Advertisement

Genetic Transformation of Millets: The Way Ahead

  • Sweta Dosad
  • H. S. Chawla
Chapter

Abstract

Millets are a group of small-seeded cereals and forage grasses grown in arid and semiarid regions of Asia and Africa, where majority of cereals cannot be relied upon to provide sustainable yield. While major cereals such as wheat, rice, and maize provide only food security, millets provide multiple securities, viz., food, fodder, health, nutrition, livelihood, and ecological. In the present chapter, recent advances in genetic transformation studies conducted in millets to date have been summarized. Millets have been transformed primarily by particle bombardment, whereas, Agrobacterium-mediated transformation is still lagging behind. Efforts need to be made to genetically improve millets by incorporating certain agronomically important traits, such as resistance to biotic and abiotic stresses, resistance to lodging, increased seed size, and palatability along with softness of grain to make these crops more desirable for consumer.

Keywords

Agrobacterium Biolistic Millets Transformation 

References

  1. Agharkar M, Lomba P, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5(6):791–801PubMedCrossRefGoogle Scholar
  2. Altpeter F, James VA (2005) Genetic transformation of turf type bahiagrass (Paspalum notatum Flugge) by biolistic gene transfer. Int Turfgrass Soc Res J 10:1–5Google Scholar
  3. Anami S, Njuguna E, Coussens G, Aesaert S, Van Lijsebettens M (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57(6-7-8):483–494PubMedCrossRefGoogle Scholar
  4. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35PubMedCrossRefGoogle Scholar
  5. Barcelo P, Rasco-Gaunt S, Thorpe C, Lazzeri PA (2001) Transformation and gene expression. Adv Bot Res 34:59–126CrossRefGoogle Scholar
  6. Bayer GY, Yemets AI, Blume YB (2014) Obtaining the transgenic lines of finger millet Eleusine coracana (L.). with dinitroaniline resistance. Cytol Genet 48(3):139–144CrossRefGoogle Scholar
  7. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes rendus de l'Académie des sciences. Série 3, Sciences de la vie 316(10):1194–1199Google Scholar
  9. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561PubMedCrossRefGoogle Scholar
  10. Benson EE (2000) Sepecial symposium: in vitro plant recalcitrance in vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant 36(3):141–148CrossRefGoogle Scholar
  11. Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30:1328–1336CrossRefGoogle Scholar
  12. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326PubMedCrossRefGoogle Scholar
  13. Burton GW, Forbes I (1960) The genetics and manipulation of obligate apomixis in common bahiagrass (Paspalum notatum Flu¨gge). In: Proceedings of the VIII International Grassland Congress. Alden Press, Oxford, pp 66–71Google Scholar
  14. Bytebier B, Deboek F, De Greve H, van Montagu M, Hemalsteens JP (1987) T-DNA organisation in tumour cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci U S A 84:5345–5349PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ceasar SA, Ignacimuthu S (2011) Agrobacterium mediated transformation of Finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770PubMedCrossRefGoogle Scholar
  16. Ceasar SA, Baker A, Ignacimuthu S (2017) Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep. https://doi.org/10.1038/s41598-017-14447-0
  17. Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9(1):561PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cho MJ, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC, Jones TJ (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777PubMedCrossRefGoogle Scholar
  19. Christensen AH, Sharrock RA, Quail P (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689PubMedCrossRefGoogle Scholar
  20. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium – mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743PubMedCrossRefGoogle Scholar
  21. Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular farming in plants. AgBiotechNet 5(110):1–9Google Scholar
  22. Dahleen LS (1995) Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tiss Org Cult 43:267–269Google Scholar
  23. Devi P, Sticklen M (2002) Culturing shoot-tip clumps of pearl millet [Pennisetum glaucum (L.) R. Br.] and optimal microprojectile bombardment parameters for transient expression. Euphytica 125:45–50CrossRefGoogle Scholar
