Advertisement

Lyophilization: Process Design, Robustness, and Risk Management

  • Daniel Dixon
  • Serguei Tchessalov
  • Bakul Bhatnagar
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 38)

Abstract

This chapter briefly reviews the formulation literature with a focus on defining formulations that can support aggressive lyophilization. Each step in the lyophilization process is reviewed with considerations for scale-up with an emphasis on mathematical modeling (enabled by equipment characterization) and application of process analytical technologies, when possible. A scientific approach to process robustness relying upon grouping of process parameters to provide worst case conditions is described, and the consequences of grouping these parameters is discussed. Process robustness, assessed in this fashion, can then support the definition of the process design space and inform risk management activities.

Keywords

Freeze drying Primary drying Secondary drying Mathematical modeling Process analytical technologies (PAT) Lyophilizer characterization Process robustness Quality by design 

References

  1. 1.
    Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Nail SL, Jiang S, Chongprasert S, Knopp SA. Fundamentals of freeze-drying. Pharm Biotechnol. 2002;281–360.Google Scholar
  3. 3.
    Pikal MJ. Freeze drying. Encyclopedia of pharamceutical technology. USA: Informa Healthcare; 2006. p. 1807–33.Google Scholar
  4. 4.
    Bhatnagar B, Tchessalov S, Lewis L, Johnson R. Freeze drying of biologics in encyclopedia of pharmaceutical science and technology. 4th ed. New York: Taylor and Francis; 2013. p. 1673–722.Google Scholar
  5. 5.
    Auffret GLAT, Shalaev EY, Speaker SM, Teagarden DL. Freeze-drying concepts: the basics. In: McNally EJ, Hastedt JE, editors. Protein formulation and delivery. 2nd ed. Florida: CRC Press; 2007. p. 177–95.Google Scholar
  6. 6.
    Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophlized proteins: theory and practice. Pharm Res. 1997;969–75.Google Scholar
  7. 7.
    Nema S, Washkuhn RJ, Brendel RJ. Excipients and their uses in parenteral products. PDA J Pharm Sci Technol. 1997;166–71.Google Scholar
  8. 8.
    Constantino HR. Excipients for use in lyophilized pharmaceutical peptide, protein, and other bioproducts, in lyophilization of biopharmaceuticals. Arlington, VA: AAPS Press; 2004. p. 139–228.Google Scholar
  9. 9.
    Sundaramurthi P, Suryanarayanan S. Trehalose crystallization during freeze-drying: implication on lyoprotection. J Phys Chem Let. 2010;510–4.CrossRefGoogle Scholar
  10. 10.
    Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Connolly BD, Le L, Patapoff TW, Cromwell MEM, Moore JMR, Lam P. Protein aggregation in frozen trehalose formulations: effects of composition, cooling rate, and storage temperature. J Pharm Sci. 2015;104(12):4170–84.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wang BQ, Tchessalov S, Cicerone MT, Warne NW, Pikal MJ. Impact of sucrose level on storage stability of proteins in freeze-dried solids: II. Correlation of aggregation rate with protein structure and molecular mobility. J Pharm Sci. 2009;3145–66.Google Scholar
  13. 13.
    Wang BQ, Tchessalov S, Warne NW, Pikal MJ. Impact of sucrose level on storage stability of proteins in freeze-dried solids: I. Correlation of protein-sugar interaction with native structure preservation. J Pharm Sci. 2009;3131–44.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Cleland JL, Lam X, Kendrick B, Yang J, Yang TH, Overcashier D, Brooks C, Hsu C, Carpenter JF. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pikal MJ, Rigsbee D, Roy ML, Galreath DK, Karl J, Wang B, Carpenter JF, Cicerone MT. Solid state chemistry of proteins: II. The correlation of storage stability of freeze-dried human growth hormone (hGH) with structure and dynamics in the glassy solid. J Pharm Sci. 2008;97(12):5106–21.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Luthra S, Pikal MJ. Stabilization of lyophilized pharmaceuticals by control of molecular mobility: impact of thermal history. In: Jameel F, Hershenson S, editors. Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals. Hoboken, NJ: Wiley; 2010. p. 521–48.CrossRefGoogle Scholar
  17. 17.
