Advertisement

Genetic Influences on the Development of Fibrosis in Inflammatory Bowel Disease

  • Bram Verstockt
  • Sare Verstockt
  • Isabelle Cleynen
Chapter

Abstract

Intestinal fibrosis is a common complication in inflammatory bowel disease. These fibrotic processes develop in genetically susceptible individuals, influenced by an interplay with environmental, immunological and disease-related factors. A deeper understanding of the genetic factors driving fibrogenesis might help to unravel the pathogenesis, and ultimately lead to development of new, anti-fibrotic therapies. Here we review the genetic factors that have been associated with the development of fibrosis in patients with both Crohn’s disease and ulcerative colitis, as well as their potential pathophysiological mechanism(s).

Keywords

Stricturing disease Fibrosis Crohn’s disease IBD Genetics NOD2 

References

  1. 1.
    Umicevic Mirkov M, Verstockt B, Cleynen I. Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol. 2017;2(3):224–34.CrossRefGoogle Scholar
  2. 2.
    Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012;303(7):G786–801.  https://doi.org/10.1152/ajpgi.00059.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Verstockt B, Cleynen I. Genetic influences on the development of fibrosis in Crohn’s disease. Front Med (Lausanne). 2016;3:24.  https://doi.org/10.3389/fmed.2016.00024.CrossRefGoogle Scholar
  4. 4.
    Chang CW, Wong JM, Tung CC, Shih IL, Wang HY, Wei SC. Intestinal stricture in Crohn’s disease. Intest Res. 2015;13(1):19–26.  https://doi.org/10.5217/ir.2015.13.1.19.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50(1):53–65.  https://doi.org/10.3109/00365521.2014.968863.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8(10):1147–65.  https://doi.org/10.1016/j.crohns.2014.03.008.CrossRefPubMedGoogle Scholar
  7. 7.
    Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Genetic determinants of Crohn’s disease and ulcerative colitis phenotypes in 34,819 patients. Lancet. 2015;387(10014):156–67.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Heresbach D, Gicquel-Douabin V, Birebent B, D’halluin PN, Heresbach-Le Berre N, Dreano S, et al. NOD2/CARD15 gene polymorphisms in Crohn’s disease: a genotype- phenotype analysis. Eur J Gastroenterol Hepatol. 2004;16(1):55–62.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Mendoza JL, Murillo LS, Fernández L, Peña AS, Lana R, Urcelay E, et al. Prevalence of mutations of the NOD2/CARD15 gene and relation to phenotype in Spanish patients with Crohn disease. Scand J Gastroenterol. 2003;38(12):1235–40.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Adler J, Rangwalla SC, Dwamena BA, Higgins PD. The prognostic power of the NOD2 genotype for complicated Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2011;106(4):699–712.  https://doi.org/10.1038/ajg.2011.19.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J, Landers CJ, et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology. 2002;123(3):679–88.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Vavassori P, Borgiani P, D’Apice MR, De Negris F, Del Vecchio Blanco G, Monteleone I, et al. 3020insC mutation within the NOD2 gene in Crohn’s disease: frequency and association with clinical pattern in an Italian population. Dig Liver Dis. 2002;34(2):153.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Radlmayr M, Török HP, Martin K, Folwaczny C. The c-insertion mutation of the NOD2 gene is associated with fistulizing and fibrostenotic phenotypes in Crohn’s disease. Gastroenterology. 2002;122(7):2091–2.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Annese V, Lombardi G, Perri F, D’Incà R, Ardizzone S, Riegler G, et al. Variants of CARD15 are associated with an aggressive clinical course of Crohn’s disease--an IG-IBD study. Am J Gastroenterol. 2005;100(1):84–92.  https://doi.org/10.1111/j.1572-0241.2005.40705.x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Seiderer J, Brand S, Herrmann KA, Schnitzler F, Hatz R, Crispin A, et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis. 2006;12(12):1114–21.  https://doi.org/10.1097/01.mib.0000235836.32176.5e.