  24. Dosad S, Chawla HS (2016) In vitro plant regeneration and transformation studies in millets: current status and future prospects. Indian J Plant Physiol 21(3):239–254CrossRefGoogle Scholar
  25. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass modelsystem. Plant Physiol 149:137–141. https://doi.org/10.1104/pp.108.129627 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eapen S, George L (1990) Influence of phytohormones, carbohydrates, amino acids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tiss Org Cult 22:87–93CrossRefGoogle Scholar
  27. Estrella LH, Depicker A, Montagu MV, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213CrossRefGoogle Scholar
  28. Feldmann KA, Marks MD (1987) Agrobacterium – mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet MGG 208(1–2):1–9CrossRefGoogle Scholar
  29. Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle in flow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  30. Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fraley RT, Rogers SG, Horsch RB, Gelvin SB (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4(1):1–46CrossRefGoogle Scholar
  32. Gebre E, Gugsa L, Schlüter U, Kunert K (2013) Transformation of tef (Eragrostis tef) by Agrobacterium through immature embryo regeneration system for inducing semi-dwarfism. S Af J Bot 87:9–17CrossRefGoogle Scholar
  33. Girgi M, O’Kennedy MM, Morgenstern A, Smith G, Lorz H, Oldach KH (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252CrossRefGoogle Scholar
  34. Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15(3):313–324PubMedCrossRefPubMedCentralGoogle Scholar
  35. Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gondo T, Shin-ichi T, Ryo A, Osamu K, Franz H (2005) Green, herbicide-resistant plants by particle inflow gun mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 16:1367–1375CrossRefGoogle Scholar
  37. Grando MF, Franklin CI, Shatters JRG (2002) Optimizing embryogenic callus production and plant regeneration from ‘Tifton 9’ bahiagrass seed explants for genetic manipulation. Plant Cell Tiss Org Cult 71:213–222CrossRefGoogle Scholar
  38. Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282CrossRefGoogle Scholar
  39. Gelvin SB (2003) Agrobacterium -mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Cell Mol Life Sci 27(2):229–230CrossRefGoogle Scholar
  41. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil I, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Kumar MS, Udayakumar M (2014) Stable expression of mtlD gene imparts multiple stress tolerance in Finger millet. PLoS One. https://doi.org/10.1371/journal.pone.0099110
  44. Hiei Y, Komari T (2008) Agrobacterium -mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the DNA. Plant J 6:271–282PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303(5913):179–180CrossRefGoogle Scholar
  47. Hood EE, Helmet GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218CrossRefGoogle Scholar
  49. Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37:135–147PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ignacimuthu S, Kannan P (2013) Agrobacterium – mediated transformation of pearl millet (Pennisetum typhoides (L.) R. Br.) for fungal rust. Asian J Plant Sci 112:97–108CrossRefGoogle Scholar
  51. Jagga-Chugh S, Kachhwaha S, Sharma M, Kothari-Chajer A, Kothari SL (2012) Optimization of factors influencing microprojectile bombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant cell. Tissue Organ Cult (PCTOC) 109(3):401–410CrossRefGoogle Scholar
  52. Jalaja N, Maheshwari P, Naidu KR, Kavi Kishor PB (2016) In vitro regeneration and optimization of conditions for transformation methods in Pearl millet, Pennisetum glaucum (L.). Int J Clin Biol Sci 1:34–52Google Scholar
  53. James C (2014) Executive summary. In: Global status of commercialized biotech/GM crops. ISAAA brief no. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, p 2013Google Scholar
  54. James VA, Neibaur JI, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104PubMedCrossRefGoogle Scholar