    Duddu SP, Zhang G, Dal Monte PR. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm Res. 1997;14(5):596–600.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kasraian K, Spitznagel TM, Juneau J, Yim K. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy. Pharm Dev Tech. 1998;233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lueckel B, Bodmer D, Helk B, Leuenberger H. Formulations of sugars with amino acis or mannitol: influence of concentration ratio on the properties of the freeze-concentrate and the lyophlizate. Pharm Dev Tech. 1998;325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Schneid S, Riegger X, Gieseler H. Influence of common excipients on the crystalline modification of freeze-dried mannitol. Pharm Tech. 2008;178–84.Google Scholar
  22. 22.
    Dixon DA, Tchessalov S, Barry AB, Warne NW. The impact of protien concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization. J Pharm Sci. 2009;3419–29.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2005;11(11):1978–85.CrossRefGoogle Scholar
  24. 24.
    Krishnan S, Pallitto M, Nagle S, Crampton SL, Speed Ricci M, Cao W, Lin H, Xie Y. USA Patent WO2007014073 A3, 2008.Google Scholar
  25. 25.
    Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;85(12):1325–30.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Warne NW. Development of high concentration protein biopharmaceuticals: the use of platform approaches in formulation development. Eur J Pharm Biopharm. 2011;78(2):208–12.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tchessalov S, Dixon DA, Barry AB, Warne NW. Lyophilization cycle robustness strategy. USA Patent US20090324586 A1, 2009.Google Scholar
  28. 28.
    Chang BS, Randall CS. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology. 1992;29:632–56.CrossRefGoogle Scholar
  29. 29.
    Osterberg T, A. Fatouros A, Mikaelsson M. Development of a freeze-dried albumin-free formulation of recombinant factor VIII SQ. Pharm Res. 1997;892–8.Google Scholar
  30. 30.
    Her LM, Deras M, Nail SL. Electrolyte-induced changes in gralss transition temperatures of freeze-concentrated solutes. Pharm Res. 1995;12(5):768–72.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Genentech. Herceptin prescribing information. [Online]. Available: https://www.gene.com/download/pdf/herceptin_prescribing.pdf. Accessed 29 June 2017.
  32. 32.
    Amgen, Inc. Product monograph—Enbrel (Etanercept) [Online]. Available: https://www.amgen.ca/products/~/media/5d0a40b2b8774fb5994190f97daf7fbd.ashx. Accessed 29 June 2019.
  33. 33.
    Pfizer, Inc. Product monograph—BeneFIX (coagulation factor IX). [Online]. Available: http://www.pfizer.ca/sites/g/files/g10017036/f/201410/BENEFIX_PM_E_153056_27Dec2012.pdf. Accessed 29 June 2017.
  34. 34.
    Janssen Biotech. Remicade prescribing information [Online]. Available: https://www.remicade.com/shared/product/remicade/prescribing-information.pdf. Accessed 29 June 2017.
  35. 35.
    Tchessalov S, Dixon DA, Warne NW. Lyophilization of pharmaceuticals above collapse temperature. USA Patent WO. 2010;2010017296:A1.Google Scholar
  36. 36.
    Chatterjee K, Shalaev ESR. Partially crystalline systems in lyophilization: II withstanding collapse at high primary drying temperature and impact on protein recovery. J Pharm Sci. 2005;809–20.Google Scholar
  37. 37.
    Johnson R, Kirchhoff C, Gaud J. Mannitol-sucrose mixtures—versatile formulations for protein lyophilization. J Pharm Sci. 2002;914–22.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wang DQ, Hey JM, Nail SL. Effect of collapse on the stability of freeze-dried recombinant factor VII and a-amylase. J Pharm Sci. 2004;93(5):1253–63.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Schersch K, Betz O, Garidel P, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins I: stability after freeze-drying. J Pharm Sci. 2010;99(5):2256–78.PubMedCrossRefGoogle Scholar
  40. 40.
    Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins, part 2: stability during storage at elevated temperatures. J Pharm Sci. 2012;101(7):2288–306.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins III: collapse during storage at elevated temperatures. Eur J Pharm Biopharm. 2013;85(2):240–52.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Tchessalov S, Dixon DA, Warne NW. Principles of lyophilization scale-up. Am Pharm Rev. 2007;88–91.Google Scholar
  43. 43.
    Pikal MJ, Bogner R, Mudhivarthi V, Sharma P, Sane P. Freeze-drying process development and scale-up: scale-up of edge vial versus center vial heat transfer coefficients, Kv. J Pharm Sci. 2016;105:3333–43.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Sane S, Hsu C. Considerations fro successful lyophlization process scale-up, technology transfer and routine production. In: Jameel F, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. Hoboken: Wiley; 2010. p. 797–826.CrossRefGoogle Scholar
  45. 45.