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Seiderer J, Schnitzler F, Brand S, Staudinger T, Pfennig S, Herrmann K, et al. Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol. 2006;41(12):1421–32.  https://doi.org/10.1080/00365520600703900.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cleynen I, González JR, Figueroa C, Franke A, McGovern D, Bortlík M, et al. Genetic factors conferring an increased susceptibility to develop Crohn’s disease also influence disease phenotype: results from the IBDchip European Project. Gut. 2013;62(11):1556–65.  https://doi.org/10.1136/gutjnl-2011-300777.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schnitzler F, Friedrich M, Wolf C, Angelberger M, Diegelmann J, Olszak T, et al. The NOD2 p.Leu1007fsX1008 mutation (rs2066847) is a stronger predictor of the clinical course of Crohn’s disease than the FOXO3A intron variant rs12212067. PLoS One. 2014;9(11):e108503.  https://doi.org/10.1371/journal.pone.0108503.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology. 2002;122(4):854–66.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Heliö T, Halme L, Lappalainen M, Fodstad H, Paavola-Sakki P, Turunen U, et al. CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut. 2003;52(4):558–62.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Lakatos PL, Lakatos L, Szalay F, Willheim-Polli C, Osterreicher C, Tulassay Z, et al. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn’s disease: phenotype-genotype correlations. World J Gastroenterol. 2005;11(10):1489–95.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Lesage S, Zouali H, Cézard JP, Colombel JF, Belaiche J, Almer S, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70(4):845–57.  https://doi.org/10.1086/339432.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brant SR, Picco MF, Achkar JP, Bayless TM, Kane SV, Brzezinski A, et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis. 2003;9(5):281–9.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Sabate JM, Ameziane N, Lamoril J, Jouet P, Farmachidi JP, Soulé JC, et al. The V249I polymorphism of the CX3CR1 gene is associated with fibrostenotic disease behavior in patients with Crohn’s disease. Eur J Gastroenterol Hepatol. 2008;20(8):748–55.  https://doi.org/10.1097/MEG.0b013e3282f824c9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fowler EV, Doecke J, Simms LA, Zhao ZZ, Webb PM, Hayward NK, et al. ATG16L1 T300A shows strong associations with disease subgroups in a large Australian IBD population: further support for significant disease heterogeneity. Am J Gastroenterol. 2008;103(10):2519–26.  https://doi.org/10.1111/j.1572-0241.2008.02023.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–67.  https://doi.org/10.1016/S0140-6736(15)00465-1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Glas J, Seiderer J, Wetzke M, Konrad A, Török HP, Schmechel S, et al. rs1004819 is the main disease-associated IL23R variant in German Crohn’s disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS One. 2007;2(9):e819.  https://doi.org/10.1371/journal.pone.0000819.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brand S, Hofbauer K, Dambacher J, Schnitzler F, Staudinger T, Pfennig S, et al. Increased expression of the chemokine fractalkine in Crohn’s disease and association of the fractalkine receptor T280M polymorphism with a fibrostenosing disease phenotype. Am J Gastroenterol. 2006;101(1):99–106.  https://doi.org/10.1111/j.1572-0241.2005.00361.x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hume GE, Fowler EV, Lincoln D, Eri R, Templeton D, Florin TH, et al. Angiotensinogen and transforming growth factor beta1: novel genes in the pathogenesis of Crohn’s disease. J Med Genet. 2006;43(10):e51.  https://doi.org/10.1136/jmg.2005.040477.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alonso A, Domènech E, Julià A, Panés J, García-Sánchez V, Mateu PN, et al. Identification of risk loci for Crohn’s disease phenotypes using a genome-wide association study. Gastroenterology. 2015;148(4):794–805.  https://doi.org/10.1053/j.gastro.2014.12.030.CrossRefPubMedGoogle Scholar
  31. 31.
