Skip to main content

Genetic Influences on the Development of Fibrosis in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Book cover Fibrostenotic Inflammatory Bowel Disease

Abstract

Intestinal fibrosis is a common complication in inflammatory bowel disease. These fibrotic processes develop in genetically susceptible individuals, influenced by an interplay with environmental, immunological and disease-related factors. A deeper understanding of the genetic factors driving fibrogenesis might help to unravel the pathogenesis, and ultimately lead to development of new, anti-fibrotic therapies. Here we review the genetic factors that have been associated with the development of fibrosis in patients with both Crohn’s disease and ulcerative colitis, as well as their potential pathophysiological mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Umicevic Mirkov M, Verstockt B, Cleynen I. Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol. 2017;2(3):224–34.

    Article  Google Scholar 

  2. Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012;303(7):G786–801. https://doi.org/10.1152/ajpgi.00059.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Verstockt B, Cleynen I. Genetic influences on the development of fibrosis in Crohn’s disease. Front Med (Lausanne). 2016;3:24. https://doi.org/10.3389/fmed.2016.00024.

    Article  Google Scholar 

  4. Chang CW, Wong JM, Tung CC, Shih IL, Wang HY, Wei SC. Intestinal stricture in Crohn’s disease. Intest Res. 2015;13(1):19–26. https://doi.org/10.5217/ir.2015.13.1.19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50(1):53–65. https://doi.org/10.3109/00365521.2014.968863.

    Article  PubMed  CAS  Google Scholar 

  6. Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8(10):1147–65. https://doi.org/10.1016/j.crohns.2014.03.008.

    Article  PubMed  Google Scholar 

  7. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Genetic determinants of Crohn’s disease and ulcerative colitis phenotypes in 34,819 patients. Lancet. 2015;387(10014):156–67.

    Article  PubMed  Google Scholar 

  8. Heresbach D, Gicquel-Douabin V, Birebent B, D’halluin PN, Heresbach-Le Berre N, Dreano S, et al. NOD2/CARD15 gene polymorphisms in Crohn’s disease: a genotype- phenotype analysis. Eur J Gastroenterol Hepatol. 2004;16(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  9. Mendoza JL, Murillo LS, Fernández L, Peña AS, Lana R, Urcelay E, et al. Prevalence of mutations of the NOD2/CARD15 gene and relation to phenotype in Spanish patients with Crohn disease. Scand J Gastroenterol. 2003;38(12):1235–40.

    Article  CAS  PubMed  Google Scholar 

  10. Adler J, Rangwalla SC, Dwamena BA, Higgins PD. The prognostic power of the NOD2 genotype for complicated Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2011;106(4):699–712. https://doi.org/10.1038/ajg.2011.19.

    Article  PubMed  CAS  Google Scholar 

  11. Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J, Landers CJ, et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology. 2002;123(3):679–88.

    Article  CAS  PubMed  Google Scholar 

  12. Vavassori P, Borgiani P, D’Apice MR, De Negris F, Del Vecchio Blanco G, Monteleone I, et al. 3020insC mutation within the NOD2 gene in Crohn’s disease: frequency and association with clinical pattern in an Italian population. Dig Liver Dis. 2002;34(2):153.

    Article  CAS  PubMed  Google Scholar 

  13. Radlmayr M, Török HP, Martin K, Folwaczny C. The c-insertion mutation of the NOD2 gene is associated with fistulizing and fibrostenotic phenotypes in Crohn’s disease. Gastroenterology. 2002;122(7):2091–2.

    Article  CAS  PubMed  Google Scholar 

  14. Annese V, Lombardi G, Perri F, D’Incà R, Ardizzone S, Riegler G, et al. Variants of CARD15 are associated with an aggressive clinical course of Crohn’s disease--an IG-IBD study. Am J Gastroenterol. 2005;100(1):84–92. https://doi.org/10.1111/j.1572-0241.2005.40705.x.

    Article  PubMed  CAS  Google Scholar 

  15. Seiderer J, Brand S, Herrmann KA, Schnitzler F, Hatz R, Crispin A, et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis. 2006;12(12):1114–21. https://doi.org/10.1097/01.mib.0000235836.32176.5e.

