Genetic Transformation in Eucalyptus

  • Shuchishweta Vinay Kendurkar
  • Mamatha Rangaswamy


Eucalyptus, commonly known as eucalypts, has over 700 species and is native to Australia and the neighboring islands of Timor and Indonesia. Due to their superior growth, adaptability to specific environments, and desirable wood properties, Eucalyptus species have become the most valuable and widely planted hardwoods in the world. The main theme to attempt genetic transformation in trees is the improvement of productivity and quality. The potential of production of trees with novel traits is one of the most distinct benefits of genetic transformation. There are three prerequisites for successful genetic transformation of a cell or tissue: introduction of the DNA into the cell, its integration into the host genome, and the controlled expression of the introduced DNA. Common methods for genetic transformation are usually divided into indirect or direct transformation. Biological methods using bacteria are referred to as indirect, while direct methods are physical which are based on the penetration of the cellular wall. Indirect transformation methods introduce plasmids/independent circular molecules of DNA that are found in bacteria, separate from the bacterial chromosome into the target cell by means of bacteria capable of transferring genes to higher plant species. The most popular used microorganisms are Agrobacterium tumefaciens and Agrobacterium rhizogenes. Direct transfer includes electroporation and microprojectile/biolistics/particle bombardment.


Eucalyptus Genetic transformation Direct transfer Indirect transfer Agrobacterium Electroporation Biolistic 


  1. Abdul-Baki AA, Saunders JA, Matthews BF, Pittarelli GW (1990) DNA uptake during electroporation of germinating pollen grains. Plant Sci 70(2):181–190CrossRefGoogle Scholar
  2. Aggarwal D, Kumar A, Reddy MS (2011) Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiol Plant 33(5):1603–1611CrossRefGoogle Scholar
  3. Ahad A, Maqbool A, Malik KA (2014) Optimization of Agrobacterium tumefaciens mediated transformation in Eucalyptus camaldulensis. Pak J Bot 76(2):735–774Google Scholar
  4. Antanas VS, Van Beveren K, Leitch MA, Bossinger G (2005) Agrobacterium-mediated in vitro transformation of wood-producing stem segments in Eucalypts. Plant Cell Rep 23:617–624CrossRefGoogle Scholar
  5. Antony Ceasar S, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788PubMedCrossRefPubMedCentralGoogle Scholar
  6. Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S (2006) Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. Plant Physiol Biochem 44(11–12):674–683PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baucher M, Chabbert B, Pilate G, Doorsselaere JV, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490PubMedPubMedCentralCrossRefGoogle Scholar
  8. BeiLmann A, Albrecht K, Schultze S, Wanner G, Pfitzner UM (1992) Activation of a truncated PR-l promotor by endogenous enhancers in transgenic plants. Plant Mol Biol 18:65–78PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304(5922):184–187CrossRefGoogle Scholar
  10. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538PubMedCrossRefPubMedCentralGoogle Scholar
  13. Briggs BG, Johnson LAS (1979) Evolution in the Myrtaceae – evidence from inflorescence structure. Proc Linnean Soc NSW 102:157–256Google Scholar
  14. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629–633PubMedCrossRefPubMedCentralGoogle Scholar
  15. Carocha V, Soler M, Hefe C, Cassan-Wang H, Fevereiro P, Alexander A (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  16. Castellanos-Hernández OA, Rodríguez-Sahagun A, Acevedo-Hernández GJ, Rodríguez-Garay B, Cabrera-Ponce JL, Herrera-Estrella LR (2009) Transgenic Paulownia elongata plants using biolistic-mediated transformation. Plant Cell Tiss Org Cult 9(2):175–181CrossRefGoogle Scholar
  17. Chaix G, Monteuuis O (2004). Biotechnology in the forestry sector. Food and Agriculture Organization. In: Preliminary review of biotechnology in forestry, including genetic modification. FAO-Division des ressources forestières. Rome: FAO, pp 19–56Google Scholar
