Advertisement

Sucrose and Trehalose in Therapeutic Protein Formulations

  • Satish K. Singh
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 38)

Abstract

Sucrose and trehalose are key ingredients in the formulation and stabilization of biotherapeutics. Their utility and function is driven by their unique chemical and physical properties, especially in aqueous solutions which are summarized in this chapter. There are commonalities as well as differences in these properties that arise from their conformation, H-bonding characteristics, water-binding ability, glass transition temperatures, polymorphic behavior, solubility, chemical stability etc. Both sugars are well suited to provide solution-state stabilization, as well as cryo- and lyo-protection, for therapeutic proteins as excipients in the formulations. Compendial monographs are available for both sugars, and the safety and tolerability have been well documented. Although the final assessment is dependent on the individual biotherapeutic, experience suggests that sucrose can generally be considered as suitable in most cases, unless constrained by a low-pH formulation.

Keywords

Sucrose Trehalose Stabilizers Biopharmaceuticals Excipients 

References

  1. 1.
    Peric-Hassler L, et al. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydr Res. 2010;345(12):1781–801.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Winther LR, Qvist J, Halle B. Hydration and mobility of trehalose in aqueous solution. J Phys Chem B. 2012;116(30):9196–207.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lerbret A, et al. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J Phys Chem B. 2005;109(21):11046–57.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Miller DP, de Pablo JJ. Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structures. J Phys Chem B. 2000;104:8876–83.CrossRefGoogle Scholar
  5. 5.
    Ekdawi-Sever NC, Conrad PB, de Pablo JJ. Molecular simulations of sucrose solutions near the glass transition temperatures. J Phys Chem A. 2001;105:734–42.CrossRefGoogle Scholar
  6. 6.
    Ekdawi-Sever NC, et al. Diffusion of sucrose and α, α-trehalose in aqueous solutions. J Phys Chem A. 2003;107:936–43.CrossRefGoogle Scholar
  7. 7.
    Mathlouthi M. X-ray diffraction study of the molecular association in aqueous solutions of D-fructose, D-glucose and Sucrose. Carbohydr Res. 1981;91:113–23.CrossRefGoogle Scholar
  8. 8.
    Sapir L, Harries D. Linking trehalose self-association with binary aqueous solution equation of state. J Phys Chem B. 2011;115(4):624–34.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bordat P, et al. Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhys Lett. 2004;65(1):41–7.CrossRefGoogle Scholar
  10. 10.
    Branca C, et al. Tetrahedral order in homologous disaccharide-water mixtures. J Chem Phys. 2005;122(17):174513.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Branca C, et al. Vibtrational studies on disaccharides/H2O systems by inelastic neutron scattering, Raman, and IR spectroscopy. J Phys Chem B. 2003;107(6):1444–51.CrossRefGoogle Scholar
  12. 12.
    Branca C, et al. α,α-Trehalose/water solutions. 5. Hydration and viscosity in dilute and semidilute disaccharide solutions. J Phys Chem B. 2001; 105:10140–45.CrossRefGoogle Scholar
  13. 13.
    Magazu S, Migliardo F, Telling MT. Alpha, alpha-trehalose-water solutions. VIII. Study of the diffusive dynamics of water by high-resolution quasi elastic neutron scattering. J Phys Chem B. 2006;110(2):1020–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Magazu S, Migliardo F, Telling MT. Study of the dynamical properties of water in disaccharide solutions. Eur Biophys J. 2007;36(2):163–71.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pagnotta SE, et al. Water and trehalose: how much do they interact with each other? J Phys Chem B. 2010;114(14):4904–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kan Z, Yan X, Ma J. Conformation dynamics and polarization effect of alpha, alpha-trehalose in a vacuum and in aqueous and salt solutions. J Phys Chem A. 2015;119(9):1573–89.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lee SL, Debenedetti PG, Errington JR. A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. J Chem Phys. 2005;122(20):204511.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lupi L, et al. Hydration and aggregation in mono- and disaccharide aqueous solutions by gigahertz-to-terahertz light scattering and molecular dynamics simulations. J Phys Chem B. 2012;116(51):14760–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Burakowski A, Glinski J. Hydration numbers of nonelectrolytes from acoustic methods. Chem Rev. 2012;112(4):2059–81.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Dey PC, et al. Apparent molar volume and viscosity studies on some carbohydrates in solution. Montashefte fur Chemie. 2003;134:797–809.CrossRefGoogle Scholar