    Article  PubMed  Google Scholar 

  16. Seiderer J, Schnitzler F, Brand S, Staudinger T, Pfennig S, Herrmann K, et al. Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol. 2006;41(12):1421–32. https://doi.org/10.1080/00365520600703900.

    Article  PubMed  CAS  Google Scholar 

  17. Cleynen I, González JR, Figueroa C, Franke A, McGovern D, Bortlík M, et al. Genetic factors conferring an increased susceptibility to develop Crohn’s disease also influence disease phenotype: results from the IBDchip European Project. Gut. 2013;62(11):1556–65. https://doi.org/10.1136/gutjnl-2011-300777.

    Article  PubMed  CAS  Google Scholar 

  18. Schnitzler F, Friedrich M, Wolf C, Angelberger M, Diegelmann J, Olszak T, et al. The NOD2 p.Leu1007fsX1008 mutation (rs2066847) is a stronger predictor of the clinical course of Crohn’s disease than the FOXO3A intron variant rs12212067. PLoS One. 2014;9(11):e108503. https://doi.org/10.1371/journal.pone.0108503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology. 2002;122(4):854–66.

    Article  CAS  PubMed  Google Scholar 

  20. Heliö T, Halme L, Lappalainen M, Fodstad H, Paavola-Sakki P, Turunen U, et al. CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut. 2003;52(4):558–62.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lakatos PL, Lakatos L, Szalay F, Willheim-Polli C, Osterreicher C, Tulassay Z, et al. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn’s disease: phenotype-genotype correlations. World J Gastroenterol. 2005;11(10):1489–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lesage S, Zouali H, Cézard JP, Colombel JF, Belaiche J, Almer S, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70(4):845–57. https://doi.org/10.1086/339432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Brant SR, Picco MF, Achkar JP, Bayless TM, Kane SV, Brzezinski A, et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis. 2003;9(5):281–9.

    Article  PubMed  Google Scholar 

  24. Sabate JM, Ameziane N, Lamoril J, Jouet P, Farmachidi JP, Soulé JC, et al. The V249I polymorphism of the CX3CR1 gene is associated with fibrostenotic disease behavior in patients with Crohn’s disease. Eur J Gastroenterol Hepatol. 2008;20(8):748–55. https://doi.org/10.1097/MEG.0b013e3282f824c9.

    Article  PubMed  CAS  Google Scholar 

  25. Fowler EV, Doecke J, Simms LA, Zhao ZZ, Webb PM, Hayward NK, et al. ATG16L1 T300A shows strong associations with disease subgroups in a large Australian IBD population: further support for significant disease heterogeneity. Am J Gastroenterol. 2008;103(10):2519–26. https://doi.org/10.1111/j.1572-0241.2008.02023.x.

    Article  PubMed  CAS  Google Scholar 

  26. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–67. https://doi.org/10.1016/S0140-6736(15)00465-1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Glas J, Seiderer J, Wetzke M, Konrad A, Török HP, Schmechel S, et al. rs1004819 is the main disease-associated IL23R variant in German Crohn’s disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS One. 2007;2(9):e819. https://doi.org/10.1371/journal.pone.0000819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brand S, Hofbauer K, Dambacher J, Schnitzler F, Staudinger T, Pfennig S, et al. Increased expression of the chemokine fractalkine in Crohn’s disease and association of the fractalkine receptor T280M polymorphism with a fibrostenosing disease phenotype. Am J Gastroenterol. 2006;101(1):99–106. https://doi.org/10.1111/j.1572-0241.2005.00361.x.

    Article  PubMed  CAS  Google Scholar 

  29. Hume GE, Fowler EV, Lincoln D, Eri R, Templeton D, Florin TH, et al. Angiotensinogen and transforming growth factor beta1: novel genes in the pathogenesis of Crohn’s disease. J Med Genet. 2006;43(10):e51. https://doi.org/10.1136/jmg.2005.040477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Alonso A, Domènech E, Julià A, Panés J, García-Sánchez V, Mateu PN, et al. Identification of risk loci for Crohn’s disease phenotypes using a genome-wide association study. Gastroenterology. 2015;148(4):794–805. https://doi.org/10.1053/j.gastro.2014.12.030.

