Insect Smart Pulses for Sustainable Agriculture

  • Meenal Rathore
  • Alok Das
  • Neetu S. Kushwah
  • Narendra Pratap Singh


The development of high-yielding insect-tolerant cultivars using conventional methods has been slow due to a number of reasons. With the advent of recombinant tools and genetic transformation systems, it has been possible to harness gene pool(s) by crossing the species barrier and utilize them for desired trait. Insect pest resistance has largely been introgressed in many crops, including pulses, by using the cry genes from Bacillus thuringiensis. However, many plant genes like lectins, protein inhibitors, etc. are also available that impart tolerance to insect pests and can be used for developing insect-tolerant plants. In comparison with other crops, relatively less work is available in this context in pulses because of their recalcitrant nature and biosafety issues related to candidate gene(s). In the regime of climate change, plant-pest dynamics has also witnessed change, and the need to develop transgenic tolerant to both pest and diseases is desirable. In context of sustainable pulse production, it is essential to develop and use insect-tolerant transgenics that have been developed by following the biosafety regulations, are high yielding, fit into popular cropping systems, and are expected to be remunerative to the stakeholders.


Insect resistance Transgenics Chickpea Pigeon pea Pea Cowpea 


  1. Acharjee S, Das P, Sen S, Bordoloi S, Kumar PA, Sarmah BK (2004) Agrobacterium-mediated genetic transformation of black gram for resistance against pod borers. Proc. Indian Society of Agricultural Biochemists. 12–14 Nov, pp 188–192Google Scholar
  2. Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mohan R, Moar WJ, Moore A, Higgins TJV (2010) Transgenic chickpeas expressing a sequence-modified cry2Aa gene. Plant Sci 178:333–339CrossRefGoogle Scholar
  3. Acharjee S, Handique PJ, Sarmah BK (2012) Effect of thidiazuron (TDZ) on in vitro regeneration of blackgram (Vigna mungo L.) embryonic axes. J Crop Sci Biotech 15(4):311–331. CrossRefGoogle Scholar
  4. Adlinge PM, Samal KC, Kumara Swamy RV, Rout GR (2014) Rapid in vitro plant regeneration of black gram (Vigna mungo L. Hepper) var. sarala, an important legume crop. Proc Natl Acad Sci, India, Sect B: Biol Sci 84:823–827CrossRefGoogle Scholar
  5. Armes NJ, Jadhav DR, De Souza KR (1996) A survey of insecticide resistance in Helicoverpa armigera in the Indian sub-continent. Bull Entomol Res 86:499–514CrossRefGoogle Scholar
  6. Adesoye A, Machuka J, Togun A (2008) CRY 1AB transgenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–32108Google Scholar
  7. Bakshi A, Mishra SS, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep.
  8. Batra P, Yadav NR, Sindhu A, Yadav RC, Chowdhury VK, Chowdhury JB (2002) Efficient protocol for in vitro direct plant regeneration in chickpea Cicer arietinum L. Indian J Exp Biol 40(5):600–602PubMedGoogle Scholar
  9. Bett B, Gollasch S, Moore A, James W, Armstrong J, Walsh T, Harding R, Higgins TJV (2017) Transgenic cowpeas (Vigna unguiculataL. Walp) expressing Bacillus thuringiensisVip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell Tiss Org Cult 131:335–345CrossRefGoogle Scholar
  10. Biddle AJ, Cattlin ND (2001) Pests and diseases of peas and beans – a colour handbook. Manson Publishing Ltd, LondonGoogle Scholar
  11. Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allilum sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinium L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544CrossRefPubMedGoogle Scholar
  12. Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173CrossRefGoogle Scholar
  13. Czapla TH, Lang BA (1990) Effects of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and Southern corn rootworm (Coleoptera: Chysomelidae). J Econ Entomol 83:2480–2485CrossRefGoogle Scholar
  14. Das A, Datta S, Sujayanand GK, Kumar M, Singh AK, Arpan SA, Ansari J, Kumar M, Faruqui L, Thakur S, PA K, Singh NP (2016) Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helico verpa armigera Hubner.). Plant Cell Tiss Org Cult 127:705–715CrossRefGoogle Scholar
  15. Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand GK, Kumar PA, Chaturvedi SK, Singh NP (2017) Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front Plant Sci 8:1423CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dhaliwal GS, Arora R (1994) Trends in agricultural insect pest management. Commonwealth Publishers, New DelhiGoogle Scholar
  17. Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel M (1997) Transgenic plants: an emerging approach to pest control. Nat Biotechnol 15:137–141CrossRefPubMedGoogle Scholar
  18. Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127(12):2555–2565CrossRefPubMedGoogle Scholar
