Advertisement

Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart

  • Calen A. Steiner
  • Peter D. R. Higgins
Chapter

Abstract

Fibrosis and dysregulated healing can affect nearly every organ system in the body. Often fibrosis represents a final common pathway to end organ failure, and there is evidence for substantial conservation of the mechanisms of fibrosis across many or all of these organs. Given the significant and pervasive impact of fibrosis there is a clear need for effective anti-fibrotic therapies. The study of these mechanisms and therapies is a robust area of research and allows for exciting collaboration. The conservation of mechanisms effectively posits any therapy that demonstrates efficacy in one organ or model of fibrosis as being a potentially viable option in other organs as well. In this chapter we review the current state of anti-fibrotic therapies in organs other the intestine. There are exciting pipeline agents under investigation in multiple organs including the liver, lungs, kidney, skin, and heart. This chapter focuses on agents that are currently in clinical trials and have demonstrated promise as potentially reaching mainstream use.

Keywords

Fibrosis Inflammatory bowel disease Intestinal fibrosis Hepatic fibrosis Pulmonary fibrosis Renal fibrosis Dermal fibrosis Anti-fibrotic Farnesoid X receptor FXR Obeticholic acid Lysyl oxidase LOX Simtuzumab Statin Caspase 5HT CCR2 CCR5 GR-MD-02 Peroxisome proliferator-activated receptor (PPAR) Pirfenidone Nintedanib Tyrosine kinase inhibitor mTOR Lysophospholipid Prostacyclin αvβ6 Endothelin IL-13 Connective tissue growth factor Serum amyloid P NADPH oxidase NOX Pyridoxamine Janus kinase JAK TGF-β Paquinimod ACE inhibitor 

References

  1. 1.
    Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6):2299–306.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Elpek GO. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol. 2014;20(23):7260–76.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18(28):3635–61.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair. 2012;5(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013;5(167):167sr1.CrossRefPubMedGoogle Scholar
  10. 10.
    Bettenworth D, Rieder F. Medical therapy of stricturing Crohn’s disease: what the gut can learn from other organs - a systematic review. Fibrogenesis Tissue Repair. 2014;7(1):5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yoon YJ, Friedman SL, Lee YA. Antifibrotic therapies: where are we now? Semin Liver Dis. 2016;36(1):87–98.CrossRefPubMedGoogle Scholar
  12. 12.
    Nanthakumar CB, Hatley RJ, Lemma S, Gauldie J, Marshall RP, Macdonald SJ. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov. 2015;14(10):693–720.CrossRefPubMedGoogle Scholar
  13. 13.
    Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60(4):463–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004;127(5):1497–512.CrossRefPubMedGoogle Scholar
  15. 15.
    Verbeke L, Farre R, Trebicka J, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology. 2014;59(6):2286–98.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008;48(5):1632–43.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis. 2010;28(1):220–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Karpen SJ. Do therapeutic bile acids hit the sweet spot of glucose metabolism in NAFLD? Gastroenterology. 2013;145(3):508–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci U S A. 2004;101(10):3668–73.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huber RM, Murphy K, Miao B, et al. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene. 2002;290(1-2):35–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183(10):6251–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem. 2014;57:231–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009–17.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang J, Savvatis K, Kang JS, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Meissner EG, McLaughlin M, Matthews L, et al. Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver Int. 2016;36(12):1783–92.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Raghu G, Brown KK, Collard HR, et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med. 2017;5(1):22–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Mihos CG, Pineda AM, Santana O. Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacol Res. 2014;88:12–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Schierwagen R, Uschner FE, Magdaleno F, Klein S, Trebicka J. Rationale for the use of statins in liver disease. Am J Physiol Gastrointest Liver Physiol. 2017;312(5):G407–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Klein S, Klosel J, Schierwagen R, et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. Lab Investig. 2012;92(10):1440–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Marrone G, Maeso-Diaz R, Garcia-Cardena G, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut. 2015;64(9):1434–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Trebicka J, Hennenberg M, Odenthal M, et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J Hepatol. 2010;53(4):702–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Chong LW, Hsu YC, Lee TF, et al. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simon TG, King LY, Zheng H, Chung RT. Statin use is associated with a reduced risk of fibrosis progression in chronic hepatitis C. J Hepatol. 2015;62(1):18–23.CrossRefPubMedGoogle Scholar
  36. 36.