    Heller MC, Carpenter JF, Randolph TW. Manipulation of lyophilization-induced phase separation: implications for pharmaceutical proteins. Biotechnol Prog. 1997;13(5):590–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Searles JA, Carpenter JF, Randolph TW. Annealing to optimize the primary drying rate, reduce freezing-induced drying heterogeneity, and determine Tg′ in pharmaceutical lyophilization. J Pharm Sci. 2001;872–87.Google Scholar
  47. 47.
    Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci. 1984;1224–37.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. J Parenteral Sci and Tech. 1985;39(3):115–37.Google Scholar
  49. 49.
    Sheehan A, Liapis AI. Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies. Biotech and Bioeng. 1998;60(6):712–28.CrossRefGoogle Scholar
  50. 50.
    Hottot A, Vessot S, Andrieu J. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products. PDA J Pharm Sci Tech. 2005;59(2):138–53.Google Scholar
  51. 51.
    SP Scientific. LyoModeling calculator. 2016. [Online]. Available: http://www.spscientific.com/LyoCalc/Lyocalculator.html. Accessed 3 July 2017.
  52. 52.
    Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech. 2010;73–84.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Meissner U, Satahl H, Steiinkellner D. Detection of silicone oil leakages in freeze dryers. PDA J Pharm Sci Technol. 2011;65(5):481–4.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Barresi AA, Pisano R, Fissore D, Rasetto V, Velardi SA, Vallan A, Parvis M, Galan M. Monitoring of the primary drying of a lyophilization process in vials. J Pharm Sci. 2009;48(1):408–23.Google Scholar
  55. 55.
    Connelly JP, Welch JV. Monitor lyophilization with mass spectrometer gas analysis. PDA J Pharm Sci Technol. 1993;47(2):70–5.Google Scholar
  56. 56.
    Tang X, Nail SL, Pikal MJ. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Pharm Res. 2005;685–700.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Adams GDJ, Ramsay JR. Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability or Erwinia L-Asparaginase. J Pharm Sci. 1996;1301–5.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Tchessalov S, Warne NW. Lyophlization methods and apparatuses. USA Patent WO 2008042408 A2. 2008.Google Scholar
  59. 59.
    Pikal MJ, Shah S, Roy ML, Putman R. The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm. 1990;203–17.CrossRefGoogle Scholar
  60. 60.
    Searles JA, Aravapalli S, Hodge C Effects of chamber pressure and partial pressure of water vapor on secondary drying in lyophlization. AAPS PharmSciTech, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Nail SL. The effect of chamber pressure on heat transfer in the freeze drying of parenteral solutions. PDA J Pharm Sci Technol. 1980;34(5):358–68.Google Scholar
  62. 62.
    Tang XPMJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;191–200.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ullrich S, Seyferth S, Lee G. Measurement of shrinkage and cracking in lyophlized amorphous cakes. Part I: final product assessment. J Pharm Sci. 2015;104:155–64.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Liapis A, Bruttini R. A theory for the primary and secondary drying stages of the freeze drying of pharmaceutical crystalline and amorphous solutes: comparison between experimental data and theory. Sep Technol. 1994;144–55.CrossRefGoogle Scholar
  65. 65.
    Pikal MJ, Cardon S, Bhugra C, Jameel F, Rambhatla S, Mascarenhas WJ, Akay HU. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pharm Dev Technol. 2005;17–32.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sahni EK, Pikal MJ. Modeling the secondary drying stage of freeze drying: development and validation of an excel-based model. J Pharm Sci. 2017;106(3):779–91.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    IMA-Pharma. Lyophilization process—fusion and fusion plus [Online]. Available: http://www.ima-pharma.com/Product/EN/Products-F575/Product_Insights-S872/Lyophilization_Process-T889/FUSION%E2%84%A2_%26_FUSION_PLUS_%E2%84%A2-Q894.html. Accessed 29 June 2017.
  68. 68.
    Schneid S, Gieseler H. Evaluation of a new wireless temperature remote interrogation system (TEMPRIS) to measure product temperature during freeze drying. AAPS PharmSciTech. 2008;729–39.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wilbur B. Process development of a dual-chambered syringe. San Diego, CA. 2012.Google Scholar
  70. 70.
    Schneid SC, Gieseler H, Kessler WJ, Pikal MJ. Non-invasive product temperature determination during primary drying using tunable diode laser adsorption spectroscopy. J Pharm Sci. 2009;98:3406–18.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pisano R, Fissore D, Barresi A. A new method based on the regression of step response data for monitoring a freeze-drying cycle. J Pharm Sci. 2014;1756–65.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nail SL, Johnson W. Methodology for in-process determination of residual water in freeze-dried products. Dev Bioblogical Stand. 1992;74:137–51.Google Scholar
  73. 73.
    Lin TP, Hsu CC. Determination of residual moisture in lyophilized protein pharmaceuticals using a rapid an non-invasive method: near infrared spectroscopy. PDA J Pharm Sci Technol. July August 2002;196–205.Google Scholar
  74. 74.
    Sadikoglu H, Liapis AI, Crosser OK, Brurrini R. Estimation of the effect of product shrinkage on drying times, heat input and condenser load of the primary drying stages of the lyophilization process in vials. Drying Technol. 1999;17(10):2013–35.CrossRefGoogle Scholar
  75. 75.
    Rambhatla S, Tchessalov S, Pikal MJ. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests. AAPS PharSciTech. 2006;7(2):E61–70.CrossRefGoogle Scholar
  76. 76.
    Searles JA. Observation and implication of sonic water vapor flow during freeze-drying. Am Pharm Rev. 2004;8(2):58–69.Google Scholar
  77. 77.
    Tchessalov S, Warne NW. Lyophlization: cycle robustness and process tolerances, transfer and scale up. Euro Pharm Rev. 2008;3:76–83.Google Scholar
  78. 78.
    International Conference on Harmonization, “Q8(R2): Pharmaceutical Development,” 2009.Google Scholar
  79. 79.
    Sundaram J, Shay YHM, Hsu CC, Sane SU. Design space development for lyophilization using DOE and process modeling. BioPharm Int. 2010;23(9):26–36.Google Scholar
  80. 80.
    Mehta M, Bhardwaj SP, Suryanarayanan R. Controlling the physical form of mannitol in freeze-dried systems. Eur J Pharm Biopharm. 2013;85(2):207–13.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Yu L, Milton N, Groleau EG, Mishra DS, Vansickle RE. Existence of mannitol hydrate during freeze-drying and practical implications. J Pharm Sci. 1999;88(2):196–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Patel SM, Jameel F, Pikal MJ. The effect of dryer load on freeze drying process design. J Pharm Sci. 2010;99(10):4363–79.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    International conference on harmonization, Q9: quality risk management, 2005.Google Scholar
  84. 84.
    International conference on harmonization, Q10: pharmaceutical quality system, 2008.Google Scholar
  85. 85.
    Glodek M, Liebowitz S, McCarthy R, McNally G, Oksanen C, Schultz T, Sudararajan M, Vorkapich R, Vukovinsky K, Watts C, Millili G. Process robustness—a PQRI white paper. Pharm Eng. 2006;26(6):1–11.Google Scholar
  86. 86.
    Nail SL, Searles JA. Elements of quality by design in development and scale-up of freeze-dried parenterals. BioPharm Int. 2008;44–52.Google Scholar
  87. 87.
    International conference on harmonization, Q7: good manufacturing practice guide for active pharmaceutical ingredients, 2000.Google Scholar
  88. 88.
    Patro S, Freund E, Chang B. Protein formulation and fill-finish operations. Biotechnology Annual Review. 2002;55–84.Google Scholar
  89. 89.
    Chang D, Chang R-K. Review of current issues in pharmaceutical excipients. Pharm Technol. May 2007;56–66.Google Scholar
  90. 90.
    Kishore R, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler H-C. The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharmaceutical Research. 2011;1194–210.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhang L, Yadav S, Demeule B, Wang YJ, Mozziconacci O, Schoeneich C. Degradation mechanisms of polysorbate 20 differentiated by 18O-labeling and mass spectrometry. Pharm Res. 2017;84–100.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Steele A, Arias J. Accounting for the Donnan effect in diafiltration optimization for high-concentration UFDF applications. BioProcess Int. 2014;50–4.Google Scholar
  93. 93.
