorst HW, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469. https://doi.org/10.1104/pp.90.2.463 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307. https://doi.org/10.1079/SSR2005218 CrossRefGoogle Scholar
  117. Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563. https://doi.org/10.1105/tpc.109.072686 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Kumari S, van der Hoorn RAL (2011) A structural biology perspective on bioactive small molecules and their plant targets. Curr Opin Plant Biol 14:480–488CrossRefPubMedGoogle Scholar
  119. Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00537
  120. Kuroha T, Tokunaga H, Kojima M et al (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169. https://doi.org/10.1105/tpc.109.068676 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kuromori T, Miyaji T, Yabuuchi H et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci 107:2361–2366. https://doi.org/10.1073/pnas.0912516107 CrossRefPubMedGoogle Scholar
  122. Lampei Sr C (2008) COS 86-3: the effect of maternal environment on seed dormancy and its support for an evolutionary stable strategy. In: The 93rd ESA Annual MeetingGoogle Scholar
  123. LeClere S, Tellez R, Rampey RA et al (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452CrossRefPubMedGoogle Scholar
  124. Lee HI, León J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079CrossRefPubMedPubMedCentralGoogle Scholar
  125. Leydecker MT, Moureaux T, Kraepiel Y et al (1995) Molybdenum cofactor mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiol 107:1427–1431. doi: 107/4/1427 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  126. Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214. https://doi.org/10.1007/s10265-005-0212-8 CrossRefPubMedGoogle Scholar
  127. Liu S, Sang R (2013) Bioactive fluorescent jasmonate designed by molecular modeling and its migration in tomato visualized by fluorescent molecular imaging. Tetrahedron 69:844–848CrossRefGoogle Scholar
  128. Ljung K, Hull AK, Kowalczyk M et al (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332CrossRefGoogle Scholar
  129. Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472. https://doi.org/10.1016/j.pbi.2007.08.008 CrossRefPubMedGoogle Scholar
  130. Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773. https://doi.org/10.1093/jxb/erq412 CrossRefPubMedGoogle Scholar
  131. Luzuriaga AL, Escudero A, Olano JM, Loidi J (2005) Regenerative role of seed banks following an intense soil disturbance. Acta Oecologica 27:57–66. https://doi.org/10.1016/j.actao.2004.09.003 CrossRefGoogle Scholar
  132. Ma Q, Robert S (2014) Auxin biology revealed by small molecules. Physiol Plant 151:25–42CrossRefPubMedGoogle Scholar
  133. Mähönen AP, Bishopp A, Higuchi M et al (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311(80):94–98. https://doi.org/10.1126/science.1118875 CrossRefPubMedGoogle Scholar
  134. Mandel MA, Feldmann KA, Herrera-Estrella L et al (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658. https://doi.org/10.1046/j.1365-313X.1996.9050649.x CrossRefPubMedGoogle Scholar
  135. Maruyama C, Goepfert Z, Squires K et al (2016) Effects of population site and maternal drought on establishment physiology in impatiens capensis meerb.(Balsaminaceae). Rhodora 118:32–45CrossRefGoogle Scholar
  136. Matsuura H, Takeishi S, Kiatoka N et al (2012) Transportation of de novo synthesized jasmonoyl isoleucine in tomato. Phytochemistry 83:25–33CrossRefPubMedGoogle Scholar
  137. Meinzer FC, Zhu J (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Funct Plant Biol 26:79–86Google Scholar
  138. Melcher K, Zhou XE, Xu HE (2010) Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Curr Opin Struct Biol 20:722–729CrossRefPubMedPubMedCentralGoogle Scholar
  139. Metz J, Liancourt P, Kigel J et al (2010) Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J Ecol 98:697–704. https://doi.org/10.1111/j.1365-2745.2010.01652.x CrossRefGoogle Scholar
  140. Migicovsky Z, Yao Y, Kovalchuk I (2014) Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal Behav 9:e27971. https://doi.org/10.4161/psb.27971 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x CrossRefPubMedGoogle Scholar
  142. Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646. https://doi.org/10.1016/j.tplants.2014.05.005 CrossRefPubMedGoogle Scholar
  143. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9 CrossRefPubMedGoogle Scholar
  144. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19CrossRefPubMedGoogle Scholar
  145. Mittler R, Kim Y, Song L et al (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542. https://doi.org/10.1016/j.febslet.2006.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315CrossRefPubMedGoogle Scholar
  147. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80CrossRefPubMedGoogle Scholar
  148. Mousseau T, Fox C (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. https://doi.org/10.1016/S0169-5347(98)01472-4 CrossRefPubMedGoogle Scholar