    Watts KL, Sampson EM, Schultz GS, Spiteri MA. Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol. 2005;32(4):290–300.CrossRefPubMedGoogle Scholar
  37. 37.
    Reddy R, Chahoud G, Mehta JL. Modulation of cardiovascular remodeling with statins: fact or fiction? Curr Vasc Pharmacol. 2005;3(1):69–79.CrossRefPubMedGoogle Scholar
  38. 38.
    Abe Y, Murano M, Murano N, et al. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig Dis Sci. 2012;57(2):335–44.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ebrahimkhani MR, Oakley F, Murphy LB, et al. Stimulating healthy tissue regeneration by targeting the 5-HT(2)B receptor in chronic liver disease. Nat Med. 2011;17(12):1668–73.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mann DA, Oakley F. Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):905–10.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dees C, Akhmetshina A, Zerr P, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208(5):961–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Janssen W, Schymura Y, Novoyatleva T, et al. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed Res Int. 2015;2015:438403.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Fabre A, Marchal-Somme J, Marchand-Adam S, et al. Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J. 2008;32(2):426–36.CrossRefPubMedGoogle Scholar
  44. 44.
    Shenoy KT, Balakumaran LK, Mathew P, et al. Metadoxine versus placebo for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. J Clin Exp Hepatol. 2014;4(2):94–100.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gutierrez-Ruiz MC, Bucio L, Correa A, et al. Metadoxine prevents damage produced by ethanol and acetaldehyde in hepatocyte and hepatic stellate cells in culture. Pharmacol Res. 2001;44(5):431–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Arosio B, Santambrogio D, Gagliano N, Annoni G. Changes in expression of the albumin, fibronectin and type I procollagen genes in CCl4-induced liver fibrosis: effect of pyridoxol L,2-pyrrolidon-5 carboxylate. Pharmacol Toxicol. 1993;73(6):301–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Stidham RW, Guentner AS, Ruma JL, Govani SM, Waljee AK, Higgins PD. Intestinal dilation and platelet:albumin ratio are predictors of surgery in stricturing small bowel Crohn’s disease. Clin Gastroenterol Hepatol. 2016;14(8):1112–9. e1112CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jia LX, Qi GM, Liu O, et al. Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis. Cardiovasc Drugs Ther. 2013;27(6):521–30.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Savi P, Zachayus JL, Delesque-Touchard N, et al. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A. 2006;103(29):11069–74.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146(1):3–15.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002;123(4):1323–30.CrossRefPubMedGoogle Scholar
  53. 53.
    Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther. 2004;308(3):1191–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9(3):347–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol. 1998;5(5):R97–103.CrossRefPubMedGoogle Scholar
  56. 56.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Hoglen NC, Hirakawa BP, Fisher CD, et al. Characterization of the caspase inhibitor IDN-1965 in a model of apoptosis-associated liver injury. J Pharmacol Exp Ther. 2001;297(2):811–8.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Natori S, Higuchi H, Contreras P, Gores GJ. The caspase inhibitor IDN-6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury. Liver Transpl. 2003;9(3):278–84.CrossRefPubMedGoogle Scholar
  59. 59.
    Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2015;35(3):953–66.CrossRefPubMedGoogle Scholar
  60. 60.
    Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther. 2003;41(10):441–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830–41.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–21.CrossRefPubMedGoogle Scholar
  63. 63.
    Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147(3):577–94. e571CrossRefPubMedGoogle Scholar
  64. 64.
    Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–21.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Seki E, De Minicis S, Gwak GY, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009;119(7):1858–70.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Seki E, de Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50(1):185–97.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Braga TT, Correa-Costa M, Silva RC, et al. CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology. 2018;26:403.CrossRefPubMedGoogle Scholar
  68. 68.