  18. Chan MT, Lee TM, Chang HH (1992) Transformation of Indica Rice (Oryza saliva L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33:577–583Google Scholar
  19. Chand PK, Ochatt SJ, Rech EL, Power JB, Davey MR (1988) Electroporation stimulates plant regeneration from protoplasts of the woody medicinal species Solarium dulcamara L. J Exp Bot 39(9):1267–1274CrossRefGoogle Scholar
  20. Chawla HS (2000) Introduction to plant biotechnology. Enfield, NH, USAGoogle Scholar
  21. Cheah KT (2001) Methods for producing genetically modified plants, genetically modified plants, plant materials and plant products produced thereby. United States Patent No 6255559 [Issued July 2001]Google Scholar
  22. Chen ZZ, Chang SH, Ho CK, Chen YC, Tsai JB, Chiang VL (2001) Plant production of transgenic Eucalyptus camaldulensis carrying the Populus tremuloides cinnamate 4-hydroxylase gene. Taiwan J For Sci 16:249–258Google Scholar
  23. Chen ZZ, Ho CK, Ahn IS, Chiang VL (2007) Eucalyptus. In: Wang K (ed) Methods in molecular biology. Vol. 344: Agrobacterium protocols Vol. II. Humana Press, Inc., Totowa, pp 125–134Google Scholar
  24. Chen BW, Xiao YF, Li JJ, Liu HL, Qin ZH, Gai Y, Jiang XN (2016a) Identification of the CAD gene from Eucalyptus urophylla GLU4 and its functional analysis in transgenic tobacco. Genet Mol Res 15(4):1–21Google Scholar
  25. Chen W, Li S, Yu H, Liu X, Huang L, Wang Q, Liu H, Cui Y, Tang Y, Zhang P, Wang C (2016b) ER adaptor SCAP translocates and recruits IRF3 to perinuclear microsome induced by cytosolic microbial DNAs. PLoS Pathog 12(2):1–22PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chriqui D, Adam S, Caissard JC, Noin M, Azim A (1992) Shoot regeneration and Agrobacterium-mediated transformation of E. globulus and E. gunnii. In: Schonau APG (ed) IUFRO symposium on intensive forestry: the role of Eucalyptus. Proceedings. Pretoria, South Africa: South African Institute of Forestry, pp 70–80Google Scholar
  27. Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza Sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9(10):957–962CrossRefGoogle Scholar
  28. Creux NM, Ranik M, Berger DK, Myburg AA (2008) Comparative analysis of orthologous cellulose synthase promoters from Arabidopsis, Populus and Eucalyptus: evidence of conserved regulatory elements in angiosperms. New Phytol 179:722–737PubMedCrossRefPubMedCentralGoogle Scholar
  29. Danilova SA (2007) The technologies for genetic transformation of cereals. Russ J Plant Physiol 54:569–581CrossRefGoogle Scholar
  30. de la Torre F, Rodrıguez R, Jorge G, Villar B, Alvarez-Otero R, Grima- Pettenati J, Gallego PP (2014) Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell Tiss Org Cult 117:77–84CrossRefGoogle Scholar
  31. Dekeyser RA, Claes B, De Rycke RMU, Habets ME, Van Montagu MC, Caplan AB (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2(7):591–602PubMedPubMedCentralCrossRefGoogle Scholar
  32. Delbreil B, Jullien M (1993) Agrobacterium mediated transformation of Asparagus officinalis L. Long term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep 13:372–376Google Scholar
  33. Dhar MK, Kaul S, Kour J (2011) Towards the development of better crops by genetic transformation using engineered plant chromosomes. Plant Cell Rep 30(5):799–806PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dibax R, Quisen RC, Bona C, Quoirin M (2010) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Braz Arch Biol Technol 53(2):311–331. Mar/AproCrossRefGoogle Scholar
  35. Diouf D (2003) Genetic transformation of forest trees. African J Biotechnol 2:328–333CrossRefGoogle Scholar
  36. Djuzenova CS, Zimmermann U, Frank H, Sukhorukov VL, Richter E, Fuhr G (1996) Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim Biophys Acta-Biomembr 1284:143–152CrossRefGoogle Scholar
  37. Dunsmuir P, Bond D, Lee K, Gidoni D, Townsend J (1988) Stability of introduced genes and stability in expression. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Belgium, pp 1–7Google Scholar