    Meijer MJ, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Hommes DW, Verspaget HW. Role of matrix metalloproteinase, tissue inhibitor of metalloproteinase and tumor necrosis factor-alpha single nucleotide gene polymorphisms in inflammatory bowel disease. World J Gastroenterol. 2007;13(21):2960–6.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Forni D, Cleynen I, Ferrante M, Cassinotti A, Cagliani R, Ardizzone S, et al. ABO histo-blood group might modulate predisposition to Crohn’s disease and affect disease behavior. J Crohns Colitis. 2014;8(6):489–94.  https://doi.org/10.1016/j.crohns.2013.10.014.CrossRefPubMedGoogle Scholar
  33. 33.
    Henckaerts L, Van Steen K, Verstreken I, Cleynen I, Franke A, Schreiber S, et al. Genetic risk profiling and prediction of disease course in Crohn’s disease patients. Clin Gastroenterol Hepatol. 2009;7(9):972–80.e2.  https://doi.org/10.1016/j.cgh.2009.05.001.CrossRefPubMedGoogle Scholar
  34. 34.
    Holvoet T, Bossuyt P, Cleynen I, De Cock I, Hindryckx P, Vermeire S et al. Early fibrostenosis in Crohn’s disease is associated with multiple susceptibility loci on Immunochip analysis. 12th Congress of ECCO, Barcelona; 2017.Google Scholar
  35. 35.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.CrossRefGoogle Scholar
  36. 36.
    Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276(7):4812–8.  https://doi.org/10.1074/jbc.M008072200.CrossRefPubMedGoogle Scholar
  37. 37.
    Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science. 2005;307(5710):734–8.  https://doi.org/10.1126/science.1103685.CrossRefPubMedGoogle Scholar
  38. 38.
    Naser SA, Arce M, Khaja A, Fernandez M, Naser N, Elwasila S, et al. Role of ATG16L, NOD2 and IL23R in Crohn’s disease pathogenesis. World J Gastroenterol. 2012;18(5):412–24.  https://doi.org/10.3748/wjg.v18.i5.412.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122(4):867–74.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357(9272):1925–8.  https://doi.org/10.1016/S0140-6736(00)05063-7.CrossRefPubMedGoogle Scholar
  41. 41.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.CrossRefGoogle Scholar
  42. 42.
    Alvarez-Lobos M, Arostegui JI, Sans M, Tassies D, Plaza S, Delgado S, et al. Crohn’s disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann Surg. 2005;242(5):693–700.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Baptista ML, Amarante H, Picheth G, Sdepanian VL, Peterson N, Babasukumar U, et al. CARD15 and IL23R influences Crohn’s disease susceptibility but not disease phenotype in a Brazilian population. Inflamm Bowel Dis. 2008;14(5):674–9.  https://doi.org/10.1002/ibd.20372.CrossRefPubMedGoogle Scholar
  44. 44.
    Brand S. Homozygosity for the NOD2 p.Leu1007fsX1008 variant is the main genetic predictor for fibrostenotic Crohn’s disease. Inflamm Bowel Dis. 2012;18(2):393–4.  https://doi.org/10.1002/ibd.21914.CrossRefPubMedGoogle Scholar
  45. 45.
    Brand S. Moving the genetics of inflammatory bowel diseases from bench to bedside: first steps towards personalised medicine. Gut. 2013;62(11):1531–3.  https://doi.org/10.1136/gutjnl-2012-304151.CrossRefPubMedGoogle Scholar
  46. 46.
    Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol. 2004;99(12):2393–404.  https://doi.org/10.1111/j.1572-0241.2004.40304.x.CrossRefPubMedGoogle Scholar
  47. 47.
    Glas J, Seiderer J, Tillack C, Pfennig S, Beigel F, Jürgens M, et al. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common Crohn’s disease susceptibility gene variants. PLoS One. 2010;5(12):e14466.  https://doi.org/10.1371/journal.pone.0014466.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet. 2002;359(9318):1661–5.  https://doi.org/10.1016/S0140-6736(02)08590-2.CrossRefPubMedGoogle Scholar
  49. 49.