    Article  PubMed  CAS  Google Scholar 

  31. Meijer MJ, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Hommes DW, Verspaget HW. Role of matrix metalloproteinase, tissue inhibitor of metalloproteinase and tumor necrosis factor-alpha single nucleotide gene polymorphisms in inflammatory bowel disease. World J Gastroenterol. 2007;13(21):2960–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Forni D, Cleynen I, Ferrante M, Cassinotti A, Cagliani R, Ardizzone S, et al. ABO histo-blood group might modulate predisposition to Crohn’s disease and affect disease behavior. J Crohns Colitis. 2014;8(6):489–94. https://doi.org/10.1016/j.crohns.2013.10.014.

    Article  PubMed  Google Scholar 

  33. Henckaerts L, Van Steen K, Verstreken I, Cleynen I, Franke A, Schreiber S, et al. Genetic risk profiling and prediction of disease course in Crohn’s disease patients. Clin Gastroenterol Hepatol. 2009;7(9):972–80.e2. https://doi.org/10.1016/j.cgh.2009.05.001.

    Article  PubMed  CAS  Google Scholar 

  34. Holvoet T, Bossuyt P, Cleynen I, De Cock I, Hindryckx P, Vermeire S et al. Early fibrostenosis in Crohn’s disease is associated with multiple susceptibility loci on Immunochip analysis. 12th Congress of ECCO, Barcelona; 2017.

    Google Scholar 

  35. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    Article  CAS  PubMed  Google Scholar 

  36. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276(7):4812–8. https://doi.org/10.1074/jbc.M008072200.

    Article  PubMed  CAS  Google Scholar 

  37. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science. 2005;307(5710):734–8. https://doi.org/10.1126/science.1103685.

    Article  PubMed  CAS  Google Scholar 

  38. Naser SA, Arce M, Khaja A, Fernandez M, Naser N, Elwasila S, et al. Role of ATG16L, NOD2 and IL23R in Crohn’s disease pathogenesis. World J Gastroenterol. 2012;18(5):412–24. https://doi.org/10.3748/wjg.v18.i5.412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122(4):867–74.

    Article  CAS  PubMed  Google Scholar 

  40. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357(9272):1925–8. https://doi.org/10.1016/S0140-6736(00)05063-7.

    Article  PubMed  CAS  Google Scholar 

  41. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez-Lobos M, Arostegui JI, Sans M, Tassies D, Plaza S, Delgado S, et al. Crohn’s disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann Surg. 2005;242(5):693–700.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Baptista ML, Amarante H, Picheth G, Sdepanian VL, Peterson N, Babasukumar U, et al. CARD15 and IL23R influences Crohn’s disease susceptibility but not disease phenotype in a Brazilian population. Inflamm Bowel Dis. 2008;14(5):674–9. https://doi.org/10.1002/ibd.20372.

    Article  PubMed  Google Scholar 

  44. Brand S. Homozygosity for the NOD2 p.Leu1007fsX1008 variant is the main genetic predictor for fibrostenotic Crohn’s disease. Inflamm Bowel Dis. 2012;18(2):393–4. https://doi.org/10.1002/ibd.21914.

    Article  PubMed  Google Scholar 

  45. Brand S. Moving the genetics of inflammatory bowel diseases from bench to bedside: first steps towards personalised medicine. Gut. 2013;62(11):1531–3. https://doi.org/10.1136/gutjnl-2012-304151.

    Article  PubMed  CAS  Google Scholar 

  46. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol. 2004;99(12):2393–404. https://doi.org/10.1111/j.1572-0241.2004.40304.x.

    Article  PubMed  CAS  Google Scholar 

  47. Glas J, Seiderer J, Tillack C, Pfennig S, Beigel F, Jürgens M, et al. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common Crohn’s disease susceptibility gene variants. PLoS One. 2010;5(12):e14466. https://doi.org/10.1371/journal.pone.0014466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet. 2002;359(9318):1661–5. https://doi.org/10.1016/S0140-6736(02)08590-2.