  38. Eldridge K, Davidson J, Harwood C, Van WG (1993) Eucalypt domestication and breeding. Oxford University Press, New York electroporation in high electric fields. EMBO J 1(7):841–845Google Scholar
  39. Eldridge K, Davidson C, Harwood C, Van Wyk G (1994) Eucalyptus domestication and breeding. Oxford University Press, New YorkGoogle Scholar
  40. Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues? Mol Biotechnol 41(3):286–295PubMedCrossRefPubMedCentralGoogle Scholar
  41. Evans J (1999) Planted forests of the wet and dry tropics: their variety, nature, and significance. In: Planted forests: contributions to the quest for sustainable societies. Springer, Netherlands, pp 25–36CrossRefGoogle Scholar
  42. FAO (2004) The state of food and agriculture 2003–2004. Agricultural biotechnology: meeting the needs of the poor? FAO agriculture series, no. 35 RomeGoogle Scholar
  43. FAO (2007) The state of food and agriculture. Paying farmers for environmental services. Food and agriculture organization of the united nations, RomeGoogle Scholar
  44. Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296PubMedCrossRefPubMedCentralGoogle Scholar
  45. Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J (1995) Tissue-specific and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol Biol 27:651–667PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fillatti JJ, Selmer J, McCown B, Hassig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199CrossRefGoogle Scholar
  47. Foucart C, Jauneau A, Gion JM, Amelot N, Martinez Y, Panegos P, Grima-Pettenati J (2009) Over expression of EgROP1, a Eucalyptus vascular-expressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana. New Phytol 183:1014–1029PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fraley RT, Rogers SG, Horsch RD, Sanders PR, Flick S (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gallardo F, Fu J, Jing ZP, Kirby EG, Caovas FM (2003) Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem 41:587–594CrossRefGoogle Scholar
  50. Gallie DR, Lucas WJ, Walbot V (1989) Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1(3):301–311PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gao J, Lee M, An G (1991) The stability of foreign protein production in genetically modified plant cells. Plant Cell Rep 10:533–536PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gartland KMA, Crow RM, Fenning TM, Gartland JS (2003) Genetically modified trees: production, properties and potential. J Arboric 29(5):259–266Google Scholar
  53. Gendloff EH, Bowen B, Buchholz WG (1990) Quantification of chloramphenicol acetyl transferase in transgenic tobacco plants by ELISA and correlation with gene copy number. Plant Mol Biol 14:575–583PubMedCrossRefPubMedCentralGoogle Scholar
  54. Girijashankar V (2011) Genetic transformation of Eucalyptus. Physiol Mol Biol Plants 17:9–23PubMedPubMedCentralCrossRefGoogle Scholar
  55. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gonza’lez ER, de Andrade A, Bertolo AL, Coelho G, Tozelli R, Prado VA, Veneziano MT, Labate CA (2002) Production of transgenic Eucalyptus grandis, E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Funct Plant Biol 29:97–102CrossRefGoogle Scholar
  57. Grattapaglia D, Bradshaw HD (1994) Nuclear-DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24(5):1074–1078CrossRefGoogle Scholar
  58. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179(4):911–929PubMedCrossRefPubMedCentralGoogle Scholar
  59. Grierson D, Covey SN (1984) Prospects for the genetic engineering of plants. In: Plant molecular biology, 1st edn. Blackie & Son Limited, Glasgow/London, pp 147–159Google Scholar
  60. Griffin AR, Burgess IP, Wolf L (1988a) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’Hérit. A review. Aust J Bot 36:41–66CrossRefGoogle Scholar
  61. Grima-Pettenati J, Feuillet C, Goffner D, Borderies G, Boudet AM (1993) Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol 21:1085–1095PubMedCrossRefPubMedCentralGoogle Scholar