  21. 21.
    Sato Y, Miyawaki O. Relationship between proton NMR relaxation time and viscosity of saccharide solutions. Food Sci Technol. 2000;6(2):136–9.Google Scholar
  22. 22.
    Kawai H, et al. Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology. 1992;29(5):599–606.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sola-Penna M, Meyer-Fernandes JR. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch Biochem Biophys. 1998;360(1):10–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Miller DP, de Pablo JJ, Corti H. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm Res. 1997;14(5):578–90.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sussich F, et al. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr Res. 2001;334(3):165–76.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kawai K, et al. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose. Pharm Res. 2005;22(3):490–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hatley RH. Glass fragility and the stability of pharmaceutical preparations–excipient selection. Pharm Dev Technol. 1997;2(3):257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cesaro A, De Giacomo O, Sussich F. Water interplay in trehalose polymorphism. Food Chem. 2008;106:1318–28.CrossRefGoogle Scholar
  29. 29.
    Mathpal R, et al. Intermolecular forces of sugars in water. Montashefte fur Chemie. 2006;137:375–9.CrossRefGoogle Scholar
  30. 30.
    Makower B, Dye WB. Equilibrium moisture content and crystallization of amorphous sucrose and glucose. Agric Food Chem. 1956;4(1):72–7.CrossRefGoogle Scholar
  31. 31.
    Roos YH, et al. Melting and crystallization of sugars in high-solids systems. J Agric Food Chem. 2013;61(13):3167–78.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Saleki-Gerhardt A, Zografi G. Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm Res. 1994;11(8):1166–73.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    te Booy MPWM, de Ruiter RA, de Meere ALJ. Evaluation of the physical stability of freeze-dried sucrose-containing formulaiton by differential scanning calorimetry. Pharm Res. 1992;9(1):109–14.CrossRefGoogle Scholar
  34. 34.
    Patyk E, et al. High-pressure (+)-sucrose polymorph. Angew Chem Int Ed Engl. 2012;51(9):2146–50.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kilburn D, Sokol PE. Structural evolution of the dihydrate to anhydrate crystalline transition of trehalose as measured by wide-angle X-ray scattering. J Phys Chem B. 2009;113(7):2201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kilburn D, et al. Organization and mobility of water in amorphous and crystalline trehalose. Nat Mater. 2006;5(8):632–5.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Willart JF, et al. Vitrification and polymorphism of trehalose induced by dehydration of trehalose dihydrate. J Phys Chem B. 2002;106(13):3365–70.CrossRefGoogle Scholar
  38. 38.
    Cesaro A. Carbohydrates: all dried up. Nat Mater. 2006;5(8):593–4.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jones MD, et al. Dehydration of trehalose dihydrate at low relative humidity and ambient temperature. Int J Pharm. 2006;313(1–2):87–98.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pyszczynski SJ, Munson EJ. Generation and characterization of a new solid form of trehalose. Mol Pharm. 2013;10(9):3323–32.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Surana R, Pyne A, Suryanarayanan R. Effect of preparation method on physical properties of amorphous trehalose. Pharm Res. 2004;21(7):1167–76.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Iglesias HA, Chirife J, Buera MP. Adsorption isotherm of amorphous trehalose. J Sci Food Agric. 1997;75:183–6.CrossRefGoogle Scholar
  43. 43.
    Sundaramurthi P, Patapoff TW, Suryanarayanan R. Crystallization of trehalose in frozen solutions and its phase behavior during drying. Pharm Res. 2010;27(11):2374–83.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Galmirini MV, et al. Determination and correlation of the water activity of unsaturated, supersaturated and saturated trehalose solutions. LWT. 2008;41:628–31.CrossRefGoogle Scholar
  45. 45.
    Sitaula R, Bhowmick S. Moisture sorption characteristics and thermophysical properties of trehalose-PBS mixtures. Cryobiology. 2006;52(3):369–85.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    O’Brien J, Bladon P. Molecular modelling study of the mechanism of acid-catalyzed disaccharide hydrolysis: implications for nonenzymatic browning reactions. In: O’Brien J et al., editors. The Maillard reaction in foods and medicine. Cambridge, Great Britain: Royal Society of Chemistry; 1998. p. 147–53.CrossRefGoogle Scholar
  47. 47.
    O’Brien J. Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems. J Food Sci. 1996;61(4):679–82.CrossRefGoogle Scholar
  48. 48.
    Torres AP, et al. The influence of pH on the kinetics of acid hydrolysis of sucrose. J Food Process Eng. 1994;17:191–208.CrossRefGoogle Scholar
  49. 49.
    Wolfenden R, Yuan Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas. J Am Chem Soc. 2008;130(24):7548–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Singh SK, Nema S. Freezing and thawing of protein solutions, in formulation and process development strategies for manufacturing biopharmaceuticals. In: Jameel F, Hershenson S, editors. New York: Wiley; 2010. p. 625–75.CrossRefGoogle Scholar
  51. 51.
    Suji G, Sivakami S. Glucose, glycation and aging. Biogerontology. 2004;5(6):365–73.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213(4504):222–4.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    McPherson JD, Shilton BH, Walton DJ. Role of fructose in glycation and cross-linking of proteins. Biochemistry. 1988;27(6):1901–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fischer S, Hoernschemeyer J, Mahler HC. Glycation during storage and administration of monoclonal antibody formulations. Eur J Pharm Biopharm. 2008;70(1):42–50.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Gadgil HS, et al. The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharm Sci. 2007;96(10):2607–21.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Li S, et al. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J Pharm Sci. 1996;85(8):873–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Karel M, Labuza TP. Nonenzymatic browning in model systems containing sucrose. J Agric Food Chem. 1968;16(5):717–9.CrossRefGoogle Scholar
  58. 58.
    Oku K, et al. NMR and quantum chemical study on the OH…pi and CH…O interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxidant function of trehalose. J Am Chem Soc. 2003;125(42):12739–48.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Anonymus. Functional properties of sugar. [cited 2017 March]; Available from: http://www.sugar.ca/Nutrition-Information-Service/Health-professionals/Functional-Properties-of-Sugar.aspx.
  60. 60.
    Mathlouthi M, Reiser P. Sucrose: Properties and Applications. London, UK: Chapman and Hall.Google Scholar
  61. 61.
    Chi EY, et al. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Timasheff SN. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci USA. 2002;99(15):9721–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hedoux A, et al. Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations. J Phys Chem B. 2006;110(45):22886–93.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lins RD, Pereira CS, Hunenberger PH. Trehalose-protein interaction in aqueous solution. Proteins. 2004;55(1):177–86.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shukla D, Schneider CP, Trout BL. Molecular level insight into intra-solvent interaction effects on protein stability and aggregation. Adv Drug Deliv Rev. 2011;63(13):1074–85.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hedoux A, et al. Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scattering and differential scanning calorimetry investigation. J Chem Phys. 2006;124(1):14703.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278(29):26458–65.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kim YS, et al. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci. 2003;12(6):1252–61.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Saito S, et al. Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: influence of colloidal and conformational stabilities. Pharm Res. 2013;30(5):1263–80.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Rubin J, et al. Gauging colloidal and thermal stability in human IgG1-sugar solutions through diffusivity measurements. J Phys Chem B. 2014;118(11):2803–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    James S, McManus JJ. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose. J Phys Chem B. 2012;116(34):10182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Laue T. Proximity energies: a framework for understanding concentrated solutions. J Mol Recognit. 2012;25(3):165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    He F, et al. Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis. J Pharm Sci. 2011;100(4):1330–40.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    He F, et al. Effect of sugar molecules on the viscosity of high concentration monoclonal antibody solutions. Pharm Res. 2011;28(7):1552–60.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Arakawa T, Kita Y, Carpenter JF. Protein–solvent interactions in pharmaceutical formulations. Pharm Res. 1991;8(3):285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Roos YH, Karel M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J Food Sci. 1991;56(6):1676–81.CrossRefGoogle Scholar
  77. 77.
    Singh KJ, Roos YH. State transitions and freeze concentration in trehalose-protein-cornstarch mixtures. LWT. 2006;39:930–8.CrossRefGoogle Scholar
  78. 78.
    Roos YH. Melting and glass transitions of low molecular weight carbohydrates. Carbohydr Res. 1993;238:39–48.CrossRefGoogle Scholar
  79. 79.
    Crowe JH, et al. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes and biomolecules. Cryobiology. 1990;27:219–31.CrossRefGoogle Scholar
  80. 80.
    Singh SK, et al. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Chang BS, Randall CS. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology. 1992;29:632–56.CrossRefGoogle Scholar
  82. 82.
    Bellavia G, et al. Protein thermal denaturation and matrix glass transition in different protein-trehalose-water systems. J Phys Chem B. 2011;115(19):6340–6.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Colandene JD, et al. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci. 2007;96(6):1598–608.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lewis LM, et al. Rational design of freeze-dried formulation for a biologic. Am Pharm Rev; 2007.Google Scholar
  85. 85.
    Miller MA, et al. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution. J Pharm Sci. 2013;102(4):1194–208.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Prestrelski SJ, et al. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J. 1993;65(2):661–71.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Cleland JL, et al. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Imamura K, et al. Effects of types of sugar on the stabilization of protein in the dried state. J Pharm Sci. 2003;92(2):266–74.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Andya JD, Hsu CC, Shire SJ. Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS Pharmsci. 2003;5(2):E10.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Heljo VP, et al. The use of disaccharides in inhibiting enzymatic activity loss and secondary structure changes in freeze-dried beta-galactosidase during storage. Pharm Res. 2011;28(3):540–52.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Chang L, et al. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci. 2005;94(7):1427–44.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Sun WQ, Davidson P, Chan HS. Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis. Biochim Biophys Acta. 1998;1425(1):245–54.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Cicerone MT, et al. Substantially improved stability of biological agents in dried form. The role of glassy dynamics in preservation of biopharmaceuticals. Bioprocess Int. 2003;1:36–47.Google Scholar
  94. 94.
    Davidson P, Sun WQ. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg. Pharm Res. 2001;18(4):474–9.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Duddu SP, Dal Monte PR. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res. 1997;14(5):591–5.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Pikal MJ, et al. Solid state chemistry of proteins: II. The correlation of storage stability of freeze-dried human growth hormone (hGH) with structure and dynamics in the glassy solid. J Pharm Sci. 2008;97(12):5106–21.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Katayama DS, et al. Mixing properties of lyophilized protein systems: a spectroscopic and calorimetric study. J Pharm Sci. 2009;98(9):2954–69.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Pikal MJ, Rigsbee DR, Roy ML. Solid state chemistry of proteins: I. glass transition behavior in freeze dried disaccharide formulations of human growth hormone (hGH). J Pharm Sci. 2007;96(10):2765–76.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Shamblin SL, Zografi G. Enthalpy relaxation in binary amorphous mixtures containing sucrose. Pharm Res. 1998;15(12):1828–34.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Taylor LS, Zografi G. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J Pharm Sci. 1998;87(12):1615–21.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Allison SD, et al. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys. 1999;365(2):289–98.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Cicerone MT, Douglas JF. Beta-relaxation governs protein stability in sugar-glass matrices. Soft Matter. 2012;8:2983–91.CrossRefGoogle Scholar