    Article  PubMed  CAS  Google Scholar 

  49. Ippoliti A, Devlin S, Mei L, Yang H, Papadakis KA, Vasiliauskas EA, et al. Combination of innate and adaptive immune alterations increased the likelihood of fibrostenosis in Crohn’s disease. Inflamm Bowel Dis. 2010;16(8):1279–85. https://doi.org/10.1002/ibd.21196.

    Article  PubMed  Google Scholar 

  50. Jürgens M, Brand S, Laubender RP, Seiderer J, Glas J, Wetzke M, et al. The presence of fistulas and NOD2 homozygosity strongly predict intestinal stenosis in Crohn’s disease independent of the IL23R genotype. J Gastroenterol. 2010;45(7):721–31. https://doi.org/10.1007/s00535-010-0231-7.

    Article  PubMed  CAS  Google Scholar 

  51. Louis E, Michel V, Hugot JP, Reenaers C, Fontaine F, Delforge M, et al. Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut. 2003;52(4):552–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Oostenbrug LE, Nolte IM, Oosterom E, van der Steege G, te Meerman GJ, van Dullemen HM, et al. CARD15 in inflammatory bowel disease and Crohn’s disease phenotypes: an association study and pooled analysis. Dig Liver Dis. 2006;38(11):834–45.

    Article  CAS  PubMed  Google Scholar 

  53. Rieder F, Lawrance IC, Leite A, Sans M. Predictors of fibrostenotic Crohn’s disease. Inflamm Bowel Dis. 2011;17(9):2000–7. https://doi.org/10.1002/ibd.21627.

    Article  PubMed  Google Scholar 

  54. Russell RK, Drummond HE, Nimmo EE, Anderson N, Smith L, Wilson DC, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11(11):955–64.

    Article  PubMed  Google Scholar 

  55. Schnitzler F, Brand S, Staudinger T, Pfennig S, Hofbauer K, Seiderer J, et al. Eight novel CARD15 variants detected by DNA sequence analysis of the CARD15 gene in 111 patients with inflammatory bowel disease. Immunogenetics. 2006;58(2–3):99–106. https://doi.org/10.1007/s00251-005-0073-2.

    Article  PubMed  CAS  Google Scholar 

  56. De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74(2):181–9. https://doi.org/10.1016/j.cyto.2015.02.025.

    Article  PubMed  CAS  Google Scholar 

  57. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53(7):987–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–91. https://doi.org/10.1038/76048.

    Article  PubMed  CAS  Google Scholar 

  59. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–6. https://doi.org/10.1093/nar/gkv1157.

    Article  PubMed  CAS  Google Scholar 

  60. Rieder F, Schirbel A, Ouyang Z, West G, Rho H, de la Motte C, Fiocchi C. Pro-Fibrogenic activity of Toll-Like Receptor (TLR) and NOD-Like Receptor (NLR) ligands on Human Intestinal Myofibroblasts (HIF) – linking bacterial innate immunity to intestinal fibrosis. Gastroenterology. 2010;38(5):S35.

    Google Scholar 

  61. Bhattacharyya S, Varga J. Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Curr Rheumatol Rep. 2015;17(1):474. https://doi.org/10.1007/s11926-014-0474-z.

    Article  PubMed  CAS  Google Scholar 

  62. Petrasek J, Csak T, Szabo G. Toll-like receptors in liver disease. Adv Clin Chem. 2013;59:155–201.

    Article  CAS  PubMed  Google Scholar 

  63. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11. https://doi.org/10.1038/ng1954.

    Article  PubMed  CAS  Google Scholar 

  64. Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132(5):1665–71. https://doi.org/10.1053/j.gastro.2007.03.034.

    Article  PubMed  CAS  Google Scholar 

  65. Cummings JR, Cooney R, Pathan S, Anderson CA, Barrett JC, Beckly J, et al. Confirmation of the role of ATG16L1 as a Crohn’s disease susceptibility gene. Inflamm Bowel Dis. 2007;13(8):941–6. https://doi.org/10.1002/ibd.20162.