  62. Groves RH (1994) Australian vegetation, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  63. Han KY, Yang J (2000) Genetic transformation of orchids. United States Patent No 6020538 [Issued February 2000]Google Scholar
  64. Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic Eucalyptus. Mol Breed 6:307–315CrossRefGoogle Scholar
  65. Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hartman CL, Lee L, Day PR, Tumer NE (1994) Herbicide resistant turfgrass (Agrostis palustris huds) by biolistic transformation. Bio/Technol 12(9):919–923Google Scholar
  67. Hawkins S, Samaj J, Lauvergeat V, Boudet A, Grima-Pettenati J (1997) Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol 113:321–325PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hensgens LAM, Fornerod MWJ, Rueb S, Winkler AA, van der Veen S, Schilperoort RA (1992) Translation controls the expression level of a chimaeric reporter gene. Plant Mol Biol 20:921–938PubMedCrossRefPubMedCentralGoogle Scholar
  69. Herschbach C, Kopriva S (2002) Transgenic trees as tools in tree and plant physiology. Trees 16:250–261CrossRefGoogle Scholar
  70. Hjouj M, Rubinsky B (2010) Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J Membr Biol 236(1):137–146PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680CrossRefGoogle Scholar
  72. Hobbs SLA, Kpoda P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hu CY, Wang L (1999) In-planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Dev Biol Plant 35(5):417–420CrossRefGoogle Scholar
  76. Huang M, Zhang L (1999) Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol Plant Microbe Interact 12(8):680–690CrossRefGoogle Scholar
  77. Huang J, Wu L, Yalda D, Adkins Y, Kelleher SL, Crane M et al (2002) Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Res 11(3):229–239Google Scholar
  78. Hui SW (1995) Effects of pulse length and strength on electroporation efficiency. In: Nickoloff JA (ed) Methods in molecular biology. Plant cell electroporation and electrofusion protocols. Humana Press Inc., Totowa, pp 29–40Google Scholar
  79. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hussey SG, Saedi MN, Hefer CA, Myburg AA, Grima-Pettenati J (2015) Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. New Phytol 206:1337–1350PubMedCrossRefPubMedCentralGoogle Scholar
  81. Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K (1991) Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Gen Genet 227(3):391–396PubMedCrossRefPubMedCentralGoogle Scholar
  82. Jia Z, Sun Y, Yuan L, Tian Q, Luo K (2010) The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnol Lett 32:1325–1332PubMedCrossRefPubMedCentralGoogle Scholar
  83. Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep 8(12):701–705PubMedCrossRefPubMedCentralGoogle Scholar
  84. Johnson LAS (1976) Problems of species and genera in Eucalyptus (Myrtaceae). Plant Syst Evol 125:155–167CrossRefGoogle Scholar
  85. Kawaoka A, Nanto K, Sugita K, Endo S, Watanabe KY, Matsunaga EH (2003) Production and analysis of lignin modified transgenic eucalyptus. Tree Biotechnology Symposium, SwedenGoogle Scholar
  86. Kawasu T, Doi K, Ohta T, Shinohara Y, Ito K, Shibata M (1990) Transformation of Eucalyptus saligna using electroporation. Abstract In: 7th international congress on plant tissue and cell culture, Amsterdam. IAPTC 24–29 June, pp 64Google Scholar
  87. Kawazu T, Dol K, Tatemichi y, Ito K, Shibata M (1996) Regeneration of transgenic plants by nodule culture systems in Eucalyptus camaldulensis. In: Proc IUFRO Conf-“Ttee improvement for sustainable tropical forest”, pp 492–497Google Scholar
  88. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327(6117):70–73CrossRefGoogle Scholar
  89. Kooter JM, Mol JNM (1993) Trans-inactivation of gene expression in plants. Curr Sci 4:166–171Google Scholar
  90. Kothari SL, Kumar S, Vishnoi RK, Kothari SL, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88CrossRefGoogle Scholar
  91. Krimi Z, Raio A, Petit A, Nesme X, Dessaux Y (2006) Eucalyptus occidentalis plantlets are naturally infected by pathogenic Agrobacterium tumefaciens. Eur J Plant Pathol 116:237–246CrossRefGoogle Scholar
