Advertisement

Parenteral Container Closure Systems

  • Roman Mathaes
  • Alexander Streubel
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 38)

Abstract

Parenteral container closure systems are in direct contact with the drug product formulation and can significantly impact the product quality. The interaction between the drug product formulation and the primary packaging components may also impact adequate delivery of the product to the patient. Therefore, primary packaging development should be fully integrated into parenteral drug product development. This book chapter describes the basic function and requirements of a parenteral container closure system, advantages, and challenges with commonly used container closure system materials and components and the key benefits of combination products compared to traditional vial systems.

Keywords

Parenteral container closure systems Primary packaging Glass Combination products 

References

  1. 1.
    Annex 9, WHO Technical Report Series 902, (2002).Google Scholar
  2. 2.
    Zadbuke N, Shahi S, Gulecha B, Padalkar A, Thube M. Recent trends and future of pharmaceutical packaging technology. J Pharm Bioallied Sci. 2013;5:98.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jiang G, Goss M, Li G, Jing W, Shen H, Fujimori K, Le L, Wong L, Wen Z-Q, Nashed-Samuel Y. Novel mechanism of glass delamination in Type 1A borosilicate vials containing frozen protein formulations. PDA J Pharm Sci Technol. 2013;67:323–35.CrossRefPubMedGoogle Scholar
  4. 4.
    Sloey C, Gleason C, Phillips J. Determining the delamination propensity of pharmaceutical glass vials using a direct stress method. PDA J Pharm Sci Technol. 2013;67:35–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao J, Lavalley V, Mangiagalli P, Wright JM, Bankston TE. Glass delamination: a comparison of the inner surface performance of vials and pre-filled syringes. AAPS PharmSciTech. 2014;1–12.Google Scholar
  6. 6.
    Ratnaswamy G, Hair A, Li G, Thirumangalathu R, Nashed-Samuel Y, Brych L, Dharmavaram V, Wen ZQ, Fujimori K, Jing W. A case study of nondelamination glass dissolution resulting in visible particles: implications for neutral pH formulations. J Pharm Sci. 2014;103:1104–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Cao S, Jiao N, Wen Z-Q. Classification of glass particles in parenteral product vials by visual, microscopic, and spectroscopic methods. PDA J Pharm Sci Technol. 2014;68:362–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakamura K, Abe Y, Kiminami H, Yamashita A, Iwasaki K, Suzuki S, Yoshino K, Dierick W, Constable K. A strategy for the prevention of protein oxidation by drug product in polymer-based syringes. PDA J Pharm Sci Technol. 2015;69:88–95.CrossRefPubMedGoogle Scholar
  9. 9.
    Bee JS, Randolph TW, Carpenter JF, Bishop SM, Dimitrova MN. Effects of surfaces and leachables on the stability of biopharmaceuticals. J Pharm Sci. 2011;100:4158–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Sacha GA, Saffell-Clemmer W, Abram K, Akers MJ. Practical fundamentals of glass, rubber, and plastic sterile packaging systems. Pharm Dev Technol. 2010;15:6–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Nassar MN, Nesarikar VV, Lozano R, Huang Y, Palaniswamy V. Degradation of a lyophilized formulation of BMS-204352: identification of degradants and role of elastomeric closures. Pharm Dev Technol. 2005;10:227–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu W, Swift R, Torraca G, Nashed-Samuel Y, Wen Z-Q, Jiang Y, Vance A, Mire-Sluis A, Freund E, Davis J. Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes. PDA J Pharm Sci Technol. 2010;64:11–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bee JS, Nelson SA, Freund E, Carpenter JF, Randolph TW. Precipitation of a monoclonal antibody by soluble tungsten. J Pharm Sci. 2009;98:3290–301.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deutel B, Hartinger M, Windisch J, Casadevall N, London GM. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm Res. 2012;29:1454–67.CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang Y, Nashed-Samuel Y, Li C, Liu W, Pollastrini J, Mallard D, Wen ZQ, Fujimori K, Pallitto M, Donahue L. Tungsten-induced protein aggregation: solution behavior. J Pharm Sci. 2009;98:4695–710.CrossRefPubMedGoogle Scholar