    Ippoliti A, Devlin S, Mei L, Yang H, Papadakis KA, Vasiliauskas EA, et al. Combination of innate and adaptive immune alterations increased the likelihood of fibrostenosis in Crohn’s disease. Inflamm Bowel Dis. 2010;16(8):1279–85.  https://doi.org/10.1002/ibd.21196.CrossRefPubMedGoogle Scholar
  50. 50.
    Jürgens M, Brand S, Laubender RP, Seiderer J, Glas J, Wetzke M, et al. The presence of fistulas and NOD2 homozygosity strongly predict intestinal stenosis in Crohn’s disease independent of the IL23R genotype. J Gastroenterol. 2010;45(7):721–31.  https://doi.org/10.1007/s00535-010-0231-7.CrossRefPubMedGoogle Scholar
  51. 51.
    Louis E, Michel V, Hugot JP, Reenaers C, Fontaine F, Delforge M, et al. Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut. 2003;52(4):552–7.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Oostenbrug LE, Nolte IM, Oosterom E, van der Steege G, te Meerman GJ, van Dullemen HM, et al. CARD15 in inflammatory bowel disease and Crohn’s disease phenotypes: an association study and pooled analysis. Dig Liver Dis. 2006;38(11):834–45.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Rieder F, Lawrance IC, Leite A, Sans M. Predictors of fibrostenotic Crohn’s disease. Inflamm Bowel Dis. 2011;17(9):2000–7.  https://doi.org/10.1002/ibd.21627.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Russell RK, Drummond HE, Nimmo EE, Anderson N, Smith L, Wilson DC, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11(11):955–64.CrossRefPubMedGoogle Scholar
  55. 55.
    Schnitzler F, Brand S, Staudinger T, Pfennig S, Hofbauer K, Seiderer J, et al. Eight novel CARD15 variants detected by DNA sequence analysis of the CARD15 gene in 111 patients with inflammatory bowel disease. Immunogenetics. 2006;58(2–3):99–106.  https://doi.org/10.1007/s00251-005-0073-2.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74(2):181–9.  https://doi.org/10.1016/j.cyto.2015.02.025.CrossRefPubMedGoogle Scholar
  57. 57.
    Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53(7):987–92.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–91.  https://doi.org/10.1038/76048.CrossRefPubMedGoogle Scholar
  59. 59.
    Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–6.  https://doi.org/10.1093/nar/gkv1157.CrossRefPubMedGoogle Scholar
  60. 60.
    Rieder F, Schirbel A, Ouyang Z, West G, Rho H, de la Motte C, Fiocchi C. Pro-Fibrogenic activity of Toll-Like Receptor (TLR) and NOD-Like Receptor (NLR) ligands on Human Intestinal Myofibroblasts (HIF) – linking bacterial innate immunity to intestinal fibrosis. Gastroenterology. 2010;38(5):S35.Google Scholar
  61. 61.
    Bhattacharyya S, Varga J. Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Curr Rheumatol Rep. 2015;17(1):474.  https://doi.org/10.1007/s11926-014-0474-z.CrossRefPubMedGoogle Scholar
  62. 62.
    Petrasek J, Csak T, Szabo G. Toll-like receptors in liver disease. Adv Clin Chem. 2013;59:155–201.CrossRefPubMedGoogle Scholar
  63. 63.
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.  https://doi.org/10.1038/ng1954.CrossRefPubMedGoogle Scholar
  64. 64.
    Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132(5):1665–71.  https://doi.org/10.1053/j.gastro.2007.03.034.CrossRefPubMedGoogle Scholar
  65. 65.
    Cummings JR, Cooney R, Pathan S, Anderson CA, Barrett JC, Beckly J, et al. Confirmation of the role of ATG16L1 as a Crohn’s disease susceptibility gene. Inflamm Bowel Dis. 2007;13(8):941–6.  https://doi.org/10.1002/ibd.20162.CrossRefPubMedGoogle Scholar
  66. 66.