    Article  PubMed  Google Scholar 

  66. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604. https://doi.org/10.1038/ng2032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Begun J, Lassen KG, Jijon HB, Baxt LA, Goel G, Heath RJ, et al. Integrated genomics of Crohn’s disease risk variant identifies a role for CLEC12A in antibacterial autophagy. Cell Rep. 2015;11(12):1905–18. https://doi.org/10.1016/j.celrep.2015.05.045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: a multifunctional susceptibility factor in Crohn disease. Autophagy. 2015;11(4):585–94. https://doi.org/10.1080/15548627.2015.1017187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Levin AD, Koelink PJ, Bloemendaal FM, Vos AC, D’Haens GR, van den Brink GR, et al. Autophagy contributes to the induction of anti-TNF induced macrophages. J Crohns Colitis. 2016;10(3):323–9. https://doi.org/10.1093/ecco-jcc/jjv174.

    Article  PubMed  Google Scholar 

  70. Zorzi F, Calabrese E, Monteleone G. Pathogenic aspects and therapeutic avenues of intestinal fibrosis in Crohn’s disease. Clin Sci (Lond). 2015;129(12):1107–13. https://doi.org/10.1042/CS20150472.

    Article  CAS  Google Scholar 

  71. Sorbara MT, Ellison LK, Ramjeet M, Travassos LH, Jones NL, Girardin SE, et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity. 2013;39(5):858–73. https://doi.org/10.1016/j.immuni.2013.10.013.

    Article  PubMed  CAS  Google Scholar 

  72. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47(2):172–9. https://doi.org/10.1038/ng.3176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science. 2000;287(5461):2274–7.

    Article  CAS  PubMed  Google Scholar 

  75. Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest. 2011;121(12):4787–95. https://doi.org/10.1172/JCI59150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Daoudi M, Lavergne E, Garin A, Tarantino N, Debré P, Pincet F, et al. Enhanced adhesive capacities of the naturally occurring Ile249-Met280 variant of the chemokine receptor CX3CR1. J Biol Chem. 2004;279(19):19649–57. https://doi.org/10.1074/jbc.M313457200.

    Article  PubMed  CAS  Google Scholar 

  77. Schulte CM, Dignass AU, Goebell H, Röher HD, Schulte KM. Genetic factors determine extent of bone loss in inflammatory bowel disease. Gastroenterology. 2000;119(4):909–20.

    Article  CAS  PubMed  Google Scholar 

  78. di Mola FF, Friess H, Scheuren A, Di Sebastiano P, Graber H, Egger B, et al. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn’s disease. Ann Surg. 1999;229(1):67–75.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Schulte CM, Goebell H, Röher HD, Schulte KM. C-509T polymorphism in the TGFB1 gene promoter: impact on Crohn’s disease susceptibility and clinical course? Immunogenetics. 2001;53(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  80. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999;8(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  81. Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M, et al. Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res. 1998;13(10):1569–76. https://doi.org/10.1359/jbmr.1998.13.10.1569.

    Article  PubMed  CAS  Google Scholar 

  82. García-González MA, Crusius JB, Strunk MH, Bouma G, Pérez-Centeno CM, Pals G, et al. TGFB1 gene polymorphisms and inflammatory bowel disease. Immunogenetics. 2000;51(10):869–72.

    Article  PubMed  Google Scholar 

  83. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest. 1997;99(7):1786–97. https://doi.org/10.1172/JCI119343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Van Deventer SJ. Tumour necrosis factor and Crohn’s disease. Gut. 1997;40(4):443–8.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Cantor MJ, Nickerson P, Bernstein CN. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol. 2005;100(5):1134–42. https://doi.org/10.1111/j.1572-0241.2005.40979.x.

    Article  PubMed  CAS  Google Scholar 

  86. Zipperlen K, Peddle L, Melay B, Hefferton D, Rahman P. Association of TNF-alpha polymorphisms in Crohn disease. Hum Immunol. 2005;66(1):56–9. https://doi.org/10.1016/j.humimm.2004.10.004.