  16. 16.
    Markovic I. Considerations for extractables and leachables in single use systems: a risk-based perspective. In: PDA Single use systems workshop; 2011. pp. 22–3.Google Scholar
  17. 17.
    Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12:708–15.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil-and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009;98:3167–81.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ludwig DB, Carpenter JF, Hamel JB, Randolph TW. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions. J Pharm Sci. 2010;99:1721–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW. Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations. Anal Biochem. 2011;410:191–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Britt KA, Schwartz DK, Wurth C, Mahler HC, Carpenter JF, Randolph TW. Excipient effects on humanized monoclonal antibody interactions with silicone oil emulsions. J Pharm Sci. 2012;101:4419–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerhardt A, Bonam K, Bee JS, Carpenter JF, Randolph TW. Ionic strength affects tertiary structure and aggregation propensity of a monoclonal antibody adsorbed to silicone oil–water interfaces. J Pharm Sci. 2013;102:429–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Macías AE, Muñoz JM, Bruckner DA, Galván A, Rodríguez AB, Guerrero FJ, Medina H, Gallaga JC, Cortés G. Parenteral infusions bacterial contamination in a multi-institutional survey in Mexico: considerations for nosocomial mortality. Am J Infect Control. 1999;27:285–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Sterile Product Packaging—Integrity Evaluation, The U.S. Pharmacopeia 37 General Chapter 1207.Google Scholar
  25. 25.
    DesRoches CM, Blendon RJ, Benson JM. Americans’ responses to the 2004 influenza vaccine shortage. Health Aff. 2005;24:822–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Kirsch LE, Nguyen L, Moeckly CS. Pharmaceutical container/closure integrity I: mass spectrometry-based helium leak rate detection for rubber-stoppered glass vials. PDA J Pharm Sci Technol. 1997;51:187–94.PubMedGoogle Scholar
  27. 27.
    Kirsch LE, Nguyen L, Moeckly CS, Gerth R. Pharmaceutical container/closure integrity II: The relationship between microbial ingress and helium leak rates in rubber-stoppered glass vials. PDA J Pharm Sci Technol. 1997;51:195–202.PubMedGoogle Scholar
  28. 28.
    Kirsch LE, Nguyen L, Gerth R. Pharmaceutical container/closure integrity III: validation of the helium leak rate method for rigid pharmaceutical containers. PDA J Pharm Sci Technol. 1997;51:203–7.PubMedGoogle Scholar
  29. 29.
    Bauer E. Pharmaceutical packaging handbook. New York: Informa Healthcare USA Inc; 2009.CrossRefGoogle Scholar
  30. 30.
    Ingle RG, Agarwal AS. Pre-filled syringe-a ready-to-use drug delivery system: a review. Expert Opin Drug Deliv. 2014;11:1391–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Bauer E. Pharmaceutical packaging handbook. Informa Health Care; 2009.Google Scholar
  32. 32.
    Edward JS. Elastomeric components for the pharmaceutical industry. In: Encyclopedia of pharmaceutical technology, 3rd ed. UK: Taylor & Francis; 2013. pp. 1466–81.Google Scholar
  33. 33.
    Mungikar A, Ludzinski M, Kamat M. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process. PDA J Pharm Sci Technol. 2010;64:507–16.PubMedGoogle Scholar
  34. 34.
    Elastomeric Closures For Injections, The U.S. Pharmacopeia 37 General Chapter 381.Google Scholar
  35. 35.
    Biological Reactivity Test, In-vitro, The U.S. Pharmacopeia 37 General Chapter 87.Google Scholar
  36. 36.
    Biological Reactivity Test, In-vivo, The U.S. Pharmacopeia 37 General Chapter 88.Google Scholar
  37. 37.
    Wood RT. Validation of elastomeric closures for parenteral use: an overview. PDA J Pharm Sci Technol. 1980;34:286–94.Google Scholar
  38. 38.
    Datta RN, Flexsys B. Rubber curing systems. Rapra Technology Limited; 2002.Google Scholar
  39. 39.
    Coran A. Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J Appl Polym Sci. 2003;87:24–30.CrossRefGoogle Scholar