  149. Munir J, Dorn LA, Donohue K, Schmitt J (2001) The effect of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana (Brassicaceae). Am J Bot 88:1240–1249. https://doi.org/10.2307/3558335 CrossRefPubMedGoogle Scholar
  150. Murata Y, Mori IC, Munemasa S (2015) Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66:369–392. https://doi.org/10.1146/annurev-arplant-043014-114707 CrossRefPubMedGoogle Scholar
  151. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185CrossRefPubMedGoogle Scholar
  152. Negi J, Matsuda O, Nagasawa T et al (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486. https://doi.org/10.1038/nature06720 CrossRefPubMedGoogle Scholar
  153. Nishiyama R, Watanabe Y, Leyva-Gonzalez MA et al (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci 110:4840–4845. https://doi.org/10.1073/pnas.1302265110 CrossRefPubMedGoogle Scholar
  154. Noguchi T, Fujioka S, Takatsuto S et al (1999) Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiol 120:833–840. https://doi.org/10.1104/pp.120.3.833 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Noguchi T, Fujioka S, Choe S et al (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124:201–210CrossRefPubMedPubMedCentralGoogle Scholar
  156. Normanly J, Slovin JP, Cohen JD (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiol 107:323–329. https://doi.org/10.1104/pp.107.2.323 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00086
  158. Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995CrossRefPubMedPubMedCentralGoogle Scholar
  159. Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324(80):1684–1689. https://doi.org/10.1126/science.1167324 CrossRefPubMedGoogle Scholar
  160. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349CrossRefGoogle Scholar
  161. Parihar P, Singh S, Singh R et al (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075. https://doi.org/10.1007/s11356-014-3739-1 CrossRefGoogle Scholar
  162. Pei Z-M, Murata Y, Benning G et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734CrossRefGoogle Scholar
  163. Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. Omi A J Integr Biol 15:893–901. https://doi.org/10.1089/omi.2011.0092 CrossRefGoogle Scholar
  164. Piotrowska A, Bajguz A (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72:2097–2112. https://doi.org/10.1016/j.phytochem.2011.08.012 CrossRefPubMedGoogle Scholar
  165. Pollier J, Rombauts S, Goossens A (2013) Analysis of RNA-Seq data with TopHat and cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods Mol Biol (Clifton, NJ) 1011:305–315CrossRefGoogle Scholar
  166. Pospisilová J, Synková H, Rulcová J (2000) Cytokinins and water stress. MINIREVIEW. Biol Plant 43:321–328. https://doi.org/10.1023/A:1026754404857 CrossRefGoogle Scholar
  167. Pott MB, Hippauf F, Saschenbrecker S et al (2004) Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens. Plant Physiol 135:1946–1955. https://doi.org/10.1104/pp.104.041806 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Qin G, Gu H, Zhao Y et al (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693–2704. https://doi.org/10.1105/tpc.105.034959 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032. https://doi.org/10.1105/tpc.111.084988 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Reusche M, Klásková J, Thole K et al (2013) Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol Plant Microbe Interact 26:850–860. https://doi.org/10.1094/MPMI-12-12-0287-R CrossRefPubMedGoogle Scholar
  171. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54. https://doi.org/10.1105/tpc.105.037796 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Rigal A, Ma Q, Robert S (2014) Unraveling plant hormone signaling through the use of small molecules. Front Plant Sci 5:373. https://doi.org/10.3389/fpls.2014.00373 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743. https://doi.org/10.1074/jbc.M313350200 CrossRefPubMedGoogle Scholar
  174. Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235. https://doi.org/10.1146/annurev.es.18.110187.001233 CrossRefGoogle Scholar
  175. Rojas-Pierce M, Titapiwatanakun B, Sohn EJ et al (2007) Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem Biol 14:1366–1376CrossRefPubMedGoogle Scholar
  176. Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100:550–560. https://doi.org/10.1111/j.1399-3054.1997.tb03060.x CrossRefGoogle Scholar
  177. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H The biology of strigolactones. Trends Plant Sci 18:72–83. https://doi.org/10.1016/j.tplants.2012.10.003 CrossRefPubMedGoogle Scholar
  178. Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27. https://doi.org/10.1111/j.1365-313X.2008.03577.x CrossRefPubMedGoogle Scholar
  179. Santiago J, Henzler C, Hothorn M (2013) Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 341(80):889–892CrossRefPubMedGoogle Scholar
  180. Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci 86:6621–6625CrossRefPubMedGoogle Scholar
  181. Schwartz SH, Leon-Kloosterziel KM, Koornneef M, Zeevaart JAD (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166CrossRefPubMedPubMedCentralGoogle Scholar