    Kitagawa K, Wada T, Furuichi K, et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004;165(1):237–46.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gharaee-Kermani M, McCullumsmith RE, Charo IF, Kunkel SL, Phan SH. CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine. 2003;24(6):266–76.CrossRefPubMedGoogle Scholar
  70. 70.
    Okuma T, Terasaki Y, Kaikita K, et al. C-C chemokine receptor 2 (CCR2) deficiency improves bleomycin-induced pulmonary fibrosis by attenuation of both macrophage infiltration and production of macrophage-derived matrix metalloproteinases. J Pathol. 2004;204(5):594–604.CrossRefPubMedGoogle Scholar
  71. 71.
    Klibanov OM, Williams SH, Iler CA. Cenicriviroc, an orally active CCR5 antagonist for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2010;11(8):940–50.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lalezari J, Gathe J, Brinson C, et al. Safety, efficacy, and pharmacokinetics of TBR-652, a CCR5/CCR2 antagonist, in HIV-1-infected, treatment-experienced, CCR5 antagonist-naive subjects. J Acquir Immune Defic Syndr. 2011;57(2):118–25.CrossRefPubMedGoogle Scholar
  73. 73.
    Marier JF, Trinh M, Pheng LH, Palleja SM, Martin DE. Pharmacokinetics and pharmacodynamics of TBR-652, a novel CCR5 antagonist, in HIV-1-infected, antiretroviral treatment-experienced, CCR5 antagonist-naive patients. Antimicrob Agents Chemother. 2011;55(6):2768–74.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kagan RM, Johnson EP, Siaw MF, et al. Comparison of genotypic and phenotypic HIV type 1 tropism assay: results from the screening samples of cenicriviroc study 202, a randomized phase II trial in treatment-naive subjects. AIDS Res Hum Retrovir. 2014;30(2):151–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Thompson M, Saag M, DeJesus E, et al. A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS. 2016;30(6):869–78.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lefebvre E, Moyle G, Reshef R, et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One. 2016;11(6):e0158156.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Friedman S, Sanyal A, Goodman Z, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp Clin Trials. 2016;47:356–65.CrossRefPubMedGoogle Scholar
  78. 78.
    Di Lella S, Sundblad V, Cerliani JP, et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry. 2011;50(37):7842–57.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.CrossRefPubMedGoogle Scholar
  80. 80.
    Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009;230(1):160–71.CrossRefPubMedGoogle Scholar
  81. 81.
    Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103(13):5060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med. 2012;185(5):537–46.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Traber PG, Chou H, Zomer E, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8(10):e75361.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Harrison SA, Marri SR, Chalasani N, et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther. 2016;44(11-12):1183–98.CrossRefPubMedGoogle Scholar
  85. 85.
    Ahmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66.CrossRefPubMedGoogle Scholar
  86. 86.
    Fuchs CD, Traussnigg SA, Trauner M. Nuclear receptor modulation for the treatment of nonalcoholic fatty liver disease. Semin Liver Dis. 2016;36(1):69–86.CrossRefPubMedGoogle Scholar
  87. 87.
    Kawaguchi K, Sakaida I, Tsuchiya M, Omori K, Takami T, Okita K. Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun. 2004;315(1):187–95.CrossRefPubMedGoogle Scholar
  88. 88.
    Aoki Y, Maeno T, Aoyagi K, et al. Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration. 2009;77(3):311–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Chalasani NP, Sanyal AJ, Kowdley KV, et al. Pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients with non-alcoholic steatohepatitis: PIVENS trial design. Contemp Clin Trials. 2009;30(1):88–96.CrossRefPubMedGoogle Scholar
  90. 90.
    Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–85.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297–307.CrossRefPubMedGoogle Scholar
  92. 92.
    Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135(4):1176–84.CrossRefPubMedGoogle Scholar
  93. 93.
    Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol. 2009;174(2):519–33.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Samah M, El-Aidy Ael R, Tawfik MK, Ewais MM. Evaluation of the antifibrotic effect of fenofibrate and rosiglitazone on bleomycin-induced pulmonary fibrosis in rats. Eur J Pharmacol. 2012;689(1-3):186–93.CrossRefPubMedGoogle Scholar
  95. 95.
    Ratziu V, Charlotte F, Bernhardt C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology. 2010;51(2):445–53.CrossRefPubMedGoogle Scholar
  96. 96.
    Ratziu V, Giral P, Jacqueminet S, et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology. 2008;135(1):100–10.CrossRefPubMedGoogle Scholar
  97. 97.
    McHutchison J, Goodman Z, Patel K, et al. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology. 2010;138(4):1365–1373, 1373.e1-2.CrossRefPubMedGoogle Scholar
  98. 98.
    Cariou B, Hanf R, Lambert-Porcheron S, et al. Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care. 2013;36(10):2923–30.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care. 2011;34(9):2008–14.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Staels B, Rubenstrunk A, Noel B, et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58(6):1941–52.CrossRefPubMedGoogle Scholar
  101. 101.
    Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–59. e1145CrossRefPubMedGoogle Scholar
  102. 102.
    Bertin B, Dubuquoy L, Colombel JF, Desreumaux P. PPAR-gamma in ulcerative colitis: a novel target for intervention. Curr Drug Targets. 2013;14(12):1501–7.CrossRefPubMedGoogle Scholar
  103. 103.
    Koo JB, Nam MO, Jung Y, et al. Anti-fibrogenic effect of PPAR-gamma agonists in human intestinal myofibroblasts. BMC Gastroenterol. 2017;17(1):73.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Meyer KC, Decker CA. Role of pirfenidone in the management of pulmonary fibrosis. Ther Clin Risk Manag. 2017;13:427–37.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Iyer SN, Wild JS, Schiedt MJ, Hyde DM, Margolin SB, Giri SN. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med. 1995;125(6):779–85.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;291(1):367–73.PubMedGoogle Scholar
  107. 107.
    Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;289(1):211–8.PubMedGoogle Scholar
  108. 108.
    Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C. Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci. 2014;58:13–9.CrossRefPubMedGoogle Scholar
  109. 109.
    Nakayama S, Mukae H, Sakamoto N, et al. Pirfenidone inhibits the expression of HSP47 in TGF-beta1-stimulated human lung fibroblasts. Life Sci. 2008;82(3-4):210–7.CrossRefPubMedGoogle Scholar
  110. 110.
    Taniguchi H, Ebina M, Kondoh Y, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35(4):821–9.CrossRefPubMedGoogle Scholar
  111. 111.
    Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9.CrossRefPubMedGoogle Scholar
  112. 112.
    King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Noble PW, Albera C, Bradford WZ, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47(1):243–53.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Costabel U, Albera C, Bradford WZ, et al. Analysis of lung function and survival in RECAP: an open-label extension study of pirfenidone in patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(3):198–205.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Ogura T, Azuma A, Inoue Y, et al. All-case post-marketing surveillance of 1371 patients treated with pirfenidone for idiopathic pulmonary fibrosis. Respir Investig. 2015;53(5):232–41.CrossRefPubMedGoogle Scholar
  116. 116.
    Lancaster L, Albera C, Bradford WZ, et al. Safety of pirfenidone in patients with idiopathic pulmonary fibrosis: integrated analysis of cumulative data from 5 clinical trials. BMJ Open Respir Res. 2016;3(1):e000105.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, et al. Role and new insights of pirfenidone in fibrotic diseases. Int J Med Sci. 2015;12(11):840–7.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Garcia L, Hernandez I, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol. 2002;37(6):797–805.CrossRefPubMedGoogle Scholar
  119. 119.