  92. Kubiniec RT, Liang H, Hui SW (1990) Effects of pulse length and pulse strength on transfection by electroporation. Biotechniques 8(1):16–20PubMedPubMedCentralGoogle Scholar
  93. Kumar V, Rout S, Tak MK, Deepak KR (2015) Application of biotechnology in forestry: current status and future perspective. Nat Environ Pollut Technol 14(3):1–9Google Scholar
  94. Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudeta M (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441PubMedCrossRefPubMedCentralGoogle Scholar
  95. Lacombe E, Van Doorsselaere J, Boerjan W, Boudet A, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. Plant J 23:663–676PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ladiges PY (1997) Phylogenetic history and classification of Eucalypt. In: Willaim J, Woinarski J (eds) Eucalypt ecology: individual to ecosystems. Cambridge University Press, Cambridge, pp 16–29Google Scholar
  97. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–163PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J (2002) The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species. Plant Mol Biol 50:497–509PubMedCrossRefPubMedCentralGoogle Scholar
  100. Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C (2010) EgMYB1, an R2R3 MYB transcription factor from Eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786PubMedCrossRefPubMedCentralGoogle Scholar
  101. Leple JC, Grima-Pettenati J, Van Montagu M, Boerjan W (1998) A cDNA encoding cinnamoyl-CoA reductase from Populus trichocarpa (PGR98–121). Plant Physiol 117:1126–1126Google Scholar
  102. Li SL, You ZG, Liang DX, Li SR (1997) Extraction and separation of allelochemicals in wheat and its herbicidal efficacy on Imperata cylindrical. Acta phytophyl Sun 24:81–84Google Scholar
  103. Lindsey K, Jones MGK (1990) Selection of transformed cells. In: Dix PJ (ed) Plant cell line selection procedures and applications. YCH, Weinheim/New York/Basel/Cambridge, pp 317–339Google Scholar
  104. Llewellyn DJ (1999) Herbicide tolerant forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publ. Dordrecht, The Netherlands, pp 439–466Google Scholar
  105. Luciano CS, Rhoads RE, Shaw JG (1987) Synthesis of potyviral RNA and proteins in tobacco mesophyll protoplasts inoculated by electroporation. Plant Sci 51(2–3):295–303CrossRefGoogle Scholar
  106. Machado LO, de Andrade GM, Cid LPB, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt Eucalyptus grandis × E. urophylla. Plant Cell Rep 16:299–303Google Scholar
  107. MacRae S, von Staden J (1990) In vitro culture of Eucalyptus grandis. Effect of glling agents on propagation. J Plant Physiology 137:249–251CrossRefGoogle Scholar
  108. Makouanzi G, Bouvet JM, Denis M, Saya A, Mankessi F, Vigneron P (2014) Assessing the additive and dominance genetic effects of vegetative propagation ability in Eucalyptus—influence of modeling on genetic gain. Tree Genet Genomes 10(5):1243–1256CrossRefGoogle Scholar
  109. Manders G, dos Santos AVP, d’Utra Vaz FB, Davey MR, Power JB (1992) Transient gene expression in electroporated protoplasts of Eucalyptus citriodora hook. Plant Cell Tiss Org Cult 30(1):69–75CrossRefGoogle Scholar
  110. Mantell SH, Matthews A, McKee RA (1985) Vectors for gene cloning in plants. In: Principles of plant biotechnology: an introduction to genetic engineering in plants. Blackwell Scientific Publications, Oxford/London/Edinburgh/Boston/Palo Alto/Melbourne, p 6288Google Scholar
  111. Marques S, Garcia-Gonzalo J, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011) Developing post –fire Eucalyptus globules stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fennica 45(1):69–83CrossRefGoogle Scholar
  112. Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235PubMedCrossRefPubMedCentralGoogle Scholar
  113. Mendonça EG, Stein VS, Balieiro FP, Lima CDF, Santos BR, Paiva LV (2013) Genetic transformation of Eucalyptus camaldulensis by agrobalistic method. Revista Árvore, Viçosa-MG 37(3):419–429CrossRefGoogle Scholar