  55. Janice M, Zale S, Agarwal S, Loar CMS (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28(6):903–913PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jayasudha BG, Sushma AM, Prashantkumar HS, Sashidhar VR (2014) An efficient in vitro Agrobacterium–mediated transformation protocol for raising salinity tolerant transgenic plants in finger millet [Eleusine coracana (L.) Gaertn.]. Plant Archives 14:823–829Google Scholar
  57. Jha P, Shashi RA, Agnihotri PK, Kulkarni VM, Bhat V (2011) Efficient Agrobacterium – mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tiss Org Cult 107:501–512CrossRefGoogle Scholar
  58. Kikkert JR (1993) The biolistic PDS-1000/he device. Plant Cell Tiss Org Cult 33:221–226CrossRefGoogle Scholar
  59. Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306PubMedCrossRefGoogle Scholar
  60. Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. Agrobacterium protocols. Methods Mol Biol 343:15–42PubMedPubMedCentralGoogle Scholar
  61. Koncz C, Schell J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396CrossRefGoogle Scholar
  62. Kothari SL, Agarwal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet- Eleusine coracana (L.) Gaertn. In Vitro Cell Dev Biol Plant 40:515–519CrossRefGoogle Scholar
  63. Kothari SL, Kumar S, Vishnoi RK, Kothari SL, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88CrossRefGoogle Scholar
  64. Kothari-Chajer A, Sharma M, Kachhwaha S, Kothari SL (2008) Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum scrobiculatum L.) and finger (Eleusine coracana (L.) Gaertn.) millets. Plant Cell Tiss Org Cult 94(2):105–112CrossRefGoogle Scholar
  65. Lakkakula S, Stanislaus AC, Jayabalan S, Arockiam SR, Periyasamy R, Manikandan R (2015) Direct plant regeneration from in vitro derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 51:192–200Google Scholar
  66. Lakkakula S, Periyasamy R, Stanislaus AC, Arokiam SR, Subramani P, Ramakrishnan RK, Alagesan S, Manikandan R (2016) Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cell Dev Biol Plant 52:140–153CrossRefGoogle Scholar
  67. Lakkakula S, Stanislaus AC, Manikandan R (2017) Improved Agrobacterium-mediated transformation and direct plant regeneration in four cultivars of finger millet (Eleusine coracana (L.) Gaertn.). Plant Cell Tiss Org Cult 131:547–565CrossRefGoogle Scholar
  68. Lambe P, Dinant M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum americanum) callus. Plant Sci 108:51–62CrossRefGoogle Scholar
  69. Lambe P, Dinant M, Deltour R (2000) Transgenic pearl millet (Pennisetum glaucum). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, transgenic crops I, vol 46. Springer, Berlin, pp 84–108CrossRefGoogle Scholar
  70. Last DI, Bretell RIS, Chamberlain DA, Chaundhury AM, Larkin PJ, Marsh EL, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588PubMedCrossRefGoogle Scholar
  71. Latha MA, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667CrossRefGoogle Scholar
  72. Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935PubMedCrossRefGoogle Scholar
  73. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li Z, Upadhyaya NM, Meena S, Gibbs AJ, Waterhouse PM (1997) Comparison of promoters and selectable marker genes for use in Indica rice transformation. Mol Breed 3:1–14CrossRefGoogle Scholar
  75. Libiakova G, Jørgensen B, Palmgren G, Ulvskov P, Johansen E (2001) Efficacy of an intron-containing kanamycin resistance gene as a selectable marker in plant transformation. Plant Cell Rep 20(7):610–615CrossRefGoogle Scholar
  76. Liu Y, Yu J, Zhao Q, Zhu D, Ao G (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium. J Agric Biotechnol 13:32–37Google Scholar
  77. Liu Y, Feng X, Xu Y, Yu J, Ao G, Peng Z, Zhao Q (2009) Overexpression of millet ZIP-like gene (SiPf40) affects lateral bud outgrowth in tobacco and millet. Plant Physiol Biochem 47:1051–1060PubMedCrossRefPubMedCentralGoogle Scholar
  78. Luciani G, Altpeter F, Yactayo-Chang J, Zhang H, Gallo M, Meagher RL, Wofford D (2007) Expression of in Bahiagrass enhances resistance to fall armyworm. Crop Sci 47(6):2430–2436CrossRefGoogle Scholar
  79. Maas C, Simpson CG, Eckes P, Schickler H, Brown JWS, Reiss B, Salchert K, Chet I, Schell J, Reichel C (1997) Expression of intron modified NPT II genes in monocotyledonous and dicotyledonous plant cells. Mol Breed 3:15–28CrossRefGoogle Scholar
  80. Mahalakshmi S, Christopher GSB, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224(2):347–359PubMedCrossRefGoogle Scholar