  182. Seo M, Akaba S, Oritani T et al (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693CrossRefPubMedPubMedCentralGoogle Scholar
  183. Seo M, Koiwai H, Akaba S et al (2000) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488. https://doi.org/10.1046/j.1365-313x.2000.00812.x CrossRefPubMedGoogle Scholar
  184. Seo HS, Song JT, Cheong J-J et al (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci 98:4788–4793. https://doi.org/10.1073/pnas.081557298 CrossRefPubMedGoogle Scholar
  185. Shabala S (2013) Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221CrossRefPubMedPubMedCentralGoogle Scholar
  186. Shabala S, White RG, Djordjevic MA et al (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104CrossRefGoogle Scholar
  187. Shani E, Weinstain R, Zhang Y et al (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci 110:4834–4839CrossRefPubMedGoogle Scholar
  188. Sheard LB, Tan X, Mao H et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405CrossRefPubMedPubMedCentralGoogle Scholar
  189. Shimada A, Ueguchi-Tanaka M, Nakatsu T et al (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523CrossRefPubMedGoogle Scholar
  190. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227CrossRefPubMedGoogle Scholar
  191. Sierla M, Waszczak C, Vahisalu T, Kangasjärvi J (2016) Reactive oxygen species in the regulation of stomatal movements. Plant Physiol 171:1569–1580. https://doi.org/10.1104/pp.16.00328 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Sindhu RK, Griffin DH, Walton DC (1990) Abscisic aldehyde is an intermediate in the enzymatic conversion of xanthoxin to abscisic acid in Phaseolus vulgaris L. leaves. Plant Physiol 93:689–694CrossRefPubMedPubMedCentralGoogle Scholar
  193. Sirichandra C, Wasilewska A, Vlad F et al (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60:1439–1463. https://doi.org/10.1093/jxb/ern340 CrossRefPubMedGoogle Scholar
  194. Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16CrossRefGoogle Scholar
  195. Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321CrossRefPubMedPubMedCentralGoogle Scholar
  196. Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415. https://doi.org/10.1105/tpc.000885 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Taji T, Seki M, Satou M et al (2004) Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709. https://doi.org/10.1104/pp.104.039909 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722. https://doi.org/10.1016/0003-9861(88)90080-X CrossRefPubMedGoogle Scholar
  199. Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279:41866–41872. https://doi.org/10.1074/jbc.M406337200 CrossRefPubMedGoogle Scholar
  200. Tanaka M, Takei K, Kojima M et al (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036. https://doi.org/10.1111/j.1365-313X.2006.02656.x CrossRefPubMedGoogle Scholar
  201. Tanigaki Y, Higashi T, Takayama K et al (2015) Transcriptome analysis of plant hormone-related tomato (Solanum lycopersicum) genes in a sunlight-type plant factory. PLoS One 10:e0143412. https://doi.org/10.1371/journal.pone.0143412 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Tao Y, Ferrer J-L, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176. https://doi.org/10.1016/j.cell.2008.01.049 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Thayer ZM, Kuzawa CW (2011) Biological memories of past environments: epigenetic pathways to health disparities. Epigenetics 6:798–803. https://doi.org/10.4161/epi.6.7.16222 CrossRefPubMedGoogle Scholar
  204. Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress-responses : abscisic acid, cytokinin, and the effects of NaCl. Plant Physiol 100:416–423. doi: 0032-0889/92/100/041CrossRefPubMedPubMedCentralGoogle Scholar
  205. Tohge T, de Souza LP, Fernie AR (2014) Genome-enabled plant metabolomics. J Chromatogr B 966:7–20. https://doi.org/10.1016/j.jchromb.2014.04.003 CrossRefGoogle Scholar
  206. Tsuda E, Yang H, Nishimura T et al (2011) Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J Biol Chem 286:2354–2364CrossRefPubMedGoogle Scholar
  207. Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9. https://doi.org/10.1016/j.envexpbot.2007.06.007 CrossRefGoogle Scholar
  208. Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 00325:2015Google Scholar
  209. van den Berg C, Willemsen V, Hendriks G et al (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289CrossRefPubMedGoogle Scholar
  210. Van Leene J, Hollunder J, Eeckhout D et al (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397. https://doi.org/10.1038/msb.2010.53 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Varbanova M, Yamaguchi S, Yang Y et al (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32–45. https://doi.org/10.1105/tpc.106.044602 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118. https://doi.org/10.1111/j.1469-8137.2009.03121.x CrossRefPubMedGoogle Scholar
  213. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202 CrossRefPubMedGoogle Scholar
  214. Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31:453–489CrossRefGoogle Scholar