    Article  PubMed  CAS  Google Scholar 

  87. Benjamin J, Makharia GK, Ahuja V, Kalaivani M, Joshi YK. Intestinal permeability and its association with the patient and disease characteristics in Crohn’s disease. World J Gastroenterol. 2008;14(9):1399–405.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Prager M, Büttner J, Haas V, Baumgart DC, Sturm A, Zeitz M, et al. The JAK2 variant rs10758669 in Crohn’s disease: altering the intestinal barrier as one mechanism of action. Int J Color Dis. 2012;27(5):565–73. https://doi.org/10.1007/s00384-011-1345-y.

    Article  Google Scholar 

  89. Huppertz B, Kertschanska S, Demir AY, Frank HG, Kaufmann P. Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res. 1998;291(1):133–48.

    Article  CAS  PubMed  Google Scholar 

  90. Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990;6(4):121–5.

    Article  CAS  PubMed  Google Scholar 

  91. de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol. 2016;51(5):295–358. https://doi.org/10.1080/10409238.2016.1199535.

    Article  PubMed  CAS  Google Scholar 

  92. Warnaar N, Hofker HS, Maathuis MH, Niesing J, Bruggink AH, Dijkstra G, et al. Matrix metalloproteinases as profibrotic factors in terminal ileum in Crohn’s disease. Inflamm Bowel Dis. 2006;12(9):863–9. https://doi.org/10.1097/01.mib.0000231568.43065.ed.

    Article  PubMed  Google Scholar 

  93. Fujimoto T, Parry S, Urbanek M, Sammel M, Macones G, Kuivaniemi H, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 (MMP-1) promoter influences amnion cell MMP-1 expression and risk for preterm premature rupture of the fetal membranes. J Biol Chem. 2002;277(8):6296–302. https://doi.org/10.1074/jbc.M107865200.

    Article  PubMed  CAS  Google Scholar 

  94. Satsangi J, Chapman RW, Haldar N, Donaldson P, Mitchell S, Simmons J, et al. A functional polymorphism of the stromelysin gene (MMP-3) influences susceptibility to primary sclerosing cholangitis. Gastroenterology. 2001;121(1):124–30.

    Article  CAS  PubMed  Google Scholar 

  95. Zhi H, Wang H, Ren L, Shi Z, Peng H, Cui L, et al. Functional polymorphisms of matrix metallopeptidase-9 and risk of coronary artery disease in a Chinese population. Mol Biol Rep. 2010;37(1):13–20. https://doi.org/10.1007/s11033-009-9482-x.

    Article  PubMed  CAS  Google Scholar 

  96. Borghaei RC, Rawlings PL, Javadi M, Woloshin J. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun. 2004;316(1):182–8. https://doi.org/10.1016/j.bbrc.2004.02.030.

    Article  PubMed  CAS  Google Scholar 

  97. Medley TL, Kingwell BA, Gatzka CD, Pillay P, Cole TJ. Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening through modulation of gene and protein expression. Circ Res. 2003;92(11):1254–61. https://doi.org/10.1161/01.RES.0000076891.24317.CA.

    Article  PubMed  CAS  Google Scholar 

  98. Samnegård A, Silveira A, Lundman P, Boquist S, Odeberg J, Hulthe J, et al. Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med. 2005;258(5):411–9. https://doi.org/10.1111/j.1365-2796.2005.01561.x.

    Article  PubMed  CAS  Google Scholar 

  99. Novacek G, Papay P, Miehsler W, Reinisch W, Lichtenberger C, Sunder-Plassmann R, et al. Are inherited thrombotic risk factors associated with fibrostenosis in Crohn’s disease? Inflamm Bowel Dis. 2011;17(12):2505–11. https://doi.org/10.1002/ibd.21648.

    Article  PubMed  Google Scholar 

  100. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25. https://doi.org/10.1038/ng.717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19(17):3468–76. https://doi.org/10.1093/hmg/ddq248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mäkivuokko H, Lahtinen SJ, Wacklin P, Tuovinen E, Tenkanen H, Nikkilä J, et al. Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol. 2012;12:94. https://doi.org/10.1186/1471-2180-12-94.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sleegers K, Bettens K, De Roeck A, Van Cauwenberghe C, Cuyvers E, Verheijen J, et al. A 22-single nucleotide polymorphism Alzheimer’s disease risk score correlates with family history, onset age, and cerebrospinal fluid Abeta42. Alzheimers Dement. 2015;11(12):1452–60. https://doi.org/10.1016/j.jalz.2015.02.013.