  114. Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–300PubMedCrossRefPubMedCentralGoogle Scholar
  115. Moralejo M, Rochange F, Boudet AM, Teulieres C (1998) Generation of transgenic Eucalyptus globulus plantlets through Agrobacterium tumefaciens mediated transformation. Aust J Plant Physiol 25:207–212CrossRefGoogle Scholar
  116. Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16(11):787–791CrossRefGoogle Scholar
  117. Myburg AA, Potts BM, Marques C, Kirst M, Gion JM, Grattapaglia D, Grima-Pettenat J (2007) Eucalypts. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 115–160Google Scholar
  118. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jl J (2014) The genome of Eucalyptus grandis. Nature 509:356–362CrossRefGoogle Scholar
  119. Nair SG, Vijayalakshmi C (2010) Genetic transformation of ITC-3, a superior clone of Eucalyptus tereticornis. Indian J Agric Res 44(3):229–232Google Scholar
  120. Navarro M, Ayax C, Martinez Y, Laue J, Koyal WEI, Marque C, Tuelieres C (2011) Two EguCBF1 genes over expressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63PubMedCrossRefPubMedCentralGoogle Scholar
  121. Neumann E, Schaefer-Ridder M, Wang Y (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845PubMedPubMedCentralCrossRefGoogle Scholar
  122. Oard JH, Paige DF, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice and wheat cells using an air gun apparatus. Plant Physiol 92(2):334–339PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ottaviani MP, Smits T, Hansisch ten Cate CH (1993) Differntial methylation and expression of the beta- glucuronidase and neomycin phosphotranferase genes in transgenic potato cv Bintje. Plant Sci 88:73–81Google Scholar
  124. Ouyang LJ, Li LM (2016) Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla x Eucalyptus grandis. Transgenic Res 25:441–452. CrossRefPubMedPubMedCentralGoogle Scholar
  125. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34(3):231–293CrossRefGoogle Scholar
  126. Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B et al (1984) Direct gene transfer to plants. EMBO J 3(12):2717–2722PubMedPubMedCentralCrossRefGoogle Scholar
  127. Patnaik D, Khurana P (2001) Wheat biotechnology: a mini-review. Electron J Biotechnol 4(2):38–66Google Scholar
  128. Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:5000–5506CrossRefGoogle Scholar
  129. Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676PubMedCrossRefPubMedCentralGoogle Scholar
  130. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, BoerjanW SW, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612PubMedCrossRefPubMedCentralGoogle Scholar
  131. Plasencia A, Soler M, Dupas A, Ladouce N, Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Pettenati JG (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J 14:1381–1393PubMedCrossRefPubMedCentralGoogle Scholar
  132. Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199(2):183–188CrossRefGoogle Scholar
  133. Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New For 27(2):115–138Google Scholar
  134. Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In: Williams J, Woinarski J (eds) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge, pp 56–91Google Scholar
  135. Prakash MG, Gurumurthi K (2009) Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. Using Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 45(4):429–434CrossRefGoogle Scholar
  136. Pryor LD, Johnson LAS (1971) A classification of the eucalypts. Australian National University Press, CanberraGoogle Scholar
  137. Qayyum A, Bakhsh A, Kiani S, Shahzad K, Ali Shahid A, Husnain T et al (2009) The myth of plant transformation. Biotechnol Adv 27(6):753–763CrossRefGoogle Scholar
  138. Raj D, Veale A, Ma C, Strauss SH, Myburg AA (2011) Optimization of a plant regeneration and genetic transformation protocol for Eucalyptus clonal genotypes. BMC Proceedings 5(7):132Google Scholar
  139. Ritchie GA (1991) The commercial use of conifer rooted cuttings in forestry: a world overview. New Forests 5:247–275CrossRefGoogle Scholar