  215. Walton A, Stes E, De Smet I et al (2015) Plant hormone signalling through the eye of the mass spectrometer. Proteomics 15:1113–1126. https://doi.org/10.1002/pmic.201400403 CrossRefPubMedGoogle Scholar
  216. Wang J, Chen C (2008) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002 CrossRefPubMedGoogle Scholar
  217. Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151. https://doi.org/10.1105/tpc.001768 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790. https://doi.org/10.1016/j.cub.2007.09.025 CrossRefPubMedGoogle Scholar
  219. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176CrossRefGoogle Scholar
  220. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. https://doi.org/10.1093/aob/mct067 CrossRefPubMedPubMedCentralGoogle Scholar
  221. Watanabe KA, Ringler P, Gu L, Shen QJ (2014) RNA-sequencing reveals previously unannotated protein- and microRNA-coding genes expressed in aleurone cells of rice seeds. Genomics 103:122–134. https://doi.org/10.1016/j.ygeno.2013.10.007 CrossRefPubMedGoogle Scholar
  222. Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502CrossRefPubMedPubMedCentralGoogle Scholar
  223. White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122:1081–1088. https://doi.org/10.1104/pp.122.4.1081 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565. http://www.nature.com/nature/journal/v414/n6863/suppinfo/414562a_S1.html CrossRefPubMedGoogle Scholar
  225. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210CrossRefPubMedGoogle Scholar
  226. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735. https://doi.org/10.1093/aob/mci083 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Wu G, Shao H-B, Chu L-Y, Cai J-W (2007) Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agron Sustain Dev 27:69–78. https://doi.org/10.1051/agro:2006031 CrossRefGoogle Scholar
  228. Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735CrossRefPubMedGoogle Scholar
  229. Yamada Y, Furusawa S, Nagasaka S et al (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408CrossRefPubMedGoogle Scholar
  230. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189CrossRefGoogle Scholar
  231. Yang Y, Hammes UZ, Taylor CG et al (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127CrossRefPubMedGoogle Scholar
  232. Yang Y, Xu R, Ma C et al (2008) Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol 147:1034–1045. https://doi.org/10.1104/pp.108.118224 CrossRefPubMedPubMedCentralGoogle Scholar
  233. Yesbergenova Z, Yang G, Oron E et al (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876. https://doi.org/10.1111/j.1365-313X.2005.02422.x CrossRefPubMedGoogle Scholar
  234. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2015) Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant Cell Physiol 56:1043–1052. https://doi.org/10.1093/pcp/pcv060 CrossRefPubMedGoogle Scholar
  235. Zandalinas SI, Mittler R, Balfagón D et al (2017) Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162: 2–12. 2018CrossRefPubMedGoogle Scholar
  236. Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38:1174–1181. https://doi.org/10.1093/jxb/38.7.1174 CrossRefGoogle Scholar
  237. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. F Crop Res 97:111–119. https://doi.org/10.1016/j.fcr.2005.08.018 CrossRefGoogle Scholar
  238. Zhang Y, Gao P, Yuan JS (2010) Plant protein-protein interaction network and interactome. Curr Genomics 11:40–46. https://doi.org/10.2174/138920210790218016 CrossRefPubMedPubMedCentralGoogle Scholar
  239. Zhang Y, Liu S, Dai SY, Yuan JS (2012) Integration of shot-gun proteomics and bioinformatics analysis to explore plant hormone responses. BMC Bioinformatics 13:S8. https://doi.org/10.1186/1471-2105-13-S15-S8 CrossRefPubMedPubMedCentralGoogle Scholar
  240. Zhang Y, Van Dijk ADJ, Scaffidi A et al (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033CrossRefPubMedGoogle Scholar
  241. Zhao Y (2014) Auxin biosynthesisGoogle Scholar
  242. Zhu J-K (2003) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefGoogle Scholar
  243. Zürcher E, Tavor-Deslex D, Lituiev D et al (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–1075. https://doi.org/10.1104/pp.112.211763 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sameh Soliman
    • 1
    • 2
  • Ali El-Keblawy
    • 3
  • Kareem A. Mosa
    • 4
    • 5
  • Mohamed Helmy
    • 6
  • Shabir Hussain Wani
    • 7
  1. 1.Department of Medicinal Chemistry, College of PharmacyUniversity of SharjahSharjahUAE
  2. 2.Department of Pharmacognosy, Faculty of PharmacyUniversity of ZagazigZagazigEgypt
  3. 3.Department of Applied Biology, College of SciencesUniversity of SharjahSharjahUAE
  4. 4.Department of Applied BiologyCollege of Sciences, University of SharjahSharjahUAE
  5. 5.Department of BiotechnologyFaculty of Agriculture, Al-Azhar UniversityCairoEgypt
  6. 6.The Donnelly Centre for Cellular and Biomedical ResearchUniversity of TorontoTorontoCanada
  7. 7.Division of Genetics and Plant BreedingSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirJ&KIndia

Personalised recommendations