  19. Ghosh G, Ganguly S, Purohit A, Chowdhury RK, Das A, Chakroborti D (2017) Transgenic pigeonpea events expressing cry1Ac and cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Rep 36(7):1037–1051CrossRefPubMedGoogle Scholar
  20. Higgins TJ (2007) Bt cowpea with protection against pod borer for transfer to Africa.
  21. Higgins TJV, Gollasch S, Molvig L et al (2012) Insect-protected cowpeas using gene technology. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on improving livelihoods in the cowpea value chain through advancement in science. Saly, Senegal 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, pp 131–137Google Scholar
  22. Hilder VA, Gatehouse AM, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 300:160–163CrossRefGoogle Scholar
  23. Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, Van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Trans Res 4:18–25CrossRefGoogle Scholar
  24. Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339–345CrossRefPubMedGoogle Scholar
  25. Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763CrossRefPubMedGoogle Scholar
  26. Jackai LEN (1995) The legume pod borer Maruca testulalis, and its principal host plant, Vigna unguiculata (L.) Walp.- use of selective insecticide sprays as an aid in the identification of useful levels of resistance. Crop Prot, 14:299–306Google Scholar
  27. Jiang H, Zhu YX, Chen ZL (1996) Insect resistance of transformed tobacco plants with a gene of a spider insecticidal peptide. Acta Bot Sin 38:95–99Google Scholar
  28. Jones MM, Osmond CB, Turner NC (1980) Accumulation of solutes in leaves of sorghum and sunflower in response to water defcits. Aust J Plant Physiol 7:193–203CrossRefGoogle Scholar
  29. Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Sen SK (1997) Expression of cry1Ac gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185CrossRefGoogle Scholar
  30. Korth KL (2008) Genes and traits of interest for transgenic plants. In: Stewart CN (ed) Plant biotechnology and genetics: principles, techniques, and applications. John Wiley & Sons, Inc., HobokenGoogle Scholar
  31. Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali S, Russell DA (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460CrossRefGoogle Scholar
  32. Krishna G, Reddy PS, Ramteke PW, Rambabu P, Sohrab SS, Rana D, Bhattacharya P (2011) In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [Cajanus cajan (L.) Millsp.] cv. JKR105. Physiol Mol Biol Pl 17(4):375–385CrossRefGoogle Scholar
  33. Kuiper HA, Noteborn HJM (1994) Food safety assessment of transgenic insect-resistant Bt tomatoes. Food safety evaluation. In: Proceedings of an OECD-sponsored Workshop, 12–15 September 1994, Oxford, UK. Organisation for Economic Cooperation and Development (OECD), Paris, France, pp 50–57Google Scholar
  34. Lawrence PK, Koundal KR (2001) Agrobacterium tumefaciens mediated transformation of pigeonpea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci 80:1428–1432Google Scholar
  35. Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102CrossRefGoogle Scholar
  36. Mohammed BS, Ishikayu MF, Abdullahi US, Katung MD (2014) Response of transgenic Bt cowpea lines and their hybrids under field conditions. J Plant Breed Crop Sci 6(8):91–96CrossRefGoogle Scholar
  37. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. PNAS 97(8):3820–3825CrossRefPubMedGoogle Scholar
  38. Negawo AT, Aftabi M, Jacobsen HJ, Altosaar I, Hassan FS (2013) Insect resistant transgenic pea expressing cry1Ac gene product from Bacillus thuringiensis. Biol Control 67:293–300CrossRefGoogle Scholar
  39. Negawo AT, Baraneka L, Jacobsena HJ, Hassan F (2016) Molecular and functional characterization of cry1Ac transgenic pea lines. GM Crops & Food 7:159–174CrossRefGoogle Scholar
  40. Obembe OO (2008) Exciting times for cowpea genetic transformation research. Life Sci J 5(2):50–52Google Scholar
  41. Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (VignaunguiculataL.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312CrossRefPubMedGoogle Scholar
  42. Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53(23):9023–9030Google Scholar
  43. Ramu SV, Rohini S, Keshavareddy G, Neelima MG, Shanmugham NB, Kumar ARV, Sarangi SK, Kumar PA, Udayakumar M (2011) Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera. J Appl Entomol, 136:675–687.CrossRefGoogle Scholar
  44. Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altaman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding CryIA insecticidal proteins in cotton. Crop Sci 38:1–11CrossRefGoogle Scholar
  45. Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146CrossRefGoogle Scholar
  46. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean amylase inhibitor. Mol Breed 14:73–82CrossRefGoogle Scholar