  81. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342CrossRefGoogle Scholar
  82. Mancini M, Woitovich N, Permingeat HR, Podio M, Siena LA, Ortiz JPA, Pessino SC, Felitti SA (2014) Development of a modified transformation platform for apomixis candidate genes research in Paspalum notatum (bahiagrass). In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-014-9596-2 CrossRefGoogle Scholar
  83. Martins PK, Nakayama TJ, Ribeiro AP, Cunha BADBD, Nepomuceno AL, Harmon FG et al (2015a) Setaria viridis floral-dip: a simple and rapid Agrobacterium -mediated transformation method. Biotechnol Rep 6:61–63CrossRefGoogle Scholar
  84. Martins PK, Ribeiro AP, Cunha BADB, Kobayashi AK, Molinari HBC (2015b) A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis. Biotechnol Rep 6:41–44CrossRefGoogle Scholar
  85. Meyer P, Walgenbach E, Bussmann K, Hombrecher G, Saedler H (1985) Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol Gen Genet MGG 201(3):513–518CrossRefGoogle Scholar
  86. Mohanty BD, Gupta SD, Ghosh PD (1985) Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn). Plant Cell Tiss Org Cult 5:147–150CrossRefGoogle Scholar
  87. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay for tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  88. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedPubMedCentralCrossRefGoogle Scholar
  89. Niedz RP, Evens TJ (2007) Regulating plant tissue growth by mineral nutrition. In Vitro Cell Dev Biol Plant 43:370–381CrossRefGoogle Scholar
  90. Niedz RP, Sussman MR, Satterlee JS (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep 14(7):403–406PubMedCrossRefGoogle Scholar
  91. O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690PubMedCrossRefGoogle Scholar
  92. O’Kennedy MM, Crampton BG, Lorito M, Chakauya E, Breese WA, Burger JT, Botha FC (2011) Expression of a b-1,3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 77:335–345CrossRefGoogle Scholar
  93. Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β -glucuronidase (GUS) reporter gene containing an intron within the coding region. Plant Cell Physiol 31:805–813Google Scholar
  94. Oldach K, Morgenstern A, Rother S, Girgi M, O'Kennedy M, Lörz H (2001) Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet (Pennisetum glaucum (L.) R. Br.) and Sorghum bicolor (L.) Moench. Plant Cell Rep 20(5):416–421CrossRefGoogle Scholar
  95. Pan Y, Ma X, Liang H, Zhao Q, Zhu D, Yu J (2015) Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. Planta 241:57–67PubMedCrossRefGoogle Scholar
  96. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233PubMedCrossRefPubMedCentralGoogle Scholar
  97. Plaza-Wuthrich S, Tadele Z (2012) Millet improvement through regeneration and transformation. Biotechnol Mol Biol Rev 7:48–61Google Scholar
  98. Qin FF, Zhao Q, Ao GM, Yu JJ (2008) Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163(1):103–111CrossRefGoogle Scholar
  99. Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium – mediated transformation of rice (Oryza sativa L.). Nat Biotechnol 8(1):33–38CrossRefGoogle Scholar
  100. Ramadevi R, Rao KV, Reddy VD (2014) Agrobacteriumtumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.). In Vitro Cell Dev Biol Plant 50(4):392–400CrossRefGoogle Scholar
  101. Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy RR, Makarla U, Guligowda SA (2013) Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep 7:309–319CrossRefGoogle Scholar
  102. Ramineni R, Sadumpati V, Khareedu VR, Vudem DR (2014) Transgenic pearl millet male fertility restorer line (ICMP451) and hybrid (ICMH451) expressing Brassica juncea nonexpressor of pathogenesis related genes 1 (BjNPR1) exhibit resistance to downy mildew disease. PLoS One 9(3):e90839PubMedPubMedCentralCrossRefGoogle Scholar
  103. Saha P, Blumwald E (2016) Spike-dip transformation of Setaria viridis. Plant J 86(1):89–101Google Scholar
  104. Sahrawat AK, Chand S (1999) Stimulatory effect of copper on plant regeneration in indica rice (Oryza sativa L.). J Plant Physiol 154:517–522CrossRefGoogle Scholar
  105. Sai NK, Visarada KBRS, Lakshmi YA, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25(3):174–182CrossRefGoogle Scholar
  106. Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flüggé). Plant Cell Rep 27(11):1755–1765PubMedCrossRefGoogle Scholar