  140. Rochange F, Serrano L, Marque C, Teulieres C, Boudet AM (1995) DNA delivery into Eucalyptus globulus zygotic embryos through biolistics: optimization of the biological and physical parameters of bombardment for two different particle guns. Plant Cell Rep 14:674–678PubMedCrossRefPubMedCentralGoogle Scholar
  141. Samaj J, Hawkins S, Lauvergeat V, Grima-Pettenati J, Boudet A (1998) Immunolocalization of cinnamyl alcohol dehydrogenase 2 (CAD 2) indicates a good correlation with cell-specific activity of CAD 2 promoter in transgenic poplar shoots. Planta 204:437–443PubMedCrossRefPubMedCentralGoogle Scholar
  142. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, U.S.A.Google Scholar
  143. Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79(1):206–209CrossRefGoogle Scholar
  144. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37CrossRefGoogle Scholar
  145. Sanford JC, Smith FD, Russel JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509PubMedCrossRefPubMedCentralGoogle Scholar
  146. Sartoretto LM, Barrueto CLP, Brasileiro ACM (2002) Biolistic transformation of Eucalyptus grandis × E. urophylla callus. Funct Plant Biol 29:917–924CrossRefGoogle Scholar
  147. Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochem Bioenerg 26(1):1–13CrossRefGoogle Scholar
  148. Sedjo RA (2001) From foraging to cropping: the transition to plantation forestry, and implications for wood supply and demand. Unasylva 52:24–27Google Scholar
  149. Séguin A (1999) Transgenic trees resistant to microbial pests. For Chron 75:303–304CrossRefGoogle Scholar
  150. Serrano L, Rochange F, Sembalt JP, Marque C, Teulieres C, Boudet AM (1996) Genetic transformation of Eucalyptus globulus through biolistics: complementary development procedures for organogenesis from zygotic embryos and stable transformation of corresponding proliferating tissue. J Exp Bot 47:285–290CrossRefGoogle Scholar
  151. Shirsat AH, Wilford N, Croy RRD (1989) Gene copy number and levels of expression intransgenic plants of a seed specific gene. Plant Sci 61:75–80CrossRefGoogle Scholar
  152. Smith KR (2003) Gene therapy: theoretical and bioethical concepts. Arch Med Res 34:247–268PubMedCrossRefPubMedCentralGoogle Scholar
  153. Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18(10):829–834CrossRefGoogle Scholar
  154. Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer C (2015) The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. New Phytol 206:1364–1377PubMedCrossRefGoogle Scholar
  155. Southerton SG (2007) Early flowering induction and Agrobacterium transformation of hardwood tree species Eucalyptus occidentalis. Funct Plant Biol 34:707–713CrossRefGoogle Scholar
  156. Southgate EM, Davey MR, Power JB, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13(4):631–651PubMedCrossRefPubMedCentralGoogle Scholar
  157. Spörlein B, Koop H-U (1991) Lipofectin: direct gene transfer to higher plants using cationic liposomes. Theor Appl Genet 83(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  158. Strauss SH, Boerjan W, Cairney J, Campbell M, Dean J, Ellis D, Jouanin L, Sundberg B (1999) Forest biotechnology makes its position known. Nat Biotechnol 17:1145PubMedCrossRefPubMedCentralGoogle Scholar
  159. Strauss SH, DiFazio SP, Meilan R (2001) Genetically modified poplars in context. Forest Chron 77:271–279CrossRefGoogle Scholar
  160. Sukhorukov VL, Mussauer H, Zimmermann U (1998) The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media. J Membr Biol 163:235–245PubMedCrossRefPubMedCentralGoogle Scholar
  161. Sutton WRJ (1999) The need for planted forests and the example of radiate pine. New For 17:95–109CrossRefGoogle Scholar
  162. Tada Y, Sakamoto M, Fujiyama T (1990) Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theor Appl Genet 80(4):475–480PubMedCrossRefPubMedCentralGoogle Scholar
  163. Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21(12):963–977PubMedCrossRefPubMedCentralGoogle Scholar