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.  https://doi.org/10.1038/ng2032.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Begun J, Lassen KG, Jijon HB, Baxt LA, Goel G, Heath RJ, et al. Integrated genomics of Crohn’s disease risk variant identifies a role for CLEC12A in antibacterial autophagy. Cell Rep. 2015;11(12):1905–18.  https://doi.org/10.1016/j.celrep.2015.05.045.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: a multifunctional susceptibility factor in Crohn disease. Autophagy. 2015;11(4):585–94.  https://doi.org/10.1080/15548627.2015.1017187.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Levin AD, Koelink PJ, Bloemendaal FM, Vos AC, D’Haens GR, van den Brink GR, et al. Autophagy contributes to the induction of anti-TNF induced macrophages. J Crohns Colitis. 2016;10(3):323–9.  https://doi.org/10.1093/ecco-jcc/jjv174.CrossRefPubMedGoogle Scholar
  70. 70.
    Zorzi F, Calabrese E, Monteleone G. Pathogenic aspects and therapeutic avenues of intestinal fibrosis in Crohn’s disease. Clin Sci (Lond). 2015;129(12):1107–13.  https://doi.org/10.1042/CS20150472.CrossRefGoogle Scholar
  71. 71.
    Sorbara MT, Ellison LK, Ramjeet M, Travassos LH, Jones NL, Girardin SE, et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity. 2013;39(5):858–73.  https://doi.org/10.1016/j.immuni.2013.10.013.CrossRefPubMedGoogle Scholar
  72. 72.
    Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47(2):172–9.  https://doi.org/10.1038/ng.3176.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science. 2000;287(5461):2274–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest. 2011;121(12):4787–95.  https://doi.org/10.1172/JCI59150.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Daoudi M, Lavergne E, Garin A, Tarantino N, Debré P, Pincet F, et al. Enhanced adhesive capacities of the naturally occurring Ile249-Met280 variant of the chemokine receptor CX3CR1. J Biol Chem. 2004;279(19):19649–57.  https://doi.org/10.1074/jbc.M313457200.CrossRefPubMedGoogle Scholar
  77. 77.
    Schulte CM, Dignass AU, Goebell H, Röher HD, Schulte KM. Genetic factors determine extent of bone loss in inflammatory bowel disease. Gastroenterology. 2000;119(4):909–20.CrossRefPubMedGoogle Scholar
  78. 78.
    di Mola FF, Friess H, Scheuren A, Di Sebastiano P, Graber H, Egger B, et al. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn’s disease. Ann Surg. 1999;229(1):67–75.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Schulte CM, Goebell H, Röher HD, Schulte KM. C-509T polymorphism in the TGFB1 gene promoter: impact on Crohn’s disease susceptibility and clinical course? Immunogenetics. 2001;53(2):178–82.CrossRefPubMedGoogle Scholar
  80. 80.
    Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999;8(1):93–7.CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M, et al. Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res. 1998;13(10):1569–76.  https://doi.org/10.1359/jbmr.1998.13.10.1569.CrossRefPubMedGoogle Scholar
  82. 82.
    García-González MA, Crusius JB, Strunk MH, Bouma G, Pérez-Centeno CM, Pals G, et al. TGFB1 gene polymorphisms and inflammatory bowel disease. Immunogenetics. 2000;51(10):869–72.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest. 1997;99(7):1786–97.  https://doi.org/10.1172/JCI119343.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Van Deventer SJ. Tumour necrosis factor and Crohn’s disease. Gut. 1997;40(4):443–8.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Cantor MJ, Nickerson P, Bernstein CN. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol. 2005;100(5):1134–42.  https://doi.org/10.1111/j.1572-0241.2005.40979.x.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Zipperlen K, Peddle L, Melay B, Hefferton D, Rahman P. Association of TNF-alpha polymorphisms in Crohn disease. Hum Immunol. 2005;66(1):56–9.  https://doi.org/10.1016/j.humimm.2004.10.004.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Benjamin J, Makharia GK, Ahuja V, Kalaivani M, Joshi YK. Intestinal permeability and its association with the patient and disease characteristics in Crohn’s disease. World J Gastroenterol. 2008;14(9):1399–405.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Prager M, Büttner J, Haas V, Baumgart DC, Sturm A, Zeitz M, et al. The JAK2 variant rs10758669 in Crohn’s disease: altering the intestinal barrier as one mechanism of action. Int J Color Dis. 2012;27(5):565–73.  https://doi.org/10.1007/s00384-011-1345-y.CrossRefGoogle Scholar
  89. 89.