    Article  PubMed  Google Scholar 

  104. Bequet E, Sarter H, Fumery M, Vasseur F, Armengol-Debeir L, Pariente B, et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988-2011]. J Crohns Colitis. 2016;11(5):519–26. https://doi.org/10.1093/ecco-jcc/jjw194.

    Article  Google Scholar 

  105. Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2(11):1003–9.

    Article  CAS  PubMed  Google Scholar 

  106. Sun L, Roesler J, Rösen-Wolff A, Winkler U, Koch R, Thürigen A, et al. CARD15 genotype and phenotype analysis in 55 pediatric patients with Crohn disease from Saxony, Germany. J Pediatr Gastroenterol Nutr. 2003;37(4):492–7.

    Article  CAS  PubMed  Google Scholar 

  107. Liberek A, Jakóbkiewicz-Banecka J, Kloska A, Świderska J, Kmieć Z, Łuczak G, et al. Clinical parameters of inflammatory bowel disease in children do not correlate with four common polymorphisms of the transforming growth factor β1 gene. Acta Biochim Pol. 2011;58(4):641–4.

    PubMed  CAS  Google Scholar 

  108. Strisciuglio C, Auricchio R, Martinelli M, Staiano A, Giugliano FP, Andreozzi M, et al. Autophagy genes variants and paediatric Crohn’s disease phenotype: a single-Centre experience. Dig Liver Dis. 2014;46(6):512–7. https://doi.org/10.1016/j.dld.2014.02.016.

    Article  PubMed  CAS  Google Scholar 

  109. Ippolito C, Colucci R, Segnani C, Errede M, Girolamo F, Virgintino D, et al. Fibrotic and vascular remodelling of Colonic Wall in patients with active ulcerative colitis. J Crohns Colitis. 2016;10(10):1194–204. https://doi.org/10.1093/ecco-jcc/jjw076.

    Article  PubMed  Google Scholar 

  110. Latella G, Rieder F. Intestinal fibrosis: ready to be reversed. Curr Opin Gastroenterol. 2017;33(4):239–45. https://doi.org/10.1097/MOG.0000000000000363.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gordon IO, Agrawal N, Goldblum JR, Fiocchi C, Rieder F. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm Bowel Dis. 2014;20(11):2198–206. https://doi.org/10.1097/MIB.0000000000000080.

    Article  PubMed  Google Scholar 

  112. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54 e42.; quiz e30. https://doi.org/10.1053/j.gastro.2011.10.001.

    Article  PubMed  Google Scholar 

  113. Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology. 2013;145(1):158–65.e2. https://doi.org/10.1053/j.gastro.2013.04.007.

    Article  PubMed  Google Scholar 

  114. Adeyanju O, Okou DT, Huang C, Kumar A, Sauer C, Galloway C, et al. Common NOD2 risk variants in African Americans with Crohn’s disease are due exclusively to recent Caucasian admixture. Inflamm Bowel Dis. 2012;18(12):2357–9. https://doi.org/10.1002/ibd.22944.

    Article  PubMed  Google Scholar 

  115. Mahurkar S, Banerjee R, Rani VS, Thakur N, Rao GV, Reddy DN, et al. Common variants in NOD2 and IL23R are not associated with inflammatory bowel disease in Indians. J Gastroenterol Hepatol. 2011;26(4):694–9. https://doi.org/10.1111/j.1440-1746.2010.06533.x.

    Article  PubMed  CAS  Google Scholar 

  116. Meddour Y, Chaib S, Bousseloub A, Kaddache N, Kecili L, Gamar L, et al. NOD2/CARD15 and IL23R genetic variability in 204 Algerian Crohn’s disease. Clin Res Hepatol Gastroenterol. 2014;38(4):499–504. https://doi.org/10.1016/j.clinre.2014.02.003.