    Brukl L, Hahn R, Sergi M, Scheler S. A systematic evaluation of mechanisms, material effects, and protein-dependent differences on friction-related protein particle formation in formulation and filling steps. Int J Pharm. 2016;931–45.Google Scholar
  94. 94.
    Ishikawa T, Kobayashi N, Osawa C, Sawa E, Wakamatsu K. Prevention of stirring-induced microparticle formation in monoclonal antibody solutions. Biol Pharm Bull. 2010;33(6):1043–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Paul E, Atiemo-Obeng V, Kesta S, editors. Handbook of industrial mixing: science and practices. Hoboken: Wiley; 2004.Google Scholar
  96. 96.
    European commission. Volume 4, Annex 1—manufacture of sterile medicinal products. Brussels, 2008.Google Scholar
  97. 97.
    FDA. Guidance for industry: sterile drug products producted by aseptic manufacturing current good manufacturing practice. Rockville, MD, 2004.Google Scholar
  98. 98.
    Antonsen H, Awafo V, Bender J, Carter J, Conway R, Egli S, Feeser T, Jornitz M, Kearns M, Levy R, Madsen R, Martin J, McBurnie L, Meissner L, Meltzer T, Pawar V, Phelan M, Stinavage P, Vega SNH, Witchey-Lakshmanan L. Sterilizing filtration of liquids. Technical report 26. PDA J Sci Technol. 2008;62(S-5):2–60.Google Scholar
  99. 99.
    Tyagi A, Randolph T, Dong A, Maloney K, Hitscherich C, Carpenter J. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci. 2009;98(1):94–104.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nayak A, Colandene J, Bradford V, Perkins M. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution. J Pharm Sci. 2011;100(10):4198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rathore N, Rajan R. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–14.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kerwin B, Remmele R Jr. Protect from light: photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–79.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Qi P, Volkin D, Zhao H, Nedved M, Hughes R, Bass R, Yi S, Panek M, Wang D, Dalmonte P, Bond M. Characterization of the photodegradation of a human IgG1 monocloncal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci. 2009;98(9):3117–30.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sreedhara A, Yin J, Joyce M, Lau K, Wecksler A, Deperalta G, Yi L, Wang Y, Kabakoff B, Kishore R. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur J Pharm Biopharm. 2016;100:38–46.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    FDA. Guidance for industry—process validation: general principles and practices. Rockville, MD, 2011.Google Scholar
  106. 106.
    Shalaev EY, Wang W, Gatlin LA. Rational choice of excipients for use in lyophilized formulations in protein formulation and delivery. 2nd ed. Boca Raton: FL; 2008. p. 197–217.Google Scholar
  107. 107.
    Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;85:1325–30.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jiang X-R, Song A, Bergelson S, Arroll T, Parekh B, May K, Chung S, Strouse R, Mire-Sluis A, Schenerman M. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Disc. 2011;10:101–10.CrossRefGoogle Scholar
  109. 109.
    Capon D. Designing CD4 immunoadhesins for AIDS therapy. Nature. 1989;525–31.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Aggarwal S. What’s fueling the biotech engine—2012 to 2013. Nat Biotechnol. 2014;32(1):32–9.CrossRefPubMedGoogle Scholar
  111. 111.
    Mohler K, Torrance DS, Smith C, Goodwin R, Stremler K, Fung V, Madani H, Widmer M. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemial and function simultaneously as both TNF carriers and TNF agonists. J Immunol. 1993;151(3):1548–61.Google Scholar
  112. 112.
    Ducore JM, Miguelino MG, Powell JS. Alprolix (recombinant factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Rev Hematol. 2014;7(5):559–71.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Powell JS, Josephson NC, Quon D, Ragni MV, Cheng G, Li E, Jiang J, Li L, Dumont JA, Goyal J, Zhang X, Sommer J, McCue J, Barbetti M, Luk A, Pierce GF. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood. 2012;119(13):3031–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Shapiro A. Development of long-acting recombinant FVIII and FIX Fc fusion proteins for the management of hemophilia. Expert Opin Biol Ther. 2013;13(9):1287–97.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rath T, Baker K, Dumont J, Peters R, Jiang H, Qiao S-W, Lencer W, Pierce G, Blumberg R. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2013.Google Scholar
  116. 116.
    Wu B, Sun Y-N. Pharmacokinetics of peptide-Fc fusion proteins. J Pharm Sci. 2014;103:53–64.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hermeling S, Crommelin D, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;22(6):897–903.CrossRefGoogle Scholar
  118. 118.