    Flores-Contreras L, Sandoval-Rodriguez AS, Mena-Enriquez MG, et al. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol. 2014;14:131.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22(6):1144–51.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Liu Y, Wu J, Li Z, Luo Y, Zeng F, Shi S. Tolerability and pharmacokinetics of hydronidone, an antifibrotic agent for hepatic fibrosis, after single and multiple doses in healthy subjects: an open-label, randomized, dose-escalating, first-in-human study. Eur J Drug Metab Pharmacokinet. 2017;42(1):37–48.CrossRefPubMedGoogle Scholar
  122. 122.
    Fujimoto H, Kobayashi T, Azuma A. Idiopathic pulmonary fibrosis: treatment and prognosis. Clin Med Insights Circ Respir Pulm Med. 2015;9(Suppl 1):179–85.PubMedGoogle Scholar
  123. 123.
    Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68(12):4774–82.CrossRefPubMedGoogle Scholar
  124. 124.
    Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365(12):1079–87.CrossRefPubMedGoogle Scholar
  125. 125.
    Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.CrossRefPubMedGoogle Scholar
  126. 126.
    Ozturk Akcora B, Storm G, Prakash J, Bansal R. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model. Sci Rep. 2017;7:44545.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Oda K, Matsunaga T, Sennari K, Yatera K. Colitis associated with nintedanib therapy for idiopathic pulmonary fibrosis (IPF). Intern Med. 2017;56(10):1267–8.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Daniels CE, Lasky JA, Limper AH, et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181(6):604–10.CrossRefPubMedGoogle Scholar
  129. 129.
    Spiera RF, Gordon JK, Mersten JN, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis. 2011;70(6):1003–9.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Prey S, Ezzedine K, Doussau A, et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol. 2012;167(5):1138–44.CrossRefPubMedGoogle Scholar
  131. 131.
    Das J, Chen P, Norris D, et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem. 2006;49(23):6819–32.Google Scholar
  132. 132.
    Akhmetshina A, Dees C, Pileckyte M, et al. Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB J. 2008;22(7):2214–22.CrossRefPubMedGoogle Scholar
  133. 133.
    Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res. 2014;55(7):1192–214.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015;333(2):171–7.CrossRefPubMedGoogle Scholar
  135. 135.
    Tager AM, LaCamera P, Shea BS, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14(1):45–54.CrossRefPubMedGoogle Scholar
  136. 136.
    Tokumura A, Carbone LD, Yoshioka Y, et al. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci. 2009;6(4):168–76.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Swaney JS, Chapman C, Correa LD, et al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol. 2010;160(7):1699–713.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Castelino FV, Seiders J, Bain G, et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 2011;63(5):1405–15.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Khanna DDCP, Jagerschmidt, A, Jasson, M, Distler, O, Allanore, Y. SAR100842, an antagonist of lysophosphatidic acid receptor 1, as a potential treatment for patients with systemic sclerosis: results from a phase 2a study. ACR/ARHP Annual Meeting 2014. 2014.Google Scholar
  140. 140.
    Yun CC, Kumar A. Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res. 2015;333(2):201–7.CrossRefPubMedGoogle Scholar
  141. 141.
    Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39–68.CrossRefPubMedGoogle Scholar
  142. 142.
    Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious toggling of mTOR activity to combat insulin resistance and cancer: current evidence and perspectives. Front Pharmacol. 2016;7:395.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Korfhagen TR, Le Cras TD, Davidson CR, et al. Rapamycin prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2009;41(5):562–72.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Kramer S, Wang-Rosenke Y, Scholl V, et al. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat. Am J Physiol Renal Physiol. 2008;294(2):F440–9.CrossRefPubMedGoogle Scholar
  145. 145.
    Lloberas N, Cruzado JM, Franquesa M, et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol. 2006;17(5):1395–404.CrossRefPubMedGoogle Scholar
  146. 146.
    Neef M, Ledermann M, Saegesser H, Schneider V, Reichen J. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis. J Hepatol. 2006;45(6):786–96.CrossRefPubMedGoogle Scholar
  147. 147.
    Wu MJ, Wen MC, Chiu YT, Chiou YY, Shu KH, Tang MJ. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 2006;69(11):2029–36.CrossRefPubMedGoogle Scholar
  148. 148.
    Son MK, Ryu YL, Jung KH, et al. HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci Rep. 2013;3:3470.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Knight SD, Adams ND, Burgess JL, et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett. 2010;1(1):39–43.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Mercer PF, Woodcock HV, Eley JD, et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax. 2016;71(8):701–11.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Marz AM, Fabian AK, Kozany C, Bracher A, Hausch F. Large FK506-binding proteins shape the pharmacology of rapamycin. Mol Cell Biol. 2013;33(7):1357–67.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Mutalib M, Borrelli O, Blackstock S, et al. The use of sirolimus (rapamycin) in the management of refractory inflammatory bowel disease in children. J Crohns Colitis. 2014;8(12):1730–4.CrossRefPubMedGoogle Scholar
  153. 153.
    Yang J, Zhao X, Patel A, et al. Rapamycin inhibition of mTOR reduces levels of the Na+/H+ exchanger 3 in intestines of mice and humans, leading to diarrhea. Gastroenterology. 2015;149(1):151–62.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Sampson LL, Davis AK, Grogg MW, Zheng Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J. 2016;30(3):1263–75.CrossRefPubMedGoogle Scholar
  155. 155.
    Boers-Doets CB, Raber-Durlacher JE, Treister NS, et al. Mammalian target of rapamycin inhibitor-associated stomatitis. Future Oncol. 2013;9(12):1883–92.CrossRefPubMedGoogle Scholar
  156. 156.
    Sonis S, Treister N, Chawla S, Demetri G, Haluska F. Preliminary characterization of oral lesions associated with inhibitors of mammalian target of rapamycin in cancer patients. Cancer. 2010;116(1):210–5.PubMedGoogle Scholar
  157. 157.
    Groetzner J, Kur F, Spelsberg F, et al. Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression. J Heart Lung Transplant. 2004;23(5):632–8.CrossRefPubMedGoogle Scholar
  158. 158.
    Kahn D, Spearman CW, Mall A, et al. Effect of rapamycin on the healing of the bile duct. Transplant Proc. 2005;37(2):832–3.CrossRefPubMedGoogle Scholar
  159. 159.
    Kahn D, Spearman CW, Mall A, et al. The effect of rapamycin on the healing of the ureteric anastomosis and wound healing. Transplant Proc. 2005;37(2):830–1.CrossRefPubMedGoogle Scholar
  160. 160.
    Kuper MA, Scholzl N, Traub F, et al. Everolimus interferes with the inflammatory phase of healing in experimental colonic anastomoses. J Surg Res. 2011;167(1):158–65.CrossRefPubMedGoogle Scholar
  161. 161.
    Kuper MA, Trutschel S, Weinreich J, Konigsrainer A, Beckert S. Growth hormone abolishes the negative effects of everolimus on intestinal wound healing. World J Gastroenterol. 2016;22(17):4321–9.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    van der Vliet JA, Willems MC, de Man BM, Lomme RM, Hendriks T. Everolimus interferes with healing of experimental intestinal anastomoses. Transplantation. 2006;82(11):1477–83.CrossRefPubMedGoogle Scholar
  163. 163.
    Willems MC, van der Vliet JA, de Man BM, van der Laak JA, Lomme RM, Hendriks T. Persistent effects of everolimus on strength of experimental wounds in intestine and fascia. Wound Repair Regen. 2010;18(1):98–104.CrossRefPubMedGoogle Scholar
  164. 164.
    Molinari M, Al-Saif F, Ryan EA, et al. Sirolimus-induced ulceration of the small bowel in islet transplant recipients: report of two cases. Am J Transplant. 2005;5(11):2799–804.CrossRefPubMedGoogle Scholar
  165. 165.
    Devries JG, Collier RC, Niezgoda JA, Sanicola S, Simanonok JP. Impaired lower extremity wound healing secondary to sirolimus after kidney transplantation. J Am Col Certif Wound Spec. 2009;1(3):86–91.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Hugl B, Lhotta K, Ensinger C, et al. Colonic perforation associated with leukocytoclastic vasculitis caused by sirolimus toxicity following renal transplantation. Transpl Int. 2006;19(5):430–1.CrossRefPubMedGoogle Scholar
  167. 167.