  103. 103.
    Cicerone MT, Soles CL. Fast dynamics and stabilization of proteins: binary glasses of trehalose and glycerol. Biophys J. 2004;86(6):3836–45.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Bellavia G, et al. Thermal denaturation of myoglobin in water–disaccharide matrixes: relation with the glass transition of the system. J Phys Chem B. 2009;113(33):11543–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bhatnagar BS, et al. Freeze drying of biologics. In: Encyclopedia of pharmaceutical science and technology. New York: Taylor and Francis; 2013. p. 1673–1722.Google Scholar
  106. 106.
    Parker A, et al. Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products. J Pharm Sci. 2010;99(11):4616–29.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Johnson RE, Kirchhoff CF, Gaud HT. Mannitol-sucrose mixtures–versatile formulations for protein lyophilization. J Pharm Sci. 2002;91(4):914–22.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Weinbuch D, et al. Nanoparticulate impurities in pharmaceutical-grade sugars and their interference with light scattering-based analysis of protein formulations. Pharm Res. 2015;32(7):2419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Elbein AD, et al. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13(4):17R–27R.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Avastin. Prescribing information. 2014.Google Scholar
  111. 111.
    Brayfield A. Martindale: the complete drug reference. Pharmaceutical Press; 2001.Google Scholar
  112. 112.
    Krajicek BJ, Kudva YC, Hurley HA. Potentially important contribution of dextrose used as diluent to hyperglycemia in hospitalized patients. Diabet Care. 2005;28(4):981–2.CrossRefGoogle Scholar
  113. 113.
    JPED. Japanese pharmaceutical excipients directory.Google Scholar
  114. 114.
    Abbott PJ, Chen J. Safety evaluation of certain food additives and contaminants: trehalose F.-f.M.o.t.J.F.W.E.C.o.F.A. (JECFA); 2001.Google Scholar
  115. 115.
    Sato S, et al. Trehalose can be used as a parenteral saccharide source in rabbits. J Nutr. 1999;129(1):158–64.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    AmBisome. Prescribing information; 2012.Google Scholar
  117. 117.
    Orencia. Prescribing information; 2016.Google Scholar
  118. 118.
    Chapman SA, et al. Acute renal failure and intravenous immune globulin: occurs with sucrose-stabilized, but not with D-sorbitol-stabilized, formulation. Ann Pharmacother. 2004;38(12):2059–67.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Dantal J. Intravenous immunoglobulins: in-depth review of excipients and acute kidney injury risk. Am J Nephrol. 2013;38(4):275–84.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Itkin YM, Trujillo TC. Intravenous immunoglobulin-associated acute renal failure: case series and literature review. Pharmacotherapy. 2005;25(6):886–92.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Katz U, et al. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007;6(4):257–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Epstein JS, Zoon KC. Dear doctor letter—important drug warning: immune globulin intravenous (human). 1998.Google Scholar
  123. 123.
    Anonymus. Fructose and sorbitol containing parenteral solutions should not be used. Curr Prob Pharmacovigilance. 2001; 27:13.Google Scholar
  124. 124.
    Sun WQ, et al. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70(4):1769–76.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71(4):2087–93.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hofmann G, editor. Iscotables: a handbook of data for biological and physical scientists. 8th ed. Lincoln, Nebraska: Instrumentation Supply Company; 1982.Google Scholar
  127. 127.
    Uchida T, Nagayama M, Gohara K. Trehalose solution viscosity at low temperatures measured by dynamic light scattering method: trehalose depresses molecular transportation for ice crystal growth. J Crystal Growth. 2009;311(23–24):4747–52.CrossRefGoogle Scholar
  128. 128.
    Longinotti MP, Corti HR. Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime. J Phys Chem Ref Data. 2008;37(3):1503–15.CrossRefGoogle Scholar
  129. 129.
    Mehl PM. Solubility and glass transition in the system alpha-D-trehalose/water. J Therm Anal. 1997;49:817–22.CrossRefGoogle Scholar
  130. 130.
    Surana R, Pyne A, Suryanarayanan R. Effect of aging on the physical properties of amorphous trehalose. Pharm Res. 2004;21(5):867–74.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Lonza AGBaselSwitzerland

Personalised recommendations