    Dintzis H, Dintzis R, Vogelstein B. Moleculare determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci USA. 1976;73(10):3671–5.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Shimamoto G, Gegg C, Boone T, Queva C. Peptibodies: a flexible alternative format to antibodies. mAbs. 2012;4(5):586–91.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Cines D, Yasothan U, Kirkpatrick P. Romiplostim. Nat Rev Drug Discov. 2008;7:887–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Molineux G, Newland A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: from bench to bedside. Br J Haematol. 2010;150(1):9–20.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Huang C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr Opin Biotechnol. 2009;20:692–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Lindzen M, Carvalho S, Starr A, Ben-Chetrit N, Pradeep C, Loestler W, Rabinkov A, Lavi S, Bacus S, Yarden Y. A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis. Oncogene. 2012;31:3505–15.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS. VEGF-Trap: a VEGF blocker with potent antitumor effects. PNAS. 2002;99:11393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kim ES, Serum A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. PNAS. 2002;99:11399–404.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kimchi-Sarfaty C, Schiller T, Hamasaki-Katagiri N, Khan M, Yanover C, Sauna Z. Building better drugs: developing and regulating engineered therapeutic proteins. Cell. 2013;34(10):534–48.Google Scholar
  127. 127.
    Dumont J, Low S, Peters RT, Bitonti A. Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. Biodrugs. 2006;20(3):151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Economides A, Carpenter L. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med. 2003;9:47–52.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Nimmerjahn F, Ravetch J. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jacobs C, Beckmann M, Mohler K, Maliszewski C, Fanslow W, Lynch D. Pharmacokinetic parameters and biodistribution of soluble cytokine receptors. Int Rev Exp Pathol. 1992;34B:123.Google Scholar
  131. 131.
    Yu H-K, Lee H-JAJ-H, Lim I-H, Moon J-H, Yoon Y, Yi L, Kim S, Kim J-S. Immunoglobulin Fc domain fusion to apolipoprotein(a) kringle V significantly prolongs plasma half-life without affecting its anti-angiogenic activity. Protein Eng Des Sel. 2013;26(6):425–32.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Shiga Y, Oshima Y, Yoshinori K, Sugimoto A, Tamaki N, Murata D, Takeuchi T, Sato A. Recombinant human lactoferrin-Fc fusion with an improved plasma half-life. Eur J Pharm Sci. 2015;67:136–43.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Jazayeri JA, Carroll GJ. Fc-based cytokines. Biodrugs. 2008;22(1):11–26.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Valee S, Rakhe S, Reidy T, Walker S, Lu Q, Sakorafas P, Low S, Bitonti A. Pulmonary administration of interferon beta-1a-fc fusion protein in non-human primates using an immunoglobulin transport pathway. J Interferon Cytokine Res. 2012;32(4):178–84.CrossRefGoogle Scholar
  135. 135.
    Dixon W, Hyrich K, Watson K, Lunt M, Galloway J, Ustianowski A, Symmons D. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated witn anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis. 2010;69(3):522–8.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Tubach F, Salmon D, Ravaud P, Allanore Y, Goupille P, Breban M, Pallot-Prades B, Pouplin S, Sacchi A, Chichemanian R, Bretagne S, Emilie D, Lemann M, Lorthololary O, Marriette X. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum. 2009;60(7):1884–94.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Hunt L, Emery P. Etanercept in the treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2013;13(10):1441–50.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Peppel K, Crawford D, Beutler B. A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med. 1991;174:1483–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Zhang J, Carter J, Siu S, O’Neill J, Gates A, Delaney J, Mehlin C. Fusion partners as a tool for the expression of difficult proteins in mammalian cells. Curr Pharm Biotechnol. 2010;11(3):241–5.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Carter P. Introduction to current and future protein therapeutics: A protein engineering perspective. Exptl Cell Res. 2011;317:1261–9.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kumagai Y, Fujita T, Ozaki M, Sahashi K, Ohkura M, Ohtsu T, Arai Y, Sonehara Y, Nichol JL. Pharmacodynamics and pharmacokinetics of AMG 531, a thrombopoiesis-stimulating peptibody, in healthy Japanese subjects; a randomized, placebo-controlled study. J Clin Pharmacol. 2007;47(12):1489–97.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Sathish J, Swaminathan S, Bielsky M-C, de Haan L, French N, Govindappa K, Green J, Griffiths C, Holgate S, Jones D, Kimber I, Moggs J, Naisbitt D, Pirmohamed M, Reichmann G, Sims J, Subramanyam M, Todd M, Van Der Laan J, Weaver RJ, Park BK. Challenges and approaches for the development of safer immunomodulatory biologics. Nat Rev Drug Disc. 2013;12:306–24.CrossRefGoogle Scholar
  143. 143.