  107. Sandhu S, Altpeter F, Blount AR (2007) Apomictic bahiagrass expressing the bar gene is highly resistant to glufosinate under field conditionsCrossRefGoogle Scholar
  108. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37CrossRefGoogle Scholar
  109. Sen S, Dutta S (2016) A potent bidirectional promoter from the monocot cereal Eleusine coracana. Phytochemistry 129:24–35PubMedCrossRefGoogle Scholar
  110. Sharma KK, Ortiz R (2000) Program for the application of genetic transformation for crop improvement in the semiarid tropics. In Vitro Cell Dev Biol Plant 36:83–92CrossRefGoogle Scholar
  111. Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tiss Org Cult 105(1):93–104CrossRefGoogle Scholar
  112. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Physiol 59(3):223–239CrossRefGoogle Scholar
  113. Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Transgenic Res 21(2):429–437PubMedCrossRefGoogle Scholar
  114. Smith RL, Grando MF, Li YY, Seib JC, Shatters RG (2002) Transformation of bahiagrass (Paspalum notatum Flugge). Plant Cell Rep 20:1017–1021CrossRefGoogle Scholar
  115. Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318(6047):624–629CrossRefGoogle Scholar
  116. Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42(4):583–590PubMedCrossRefPubMedCentralGoogle Scholar
  117. Thakur RP (2008) Pearl millet. In: Satish L, Mawar R, Rathore BS (eds) Disease management in arid land crops. Scientific Publishers, Jodhpur, pp 21–41Google Scholar
  118. Tiecoura K, Kouassi AB, Oulo N, Gonedele Bi S, Dinant M, Ledou L (2015) In vitro transformation of pearl millet (Pennisetum glaucum (L). R. BR.): selection of chlorsulfuron resistant plants and long term expression of the gus gene under the control of the emu promoter. Afr J Biotechnol 14:3112–3123CrossRefGoogle Scholar
  119. Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V (2009) Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc 4(1):71PubMedCrossRefGoogle Scholar
  120. Usami S, Morikawa S, Takebe I, Machida Y (1987) Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol Gen Genet 209:221–226PubMedCrossRefGoogle Scholar
  121. Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep 15:489–494PubMedCrossRefGoogle Scholar
  122. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252(5479):169–170PubMedCrossRefGoogle Scholar
  123. Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium tumefaciens plant transformation. Mol Gen Genet 220:245–250PubMedCrossRefGoogle Scholar
  124. Vasil IK (1982) Plant cell culture and somatic cell genetics of cereals and grassesGoogle Scholar
  125. Vikrant A, Rashid A (2002) Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell Tiss Org Cult 69:71–77CrossRefGoogle Scholar
  126. Vikrant A, Rashid A (2003) Somatic embryogenesis from mesocotyl and leaf base segments of Paspalum scrobiculatum L., minor millet. In Vitro Cell Dev Biol Plant 39:485–489CrossRefGoogle Scholar
  127. Wang MZ, Pan YL, Li C, Liu C, Zhao Q, Ao GM, Yu JJ (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afr J Biotechnol 10:16466–16479Google Scholar
  128. Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14(1):290Google Scholar
  129. Wu LM, Wei YM, Zheng YL (2006) Effects of silver nitrate on the tissue culture of immature wheat embryos. Russ J Plant Physiol 53(4):530–534CrossRefGoogle Scholar
  130. Xiong X, James VA, Zhang H, Altpeter F (2009) Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge). Mol Breeding 25:419–432CrossRefGoogle Scholar
  131. Yemets AI, Bayer GY, Blume YB (2013) An effective procedure for in vitro culture of Eleusine coracana (L.) and its application. ISRN Botany. https://doi.org/10.1155/2013/853121
  132. Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149(1):171–180PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhang H, Lomba P, Altpeter F (2007) Improved turf quality of transgenic bahiagrass (Paspalum notatum Flugge) constitutively expressing the ATHB16 gene, a repressor of cell expansion. Mol Breed 20:415–423CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sweta Dosad
    • 1
  • H. S. Chawla
    • 1
  1. 1.Genetics & Plant Breeding DepartmentG.B. Pant University of Agriculture & TechnologyPantnagarIndia

Personalised recommendations