    Article  PubMed  CAS  Google Scholar 

  117. Yamazaki K, Takahashi A, Takazoe M, Kubo M, Onouchi Y, Fujino A, et al. Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients. Gut. 2009;58(2):228–32. https://doi.org/10.1136/gut.2007.140764.

    Article  PubMed  CAS  Google Scholar 

  118. Yang SK, Park M, Lim J, Park SH, Ye BD, Lee I, et al. Contribution of IL23R but not ATG16L1 to Crohn’s disease susceptibility in Koreans. Inflamm Bowel Dis. 2009;15(9):1385–90. https://doi.org/10.1002/ibd.20921.

    Article  PubMed  Google Scholar 

  119. Zouiten-Mekki L, Kharrat M, Karoui S, Serghimi M, Fekih M, Matri S, et al. Tolllike receptor 4 (TLR4) polymorphisms in Tunisian patients with Crohn’s disease: genotype-phenotype correlation. BMC Gastroenterol. 2009;9:62. https://doi.org/10.1186/1471-230X-9-62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Barreiro-de-Acosta M, Mendoza JL, Lana R, Domínguez-Muñoz JE, Díaz-Rubio M. NOD2/CARD15: geographic differences in the Spanish population and clinical applications in Crohn’s disease. Rev Esp Enferm Dig. 2010;102(5):321–6.

    Article  CAS  PubMed  Google Scholar 

  121. Ernst A, Jacobsen B, Østergaard M, Okkels H, Andersen V, Dagiliene E, et al. Mutations in CARD15 and smoking confer susceptibility to Crohn’s disease in the Danish population. Scand J Gastroenterol. 2007;42(12):1445–51. https://doi.org/10.1080/00365520701427102.

    Article  PubMed  CAS  Google Scholar 

  122. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. https://doi.org/10.1038/ng.3359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003;125(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  124. Louis E, Collard A, Oger AF, Degroote E, Aboul Nasr El Yafi FA, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut. 2001;49(6):777–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Vermeire S, Wild G, Kocher K, Cousineau J, Dufresne L, Bitton A, et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet. 2002;71(1):74–83. https://doi.org/10.1086/341124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dotan I. Disease behavior in adult patients: are there predictors for stricture or fistula formation? Dig Dis. 2009;27(3):206–11. https://doi.org/10.1159/000228551.

    Article  PubMed  Google Scholar 

  127. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. https://doi.org/10.1038/nature11582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Cleynen I, Vermeire S. The genetic architecture of inflammatory bowel disease: past, present and future. Curr Opin Gastroenterol. 2015;31(6):456–63. https://doi.org/10.1097/MOG.0000000000000215.

    Article  PubMed  CAS  Google Scholar 

  129. Li C, Kuemmerle JF. Mechanisms that mediate the development of fibrosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20(7):1250–8. https://doi.org/10.1097/MIB.0000000000000043.

    Article  PubMed  Google Scholar 

  130. Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011;12(11):1063–70. https://doi.org/10.1038/ni.2113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol. 2016;91:52–60. https://doi.org/10.1016/j.yjmcc.2015.12.016.

    Article  PubMed  CAS  Google Scholar 

  132. Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002;8(4):244–50.

    Article  PubMed  Google Scholar 

  133. Van Assche G, Geboes K, Rutgeerts P. Medical therapy for Crohn’s disease strictures. Inflamm Bowel Dis. 2004;10(1):55–60.

    Article  PubMed  Google Scholar 

  134. Lee J, Anderson C, Wesley E, Ahmad T, Edwards C, Parkes M et al. Identification of a polymorphism that predisposes to longitudinal disease behaviour in Crohn’s disease and may have prognostic utility (abstract). Fifth Congress of ECCO, Capri; 2010.

    Google Scholar 

  135. Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC, Ahmad T, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49(2):262–8. https://doi.org/10.1038/ng.3755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Cleynen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verstockt, B., Verstockt, S., Cleynen, I. (2018). Genetic Influences on the Development of Fibrosis in Inflammatory Bowel Disease. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics