Advertisement

Environmental Factors and Their Influence on Intestinal Fibrosis

  • Claudio Bernardazzi
  • Fernando Castro
  • Heitor S. de Souza
Chapter

Abstract

Multiple endogenous and exogenous factors have been implicated in the development of inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis; these factors may initiate and maintain the chronic inflammatory process, potentially resulting in intestinal fibrosis. Several distinct mechanisms are involved in the tissue response leading to excessive extracellular matrix deposition in IBD. This process involves the complex and dynamic interactions of a network of several genes and molecules, forming a microenvironment that favors the development of fibrosis. In addition to inflammation, alternate contributors have been implicated in intestinal fibrogenesis, including microbiota and the action of microbe-associated molecular patterns and other pattern recognition receptors, as well as damage-associated molecular patterns (DAMPs), dietary factors, and natural and synthetic compounds. These elements have been shown to act directly or through epigenetic changes, usually interfering with the immune response and mechanisms of tissue repair, which may ultimately cause fibrosis. Further investigation of specific environmental triggers and the epigenetic molecular network underlying the pathogenesis of IBD may help in the prevention of and in the development of a more effective treatment for intestinal fibrosis.

Keywords

Inflammatory bowel disease Environmental factors Intestinal fibrosis DAMPs Epigenetics Intestinal microbiota 

References

  1. 1.
    de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27.CrossRefPubMedGoogle Scholar
  2. 2.
    de Souza HSP. Etiopathogenesis of inflammatory bowel disease: today and tomorrow. Curr Opin Gastroenterol. 2017;33(4):222–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):340–50. e346.CrossRefPubMedGoogle Scholar
  4. 4.
    Rieder F, Fiocchi C. Intestinal fibrosis in IBD—a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol. 2009;6(4):228–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18(28):3635–61.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis. 2017;11(12):1491–503.PubMedGoogle Scholar
  7. 7.
    Rieder F. The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci Transl Med. 2013;5(190):190ps110.CrossRefGoogle Scholar
  8. 8.
    Cosnes J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol. 2004;18(3):481–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Biedermann L, Fournier N, Misselwitz B, Frei P, Zeitz J, Manser CN, Pittet V, Juillerat P, von Kanel R, Fried M, Vavricka SR, Rogler G, Swiss Inflammatory Bowel Disease Cohort Study Group. High rates of smoking especially in female Crohn’s disease patients and low use of supportive measures to achieve smoking cessation—data from the Swiss IBD cohort study. J Crohns Colitis. 2015;9(10):819–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Parkes GC, Whelan K, Lindsay JO. Smoking in inflammatory bowel disease: impact on disease course and insights into the aetiology of its effect. J Crohns Colitis. 2014;8(8):717–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuenzig ME, Lee SM, Eksteen B, Seow CH, Barnabe C, Panaccione R, Kaplan GG. Smoking influences the need for surgery in patients with the inflammatory bowel diseases: a systematic review and meta-analysis incorporating disease duration. BMC Gastroenterol. 2016;16(1):143.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lunney PC, Kariyawasam VC, Wang RR, Middleton KL, Huang T, Selinger CP, Andrews JM, Katelaris PH, Leong RW. Smoking prevalence and its influence on disease course and surgery in Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther. 2015;42(1):61–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Xue J, Zhao Q, Sharma V, Nguyen LP, Lee YN, Pham KL, Edderkaoui M, Pandol SJ, Park W, Habtezion A. Aryl hydrocarbon receptor ligands in cigarette smoke induce production of interleukin-22 to promote pancreatic fibrosis in models of chronic pancreatitis. Gastroenterology. 2016;151(6):1206–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol. 2011;23(3):159–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, MacDonald TT, Pallone F, Monteleone G. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141(1):237–48. 248.e231.CrossRefPubMedGoogle Scholar
  17. 17.
    Monteleone I, Marafini I, Zorzi F, Di Fusco D, Dinallo V, Rizzo A, Sileri P, Sica G, Monteleone G. Smad7 knockdown restores aryl hydrocarbon receptor-mediated protective signals in the gut. J Crohns Colitis. 2016;10(6):670–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One. 2012;7(12):e52132.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Al-Awadi FM, Khan I, Dashti HM, Srikumar TS. Colitis-induced changes in the level of trace elements in rat colon and other tissues. Ann Nutr Metab. 1998;42(5):304–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Garfinkel MD, Ruden DM. Chromatin effects in nutrition, cancer, and obesity. Nutrition. 2004;20(1):56–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Lewis JD, Abreu MT. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology. 2017;152(2):398–414. e396.CrossRefPubMedGoogle Scholar
  22. 22.
    Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003;43:309–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Monteleone I, Pallone F, Monteleone G. Aryl hydrocarbon receptor and colitis. Semin Immunopathol. 2013;35(6):671–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol. 2009;70(5):345–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Jorgensen SP, Hvas CL, Agnholt J, Christensen LA, Heickendorff L, Dahlerup JF. Active Crohn’s disease is associated with low vitamin D levels. J Crohns Colitis. 2013;7(10):e407–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Limketkai BN, Bayless TM, Brant SR, Hutfless SM. Lower regional and temporal ultraviolet exposure is associated with increased rates and severity of inflammatory bowel disease hospitalisation. Aliment Pharmacol Ther. 2014;40(5):508–17.PubMedGoogle Scholar
  27. 27.
    Holmes EA, Xiang F, Lucas RM. Variation in incidence of pediatric Crohn’s disease in relation to latitude and ambient ultraviolet radiation: a systematic review and analysis. Inflamm Bowel Dis. 2015;21(4):809–17.CrossRefPubMedGoogle Scholar
  28. 28.
    Ooi CY, Jeyaruban C, Lau J, Katz T, Matson A, Bell SC, Adams SE, Krishnan U. High ambient temperature and risk of intestinal obstruction in cystic fibrosis. J Paediatr Child Health. 2016;52(4):430–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaplan GG, Hubbard J, Korzenik J, Sands BE, Panaccione R, Ghosh S, Wheeler AJ, Villeneuve PJ. The inflammatory bowel diseases and ambient air pollution: a novel association. Am J Gastroenterol. 2010;105(11):2412–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ananthakrishnan AN, McGinley EL, Binion DG, Saeian K. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis. 2011;17(5):1138–45.CrossRefPubMedGoogle Scholar
  31. 31.
    Ramm GA, Ruddell RG. Iron homeostasis, hepatocellular injury, and fibrogenesis in hemochromatosis: the role of inflammation in a noninflammatory liver disease. Semin Liver Dis. 2010;30(3):271–87.CrossRefPubMedGoogle Scholar
  32. 32.
    Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99(10):3505–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Ramm GA, Britton RS, O’Neill R, Kohn HD, Bacon BR. Rat liver ferritin selectively inhibits expression of alpha-smooth muscle actin in cultured rat lipocytes. Am J Physiol. 1996;270(2 Pt 1):G370–5.PubMedGoogle Scholar
  34. 34.
    Ruddell RG, Hoang-Le D, Barwood JM, Rutherford PS, Piva TJ, Watters DJ, Santambrogio P, Arosio P, Ramm GA. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology. 2009;49(3):887–900.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–4.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Burke JP, Cunningham MF, Watson RW, Docherty NG, Coffey JC, O’Connell PR. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts. Br J Surg. 2010;97(7):1126–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Burke JP, Watson RW, Mulsow JJ, Docherty NG, Coffey JC, O’Connell PR. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts. Br J Surg. 2010;97(6):892–901.CrossRefPubMedGoogle Scholar
  41. 41.
    Miyazaki H, Kobayashi R, Ishikawa H, Awano N, Yamagoe S, Miyazaki Y, Matsumoto T. Activation of COL1A2 promoter in human fibroblasts by Escherichia coli. FEMS Immunol Med Microbiol. 2012;65(3):481–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.CrossRefGoogle Scholar
  44. 44.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.CrossRefGoogle Scholar
  45. 45.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.CrossRefGoogle Scholar
  47. 47.
    Pacheco RG, Esposito CC, Muller LC, Castelo-Branco MT, Quintella LP, Chagas VL, de Souza HS, Schanaider A. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis. World J Gastroenterol. 2012;18(32):4278–87.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12(1):5–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Boyapati RK, Rossi AG, Satsangi J, Ho GT. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 2016;9(3):567–82.CrossRefPubMedGoogle Scholar
  50. 50.
    Wu F, Chakravarti S. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis. J Immunol. 2007;179(10):6988–7000.CrossRefPubMedGoogle Scholar
  51. 51.
    Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, Wogensen L, Yamaguchi Y, Noble PW. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459–71.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Soroosh A, Albeiroti S, West GA, Willard B, Fiocchi C, de la Motte CA. Crohn’s disease fibroblasts overproduce the novel protein KIAA1199 to create proinflammatory hyaluronan fragments. Cell Mol Gastroenterol Hepatol. 2016;2(3):358–68. e354.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Welter-Stahl L, da Silva CM, Schachter J, Persechini PM, Souza HS, Ojcius DM, Coutinho-Silva R. Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNgamma in human epithelial cells. Biochim Biophys Acta. 2009;1788(5):1176–87.CrossRefPubMedGoogle Scholar
  54. 54.
    Souza CO, Santoro GF, Figliuolo VR, Nanini HF, de Souza HS, Castelo-Branco MT, Abalo AA, Paiva MM, Coutinho CM, Coutinho-Silva R. Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim Biophys Acta. 2012;1820(12):1867–78.CrossRefPubMedGoogle Scholar
  55. 55.
    Chen L, Brosnan CF. Regulation of immune response by P2X7 receptor. Crit Rev Immunol. 2006;26(6):499–513.CrossRefPubMedGoogle Scholar
  56. 56.
    Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25(21):5071–82.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Neves AR, Castelo-Branco MT, Figliuolo VR, Bernardazzi C, Buongusto F, Yoshimoto A, Nanini HF, Coutinho CM, Carneiro AJ, Coutinho-Silva R, de Souza HS. Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn’s disease. Inflamm Bowel Dis. 2014;20(3):444–57.CrossRefPubMedGoogle Scholar
  58. 58.
    Marques CC, Castelo-Branco MT, Pacheco RG, Buongusto F, do Rosario A Jr, Schanaider A, Coutinho-Silva R, de Souza HS. Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochim Biophys Acta. 2014;1842(1):65–78.CrossRefPubMedGoogle Scholar
  59. 59.
    Di Sabatino A, Jackson CL, Pickard KM, Buckley M, Rovedatti L, Leakey NA, Picariello L, Cazzola P, Monteleone G, Tonelli F, Corazza GR, MacDonald TT, Pender SL. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58(6):777–89.CrossRefPubMedGoogle Scholar
  60. 60.
    Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108(4):601–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology. 2009;127(3):299–311.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhu C, Xie Q, Zhao B. The role of AhR in autoimmune regulation and its potential as a therapeutic target against CD4 T cell mediated inflammatory disorder. Int J Mol Sci. 2014;15(6):10116–35.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Busbee PB, Rouse M, Nagarkatti M, Nagarkatti PS. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev. 2013;71(6):353–69.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Suwara MI, Green NJ, Borthwick LA, Mann J, Mayer-Barber KD, Barron L, Corris PA, Farrow SN, Wynn TA, Fisher AJ, Mann DA. IL-1alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 2014;7(3):684–93.CrossRefPubMedGoogle Scholar
  65. 65.
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007;13(7):851–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Elkon KB. IL-1alpha responds to necrotic cell death. Nat Med. 2007;13(7):778–80.CrossRefPubMedGoogle Scholar
  67. 67.
    Bersudsky M, Luski L, Fishman D, White RM, Ziv-Sokolovskaya N, Dotan S, Rider P, Kaplanov I, Aychek T, Dinarello CA, Apte RN, Voronov E. Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut. 2014;63(4):598–609.CrossRefPubMedGoogle Scholar
  68. 68.
    Scarpa M, Kessler S, Sadler T, West G, Homer C, McDonald C, de la Motte C, Fiocchi C, Stylianou E. The epithelial danger signal IL-1alpha is a potent activator of fibroblasts and reactivator of intestinal inflammation. Am J Pathol. 2015;185(6):1624–37.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Scarpa M, Stylianou E. Epigenetics: concepts and relevance to IBD pathogenesis. Inflamm Bowel Dis. 2012;18(10):1982–96.CrossRefPubMedGoogle Scholar
  70. 70.
    Koukos G, Polytarchou C, Kaplan JL, Oikonomopoulos A, Ziring D, Hommes DW, Wahed R, Kokkotou E, Pothoulakis C, Winter HS, Iliopoulos D. A microRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm Bowel Dis. 2015;21(5):996–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Barnett M, Bermingham E, McNabb W, Bassett S, Armstrong K, Rounce J, Roy N. Investigating micronutrients and epigenetic mechanisms in relation to inflammatory bowel disease. Mutat Res. 2010;690(1-2):71–80.CrossRefPubMedGoogle Scholar
  72. 72.
    Cooke J, Zhang H, Greger L, Silva AL, Massey D, Dawson C, Metz A, Ibrahim A, Parkes M. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(11):2128–37.CrossRefPubMedGoogle Scholar
  73. 73.
    Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, Ramsahoye BH, Wilson DC, Semple CA, Satsangi J. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18(5):889–99.CrossRefPubMedGoogle Scholar
  74. 74.
    Sadler T, Scarpa M, Rieder F, West G, Stylianou E. Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-to-mesenchymal transition. Inflamm Bowel Dis. 2013;19(7):1354–64.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sadler T, Bhasin JM, Xu Y, Barnholz-Sloan J, Chen Y, Ting AH, Stylianou E. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis. Clin Epigenetics. 2016;8:30.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Pekow JR, Kwon JH. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(1):187–93.CrossRefPubMedGoogle Scholar
  77. 77.
    Zhao Y, Ma T, Chen W, Chen Y, Li M, Ren L, Chen J, Cao R, Feng Y, Zhang H, Shi R. MicroRNA-124 promotes intestinal inflammation by targeting aryl hydrocarbon receptor in Crohn’s disease. J Crohns Colitis. 2016;10(6):703–12.CrossRefPubMedGoogle Scholar
  78. 78.
    Rubio-Tapia A, Herman ML, Ludvigsson JF, Kelly DG, Mangan TF, Wu TT, Murray JA. Severe spruelike enteropathy associated with olmesartan. Mayo Clin Proc. 2012;87(8):732–8.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ianiro G, Bibbo S, Montalto M, Ricci R, Gasbarrini A, Cammarota G. Systematic review: sprue-like enteropathy associated with olmesartan. Aliment Pharmacol Ther. 2014;40(1):16–23.CrossRefPubMedGoogle Scholar
  80. 80.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.CrossRefPubMedGoogle Scholar
  81. 81.
    Cowper SE, Bucala R. Nephrogenic fibrosing dermopathy: suspect identified, motive unclear. Am J Dermatopathol. 2003;25(4):358.CrossRefPubMedGoogle Scholar
  82. 82.
    Ting WW, Stone MS, Madison KC, Kurtz K. Nephrogenic fibrosing dermopathy with systemic involvement. Arch Dermatol. 2003;139(7):903–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Grobner T. Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62.CrossRefPubMedGoogle Scholar
  85. 85.
    Swaminathan S, Horn TD, Pellowski D, Abul-Ezz S, Bornhorst JA, Viswamitra S, Shah SV. Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med. 2007;357(7):720–2.CrossRefPubMedGoogle Scholar
  86. 86.
    Swaminathan S, Bose C, Shah SV, Hall KA, Hiatt KM. Gadolinium contrast agent-induced CD163+ ferroportin+ osteogenic cells in nephrogenic systemic fibrosis. Am J Pathol. 2013;183(3):796–807.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Swaminathan S, High WA, Ranville J, Horn TD, Hiatt K, Thomas M, Brown HH, Shah SV. Cardiac and vascular metal deposition with high mortality in nephrogenic systemic fibrosis. Kidney Int. 2008;73(12):1413–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Halliwell B. The wanderings of a free radical. Free Radic Biol Med. 2009;46(5):531–42.CrossRefPubMedGoogle Scholar
  89. 89.
    Stubblefield MD. Radiation fibrosis syndrome: neuromuscular and musculoskeletal complications in cancer survivors. PM R. 2011;3(11):1041–54.CrossRefPubMedGoogle Scholar
  90. 90.
    Deas SD, Huprikar N, Skabelund A. Radiation exposure and lung disease in today’s nuclear world. Curr Opin Pulm Med. 2017;23(2):167–72.PubMedGoogle Scholar
  91. 91.
    Harb AH, Abou Fadel C, Sharara AI. Radiation enteritis. Curr Gastroenterol Rep. 2014;16(5):383.CrossRefPubMedGoogle Scholar
  92. 92.
    Spitz DR, Hauer-Jensen M. Ionizing radiation-induced responses: where free radical chemistry meets redox biology and medicine. Antioxid Redox Signal. 2014;20(9):1407–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Claudio Bernardazzi
    • 1
  • Fernando Castro
    • 1
  • Heitor S. de Souza
    • 1
    • 2
  1. 1.Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica MédicaHospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.D’Or Institute for Research and EducationRio de JaneiroBrazil

Personalised recommendations