  40. 40.
    Mahler H-C, Borchard G, Luessen HL. Protein pharmaceuticals: formulation, analytics and delivery. Germany: ECV-Editio Cantor-Verlag; 2010.Google Scholar
  41. 41.
    Fusco J, Hous P. Butyl and halobutyl rubbers. In: Rubber technology. Berlin: Springer; 1999. pp. 284–321.CrossRefGoogle Scholar
  42. 42.
    Kuntz I, Zapp RL, Pancirov RJ. The chemistry of the zinc oxide cure of halobutyl. Rubber Chem Technol. 1984;57:813–25.CrossRefGoogle Scholar
  43. 43.
    Morton DK. Container/closure integrity of parenteral vials. PDA J Pharm Sci Technol. 1987;41:145–58.Google Scholar
  44. 44.
    ASTM D2240: Rubber property - Durometer hardness, American Society for Testing and Materials.Google Scholar
  45. 45.
    Corredor CC, Haby TA, Young JD, Shah PA, Varia SA. Comprehensive determination of extractables from five different brands of stoppers used for injectable products. PDA J Pharm Sci Technol. 2009;63:527–36.PubMedGoogle Scholar
  46. 46.
    Mueller R, Karle A, Vogt A, Kropshofer H, Ross A, Maeder K, Mahler H-C. Evaluation of the immuno-stimulatory potential of stopper extractables and leachables by using dendritic cells as readout. J Pharm Sci. 2009;98:3548–61.CrossRefPubMedGoogle Scholar
  47. 47.
    Sharma B. Immunogenicity of therapeutic proteins. Part 2: Impact of container closures. Biotechnol Adv. 2007;25:318–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Hopkins GH. Elastomeric closures for pharmaceutical packaging. J Pharm Sci. 1965;54:138–43.CrossRefPubMedGoogle Scholar
  49. 49.
    ASTM D395-14: Standard Test Methods for Rubber Property-Compression Set, American Society for Testing and Materials.Google Scholar
  50. 50.
    Lam P, Stern A. Visualization techniques for assessing design factors that affect the interaction between pharmaceutical vials and stoppers. PDA J Pharm Sci Technol. 2010;64:182–7.PubMedGoogle Scholar
  51. 51.
    Shelton JR. Aging and oxidation of elastomers. Rubber Chem Technol. 1957;30:1251–90.CrossRefGoogle Scholar
  52. 52.
    Chan EK, Hubbard A, Hsu CC, Vedrine L, Maa Y-F. Root cause investigation of rubber seal cracking in pre-filled cartridges: ozone and packaging effects. PDA J Pharm Sci Technol. 2011;65:445–56.CrossRefPubMedGoogle Scholar
  53. 53.
    Zuleger B, Werner U, Kort A, Glowienka R, Wehnes E, Duncan D. Container/closure integrity testing and the identification of a suitable vial/stopper combination for low-temperature storage at −80 °C. PDA J Pharm Sci Technol. 2012;66:453–65.CrossRefPubMedGoogle Scholar
  54. 54.
    Jezek J, Darton NJ, Derham BK, Royle N, Simpson I. Biopharmaceutical formulations for pre-filled delivery devices. Expert Opin Drug Deliv. 2013;10:811–28.CrossRefPubMedGoogle Scholar
  55. 55.
    US Food and Drug Administration: CFR Code of Federal Regulations Title 21.Google Scholar
  56. 56.
    Buysman E, Conner C, Aagren M, Bouchard J, Liu F. Adherence and persistence to a regimen of basal insulin in a pre-filled pen compared to vial/syringe in insulin-naïve patients with type 2 diabetes. Curr Med Res Opin. 2011;27:1709–17.CrossRefPubMedGoogle Scholar
  57. 57.
    Badkar A, Wolf A, Bohack L, Kolhe P. Development of biotechnology products in pre-filled syringes: technical considerations and approaches. AAPS PharmSciTech. 2011;12:564–72.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rathore N, Pranay P, Eu B, Ji W, Walls E. Variability in syringe components and its impact on functionality of delivery systems. PDA J Pharm Sci Technol. 2011;65:468–80.CrossRefPubMedGoogle Scholar
  59. 59.
    Korpus C, Haase T, Sönnichsen C, Friess W. Energy transfer during freeze-drying in dual-chamber cartridges. J Pharm Sci. 2015;104:1750–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Teagarden DL, Speaker SM, Martin SW, Österberg T. Practical considerations for freeze-drying in dual chamber package systems, Freeze drying/lyophilization of pharmaceutical and biological products. Boca Raton: CRC Press Inc; 2010. pp. 494–526.Google Scholar
  61. 61.
    Michaels TM Jr. Dual chamber internal by-pass syringe assembly. In: Google patents; 1997.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Hochbergerstrasse 60 aBaselSwitzerland

Personalised recommendations