    Huppertz B, Kertschanska S, Demir AY, Frank HG, Kaufmann P. Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res. 1998;291(1):133–48.CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990;6(4):121–5.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol. 2016;51(5):295–358.  https://doi.org/10.1080/10409238.2016.1199535.CrossRefPubMedGoogle Scholar
  92. 92.
    Warnaar N, Hofker HS, Maathuis MH, Niesing J, Bruggink AH, Dijkstra G, et al. Matrix metalloproteinases as profibrotic factors in terminal ileum in Crohn’s disease. Inflamm Bowel Dis. 2006;12(9):863–9.  https://doi.org/10.1097/01.mib.0000231568.43065.ed.CrossRefPubMedGoogle Scholar
  93. 93.
    Fujimoto T, Parry S, Urbanek M, Sammel M, Macones G, Kuivaniemi H, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 (MMP-1) promoter influences amnion cell MMP-1 expression and risk for preterm premature rupture of the fetal membranes. J Biol Chem. 2002;277(8):6296–302.  https://doi.org/10.1074/jbc.M107865200.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Satsangi J, Chapman RW, Haldar N, Donaldson P, Mitchell S, Simmons J, et al. A functional polymorphism of the stromelysin gene (MMP-3) influences susceptibility to primary sclerosing cholangitis. Gastroenterology. 2001;121(1):124–30.CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    Zhi H, Wang H, Ren L, Shi Z, Peng H, Cui L, et al. Functional polymorphisms of matrix metallopeptidase-9 and risk of coronary artery disease in a Chinese population. Mol Biol Rep. 2010;37(1):13–20.  https://doi.org/10.1007/s11033-009-9482-x.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Borghaei RC, Rawlings PL, Javadi M, Woloshin J. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun. 2004;316(1):182–8.  https://doi.org/10.1016/j.bbrc.2004.02.030.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Medley TL, Kingwell BA, Gatzka CD, Pillay P, Cole TJ. Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening through modulation of gene and protein expression. Circ Res. 2003;92(11):1254–61.  https://doi.org/10.1161/01.RES.0000076891.24317.CA.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Samnegård A, Silveira A, Lundman P, Boquist S, Odeberg J, Hulthe J, et al. Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med. 2005;258(5):411–9.  https://doi.org/10.1111/j.1365-2796.2005.01561.x.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Novacek G, Papay P, Miehsler W, Reinisch W, Lichtenberger C, Sunder-Plassmann R, et al. Are inherited thrombotic risk factors associated with fibrostenosis in Crohn’s disease? Inflamm Bowel Dis. 2011;17(12):2505–11.  https://doi.org/10.1002/ibd.21648.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25.  https://doi.org/10.1038/ng.717.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19(17):3468–76.  https://doi.org/10.1093/hmg/ddq248.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mäkivuokko H, Lahtinen SJ, Wacklin P, Tuovinen E, Tenkanen H, Nikkilä J, et al. Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol. 2012;12:94.  https://doi.org/10.1186/1471-2180-12-94.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sleegers K, Bettens K, De Roeck A, Van Cauwenberghe C, Cuyvers E, Verheijen J, et al. A 22-single nucleotide polymorphism Alzheimer’s disease risk score correlates with family history, onset age, and cerebrospinal fluid Abeta42. Alzheimers Dement. 2015;11(12):1452–60.  https://doi.org/10.1016/j.jalz.2015.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bequet E, Sarter H, Fumery M, Vasseur F, Armengol-Debeir L, Pariente B, et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988-2011]. J Crohns Colitis. 2016;11(5):519–26.  https://doi.org/10.1093/ecco-jcc/jjw194.CrossRefGoogle Scholar
  105. 105.
    Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2(11):1003–9.CrossRefPubMedCentralPubMedGoogle Scholar
  106. 106.
    Sun L, Roesler J, Rösen-Wolff A, Winkler U, Koch R, Thürigen A, et al. CARD15 genotype and phenotype analysis in 55 pediatric patients with Crohn disease from Saxony, Germany. J Pediatr Gastroenterol Nutr. 2003;37(4):492–7.CrossRefPubMedCentralPubMedGoogle Scholar
  107. 107.
    Liberek A, Jakóbkiewicz-Banecka J, Kloska A, Świderska J, Kmieć Z, Łuczak G, et al. Clinical parameters of inflammatory bowel disease in children do not correlate with four common polymorphisms of the transforming growth factor β1 gene. Acta Biochim Pol. 2011;58(4):641–4.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Strisciuglio C, Auricchio R, Martinelli M, Staiano A, Giugliano FP, Andreozzi M, et al. Autophagy genes variants and paediatric Crohn’s disease phenotype: a single-Centre experience. Dig Liver Dis. 2014;46(6):512–7.  https://doi.org/10.1016/j.dld.2014.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ippolito C, Colucci R, Segnani C, Errede M, Girolamo F, Virgintino D, et al. Fibrotic and vascular remodelling of Colonic Wall in patients with active ulcerative colitis. J Crohns Colitis. 2016;10(10):1194–204.  https://doi.org/10.1093/ecco-jcc/jjw076.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Latella G, Rieder F. Intestinal fibrosis: ready to be reversed. Curr Opin Gastroenterol. 2017;33(4):239–45.  https://doi.org/10.1097/MOG.0000000000000363.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Gordon IO, Agrawal N, Goldblum JR, Fiocchi C, Rieder F. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm Bowel Dis. 2014;20(11):2198–206.  https://doi.org/10.1097/MIB.0000000000000080.CrossRefPubMedGoogle Scholar
  112. 112.
    Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54 e42.; quiz e30.  https://doi.org/10.1053/j.gastro.2011.10.001.CrossRefPubMedGoogle Scholar
  113. 113.
    Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology. 2013;145(1):158–65.e2.  https://doi.org/10.1053/j.gastro.2013.04.007.CrossRefPubMedGoogle Scholar
  114. 114.
    Adeyanju O, Okou DT, Huang C, Kumar A, Sauer C, Galloway C, et al. Common NOD2 risk variants in African Americans with Crohn’s disease are due exclusively to recent Caucasian admixture. Inflamm Bowel Dis. 2012;18(12):2357–9.  https://doi.org/10.1002/ibd.22944.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Mahurkar S, Banerjee R, Rani VS, Thakur N, Rao GV, Reddy DN, et al. Common variants in NOD2 and IL23R are not associated with inflammatory bowel disease in Indians. J Gastroenterol Hepatol. 2011;26(4):694–9.  https://doi.org/10.1111/j.1440-1746.2010.06533.x.CrossRefPubMedGoogle Scholar
  116. 116.
    Meddour Y, Chaib S, Bousseloub A, Kaddache N, Kecili L, Gamar L, et al. NOD2/CARD15 and IL23R genetic variability in 204 Algerian Crohn’s disease. Clin Res Hepatol Gastroenterol. 2014;38(4):499–504.  https://doi.org/10.1016/j.clinre.2014.02.003.CrossRefPubMedGoogle Scholar
  117. 117.
    Yamazaki K, Takahashi A, Takazoe M, Kubo M, Onouchi Y, Fujino A, et al. Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients. Gut. 2009;58(2):228–32.  https://doi.org/10.1136/gut.2007.140764.CrossRefPubMedGoogle Scholar
  118. 118.