    Grinyo J. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation. 2010;90:1521–7.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Chen X, Zaro J, Shen W-C. Pharmacokinetics of recombinant bifunctional fusion proteins. Expert Opin Drug Metab Toxicol. 2012;8(5):581–95.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Strohl W. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol. 2009;20:685–91.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8:226–34.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kaneko Y, Nimmerjahn F, Ravetch J. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Stavenhagen J, Gorlatov S, Tuaillon N, Rankin C, Li H, Burke S, Huang L, Johnson S, Koenig S, Bonvini E. Enhancing the potency of therapeutic monoclonal antibodies via Fc optimization. Adv Enzyme Regul. 2008;48:152–64.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Shoji-Hosaka E, Kobayashi Y, Wakitani M, Uchida K, Niwa R, Nakamura K, Shitara K. Enhanced Fc-dependent cellular cytotoxicity of Fc fusion proteins derived from TNF receptor II and LFC-3 by fucose removal from Asn-linked oligosaccharides. J Biochem. 2006;140:777–83.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Matsuda K, Kubota T, Kaneko E, Iida S, Wakitani M, Kobayashi-Natsume Y, Kubota A, Shitara K, Nakamura K. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol. 2007;44(12):3122–31.CrossRefGoogle Scholar
  151. 151.
    Kellner C, Derer S, Valerius T, Peipp M. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods. 2014;65:105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Houde D, Peng Y, Berkowitz S, Engen J. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics. 2010;9:1716–28.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Nagashima H, Kaneko K, Yamanoi A, Motoi S, Konakahara S, Kohroki J, Masuho Y. TNF receptor II fusion protein with tandemly repeated Fc domains. J Biochem. 2011;149(3):337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Yeung Y, Leabman M, Marvin J, Qiu J, Adams C, Lien S, Starovasnik M, Lowman H. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol. 2009;182:7663–71.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Zalevsky J, Chamberlain A, Horton H, Karki S, Leung I, Sproule T, Lazar G, Roopenian D, Desjarlais J. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28(2):157–9.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Czajkowsky D, Hu J, Shao Z, Pleass R. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4:1015–28.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Scallon B, Tam S, McCarthy S, Cai A, Raju T. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44(7):1524–34.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Davis P, Abraham R, Xu L, Nadler S, Suchard S. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J Rheum. 2007;34(11):2204–10.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Bruhns P, Iannascoli B, England P, Mancardi D, Fernandez N, Jorieux S, Daeron M. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Wang Q, Chen K, Liu R, Zhao F, Gupta S, Zhang N, Prud’homme G. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist. PLoS ONE. 2010;5:e12734.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Vafa O, Gilliland G, Brezski R, Strake B, Wilkinson T, Lacy E, Scallon B, Teplyakov A, Malia T, Strohl W. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods. 2014;65:114–26.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Lee J-H, Yeo J, Park HS, Sung G, Lee SH, Yang SH, Sung YC, Kang J-H, Park C-S. Biochemical characterization of a new recombinant TNF receptor-hyFc fusion protein expressed in CHO cells. Protein Expr Purif. 2013;87:17–26.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Ishino T, Wang M, Mosyak L, Tam A, Duan W, Svenson K, Joyce A, O’Hara D, Lin L, Somers W, Kriz R. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. J Biol Chem. 2013;288(23):16529–37.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ying T, Chen W, Feng Y, Wang Y, Gong R, Dimitrov D. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. J Biol Chem. 2013;288(35):25154–64.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    FDA.gov. Guidance for industry: immunogenicity assessment for therapeutic protein products. August 2014 [Online]. Available: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm338856.pdf. Accessed 24 Mar 2015.

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Daniel Dixon
    • 1
  • Serguei Tchessalov
    • 1
  • Bakul Bhatnagar
    • 1
  1. 1.BioTherapuetics Pharmaceutical Sciences, Pharmaceutical R&DPfizer, IncAndoverUSA

Personalised recommendations