  164. Teulieres C, Grima Pettenati J, Curie C, Teissie J, Boudet AM (1991) Transient foreign gene expression in polyethylene/glycol treated or electropulsated Eucalyptus gunnii protoplasts. Plant Cell Tiss Org Cult 25:125–132Google Scholar
  165. Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Nat Biotechnol 6(9):1072–1074CrossRefGoogle Scholar
  166. Tournier V, Grat S, Marque C, Kayal WE, Penchel R, de Andrade G, Boudet AM, Teulières C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x E. urophylla). Transgenic Res 12:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  167. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789PubMedCrossRefPubMedCentralGoogle Scholar
  168. Turgut-Kara N, Ari S (2010) The optimization of voltage parameter for tissue electroporation in somatic embryos of Astragalus chrysochlorus (Leguminosae). Afr J Biotechnol 9(29):4584–4588Google Scholar
  169. Turnbull JW (1999) Eucalypt plantations. New For 17:37–52CrossRefGoogle Scholar
  170. Tzfira T, Zuker A, Altman A (1998) Forest-tree biotechnology: genetic transformation and its application to future forests. Trends Biotechnol 16:439–446CrossRefGoogle Scholar
  171. Valério L, Carter D, Rodrigues CJ, Tournier V, Gominho J, Marque C, Boudet AM, Maunders M, Pereira H, Teulières C (2003) Down regulation of cinnamyl alcohol dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Mol Breeding 12(2):157–167CrossRefGoogle Scholar
  172. Van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Can J For Res 34:1163–1180CrossRefGoogle Scholar
  173. Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution: a historical perspective. In Vitro Cell Dev Biol Plant 41(5):577–583CrossRefGoogle Scholar
  174. Vikas K, Rout S, Tak MK, Deepak KR (2015) Application of biotechnology in forestry: current status and future perspective. Nat Environ Pollut Technol 14:645–653Google Scholar
  175. Volker PW (1995) Evaluation of E nitens x globules for commercial forestry. IUFRO:1–4Google Scholar
  176. Ward ER, Ryals JA, Miflin BJ (1993) Chemical regulation of transgene expression in plants. Plant Mol Biol 22:361–366PubMedCrossRefPubMedCentralGoogle Scholar
  177. Weaver JC (1995) Electroporation theory. In: Nickoloff JA (ed) Methods in molecular biology. Plant cell electroporation and electrofusion protocols. Humana Press Inc., Totowa, pp 3–28Google Scholar
  178. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Biochem Bioenergetics 41:135–160CrossRefGoogle Scholar
  179. Wheeler MA, Byrne M, McComb JA (2003) Little genetic differentiation within the dominant forest tree, Eucalyptus marginata (Myrtaceae) of South- Western Australia. Silvae Genetica 52(5–6):254–259Google Scholar
  180. Yanchuck AD (2001) The role and implications of biotechnological tools in forestry. Unasylva 52:53–61Google Scholar
  181. Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe NK (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26:135–141CrossRefGoogle Scholar
  182. Yu H, Soler M, Mila I, San Clemente H, Savelli B, Dunand C, Paiva JAP (2014) Genome-wide characterization and expression profiling of the auxin response factor (ARF) gene family in Eucalyptus grandis PLoS One 9(9): e0108906. https://doi:10.1371/journal.pone.0108906CrossRefPubMedPubMedCentralGoogle Scholar
  183. Yu H, Soler M, San Clemente H, Mila I, Paiva JAP, Myburg AA, Bouzayen M (2015) Comprehensive genome-wide analysis of the Aux/ IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. Plant Cell Physiol 56:700–714PubMedCrossRefPubMedCentralGoogle Scholar
  184. Zhang W, Wu R (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet 76(6):835–840PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zimmermann U, Vienken J (1982) Stable transformation of maize after gene transfer by electroporation. J Membr Biol 67:165–182PubMedCrossRefPubMedCentralGoogle Scholar
  186. Zupan J, Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16:279–295CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shuchishweta Vinay Kendurkar
    • 1
  • Mamatha Rangaswamy
    • 1
  1. 1.Plant Tissue Culture Division, National Chemical LaboratoryPuneIndia

Personalised recommendations