    Yang SK, Park M, Lim J, Park SH, Ye BD, Lee I, et al. Contribution of IL23R but not ATG16L1 to Crohn’s disease susceptibility in Koreans. Inflamm Bowel Dis. 2009;15(9):1385–90.  https://doi.org/10.1002/ibd.20921.CrossRefPubMedGoogle Scholar
  119. 119.
    Zouiten-Mekki L, Kharrat M, Karoui S, Serghimi M, Fekih M, Matri S, et al. Tolllike receptor 4 (TLR4) polymorphisms in Tunisian patients with Crohn’s disease: genotype-phenotype correlation. BMC Gastroenterol. 2009;9:62.  https://doi.org/10.1186/1471-230X-9-62.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Barreiro-de-Acosta M, Mendoza JL, Lana R, Domínguez-Muñoz JE, Díaz-Rubio M. NOD2/CARD15: geographic differences in the Spanish population and clinical applications in Crohn’s disease. Rev Esp Enferm Dig. 2010;102(5):321–6.CrossRefPubMedCentralPubMedGoogle Scholar
  121. 121.
    Ernst A, Jacobsen B, Østergaard M, Okkels H, Andersen V, Dagiliene E, et al. Mutations in CARD15 and smoking confer susceptibility to Crohn’s disease in the Danish population. Scand J Gastroenterol. 2007;42(12):1445–51.  https://doi.org/10.1080/00365520701427102.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86.  https://doi.org/10.1038/ng.3359.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003;125(1):47–57.CrossRefPubMedCentralPubMedGoogle Scholar
  124. 124.
    Louis E, Collard A, Oger AF, Degroote E, Aboul Nasr El Yafi FA, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut. 2001;49(6):777–82.CrossRefPubMedCentralPubMedGoogle Scholar
  125. 125.
    Vermeire S, Wild G, Kocher K, Cousineau J, Dufresne L, Bitton A, et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet. 2002;71(1):74–83.  https://doi.org/10.1086/341124.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Dotan I. Disease behavior in adult patients: are there predictors for stricture or fistula formation? Dig Dis. 2009;27(3):206–11.  https://doi.org/10.1159/000228551.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.  https://doi.org/10.1038/nature11582.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Cleynen I, Vermeire S. The genetic architecture of inflammatory bowel disease: past, present and future. Curr Opin Gastroenterol. 2015;31(6):456–63.  https://doi.org/10.1097/MOG.0000000000000215.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Li C, Kuemmerle JF. Mechanisms that mediate the development of fibrosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20(7):1250–8.  https://doi.org/10.1097/MIB.0000000000000043.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011;12(11):1063–70.  https://doi.org/10.1038/ni.2113.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol. 2016;91:52–60.  https://doi.org/10.1016/j.yjmcc.2015.12.016.CrossRefPubMedGoogle Scholar
  132. 132.
    Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002;8(4):244–50.CrossRefPubMedGoogle Scholar
  133. 133.
    Van Assche G, Geboes K, Rutgeerts P. Medical therapy for Crohn’s disease strictures. Inflamm Bowel Dis. 2004;10(1):55–60.CrossRefPubMedGoogle Scholar
  134. 134.
    Lee J, Anderson C, Wesley E, Ahmad T, Edwards C, Parkes M et al. Identification of a polymorphism that predisposes to longitudinal disease behaviour in Crohn’s disease and may have prognostic utility (abstract). Fifth Congress of ECCO, Capri; 2010.Google Scholar
  135. 135.
    Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC, Ahmad T, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49(2):262–8.  https://doi.org/10.1038/ng.3755.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bram Verstockt
    • 1
    • 2
  • Sare Verstockt
    • 3
  • Isabelle Cleynen
    • 3
  1. 1.Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium
  2. 2.Department of Gastroenterology and HepatologyUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Laboratory for Complex Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium

Personalised recommendations