  47. Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean a-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107(1233-1):239Google Scholar
  49. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect resistant transgenic plants. TIBTECH 16:168–175CrossRefGoogle Scholar
  50. Singh SR, Van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278CrossRefGoogle Scholar
  51. Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. BioTechnology 12:793–796Google Scholar
  52. Sharma KK, Ananda Kumar P, Singh NP, Sharma HC (2005) Insecticidal genes and their potential in developing transgenic crops for resistance to Heliothis/Helicoverpa. In: Sharma HC (ed) Heliothis/ Helicoverpa management: emerging trends and strategies for future research. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 255–274CrossRefGoogle Scholar
  53. Sharma KK, Bhatnagar-Mathur P, Jayanand B (2006a) Chickpea (Cicer arietinum L.). In: Wang K (ed) Agrobacterium protocols: methods in molecular biology, vol 44. Humana Press Inc., Totowa, pp 313–323CrossRefGoogle Scholar
  54. Sharma KK, Lavanya K, Anjalah A (2006b) Agrobacterium tumefaciens- mediated production of transgenic pigeon pea (Cajanus cajan [L.]Millsp.) expressing the synthetic BT CRY1AB gene. In Vitro Cell Dev Biol 42:165–173CrossRefGoogle Scholar
  55. Sharma KK, Sreelatha G, Dayal S (2006c) Pigeonpea [Cajanus cajan L. (Millsp.)]. In: Wang K (ed) Agrobacterium protocols: methods in molecular biology, vol 44. Humana Press Inc., Totowa, pp 359–367CrossRefGoogle Scholar
  56. Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22:1–6CrossRefGoogle Scholar
  57. Smith AM (1990) Pea weevil (Bruchus pisorum L.) and crop loss implications for management. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchell R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Kluwer Academic Publishers, Dordrecht, pp 105–114CrossRefGoogle Scholar
  58. Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27(12):1841–1850.CrossRefPubMedGoogle Scholar
  59. Sonia SR, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris alpha-amylase inhibitor-1 gene into mung bean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198CrossRefPubMedGoogle Scholar
  60. Sousa-Majer MJ, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJV (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed specific a-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55(396):497–505CrossRefPubMedGoogle Scholar
  61. Sousa-Majer MJ, Hardie DC, Turner NC, Higgins TJV (2007) Bean α-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100(4):1416–1422CrossRefPubMedGoogle Scholar
  62. Srinivasan MT, Sharma RP (1991) Agrobacterium-mediated genetic transformation of chickpea (Cicer arietinum). Indian J Exp Biol, 29:758–761Google Scholar
  63. Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupts A, Kirti PB (2005) Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan L.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080CrossRefGoogle Scholar
  64. Tabashnik BE, Carrière Y (2010) Field-evolved resistance to Bt cotton: bollworm in the U.S. and pink bollworm in India. Southwestern Entomologist 35(3):417–424CrossRefGoogle Scholar
  65. Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A, McNabb W, Moore A, Higgins TJV (1995) A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci 73:2752–2759CrossRefPubMedGoogle Scholar
  66. Tamo M, Ekesi S, Maniania NK, Cherry A (2003) Biological control, a non-obvious component of IPM for cowpea. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CABI Publishing, Wallingford, pp 295–309Google Scholar
  67. Third Advance Estimates of Production of Commercial Crops for 2016–17, Agricultural Statistics Division Directorate of Economics & StatisticsGoogle Scholar
  68. Traore SB, Carlson RE, Pilcher CD, Rice ME (2000) Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron J 92:1027–1035. CrossRefGoogle Scholar
  69. Verma AK and Chand L (2005) Agrobacterium-mediated transformation of pigeonpea (Cajanus cajan L.) with uidA and CryIA(b) genes. Physiol Mol Biol Plant. 11:99–109Google Scholar
  70. Xiong L, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119:205–212CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yadav SK, Sreenu P, Maheshwari M, Vanaja M, Venkateswarlu B (2010) Efficient shoot regeneration from double cotyledonary node explants of green gram (Vigna radiata (L.) Wilczek.). Indian J Biotechnol 9:403–407Google Scholar
  72. Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Enzviron Microbiol 63:532–536Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Meenal Rathore
    • 1
  • Alok Das
    • 1
  • Neetu S. Kushwah
    • 1
  • Narendra Pratap Singh
    • 1
  1. 1.Division of Plant BiotechnologyICAR-Indian Institute of Pulses ResearchKanpurIndia

Personalised recommendations