    Stitham J, Midgett C, Martin KA, Hwa J. Prostacyclin: an inflammatory paradox. Front Pharmacol. 2011;2:24.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Zhu Y, Liu Y, Zhou W, et al. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respir Res. 2010;11:34.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Stratton R, Shiwen X, Martini G, et al. Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J Clin Invest. 2001;108(2):241–50.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Chung L, Fiorentino D. A pilot trial of treprostinil for the treatment and prevention of digital ulcers in patients with systemic sclerosis. J Am Acad Dermatol. 2006;54(5):880–2.CrossRefPubMedGoogle Scholar
  171. 171.
    Takenaka M, Machida N, Ida N, Satoh N, Kurumatani H, Yamane Y. Effect of beraprost sodium (BPS) in a new rat partial unilateral ureteral obstruction model. Prostaglandins Leukot Essent Fatty Acids. 2009;80(5-6):263–7.CrossRefPubMedGoogle Scholar
  172. 172.
    Nakamoto H, Fujita T, Origasa H, et al. A multinational phase IIb/III trial of beraprost sodium, an orally active prostacyclin analogue, in patients with primary glomerular disease or nephrosclerosis (CASSIOPEIR trial), rationale and study design. BMC Nephrol. 2014;15:153.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Walt RP. Misoprostol for the treatment of peptic ulcer and antiinflammatory-drug-induced gastroduodenal ulceration. N Engl J Med. 1992;327(22):1575–80.CrossRefPubMedGoogle Scholar
  174. 174.
    Soffer EE, Launspach J. Effect of misoprostol on postprandial intestinal motility and orocecal transit time in humans. Dig Dis Sci. 1993;38(5):851–5.CrossRefPubMedGoogle Scholar
  175. 175.
    Soffer EE, Metcalf A, Launspach J. Misoprostol is effective treatment for patients with severe chronic constipation. Dig Dis Sci. 1994;39(5):929–33.CrossRefPubMedGoogle Scholar
  176. 176.
    Roarty TP, Weber F, Soykan I, McCallum RW. Misoprostol in the treatment of chronic refractory constipation: results of a long-term open label trial. Aliment Pharmacol Ther. 1997;11(6):1059–66.CrossRefPubMedGoogle Scholar
  177. 177.
    Demirci F, Somunkiran A, Gul OK, Demiraran Y, Ozdemir I, Gul OB. Does postoperative misoprostol use induce intestinal motility? A prospective randomised double-blind trial. Aust N Z J Obstet Gynaecol. 2007;47(5):410–4.CrossRefPubMedGoogle Scholar
  178. 178.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Breuss JM, Gallo J, DeLisser HM, et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci. 1995;108(Pt 6):2241–51.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Breuss JM, Gillett N, Lu L, Sheppard D, Pytela R. Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues. J Histochem Cytochem. 1993;41(10):1521–7.CrossRefPubMedGoogle Scholar
  181. 181.
    Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.CrossRefPubMedGoogle Scholar
  182. 182.
    Wang B, Dolinski BM, Kikuchi N, et al. Role of alphavbeta6 integrin in acute biliary fibrosis. Hepatology. 2007;46(5):1404–12.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Vaidya B, Patel R, Muth A, Gupta V. Exploitation of novel molecular targets to treat idiopathic pulmonary fibrosis: a drug discovery perspective. Curr Med Chem. 2017;24:2439.CrossRefPubMedGoogle Scholar
  184. 184.
    Weinreb PH, Simon KJ, Rayhorn P, et al. Function-blocking integrin alphavbeta6 monoclonal antibodies: distinct ligand-mimetic and nonligand-mimetic classes. J Biol Chem. 2004;279(17):17875–87.CrossRefPubMedGoogle Scholar
  185. 185.
    Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev. 2016;68(2):357–418.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Kurihara H, Yoshizumi M, Sugiyama T, et al. Transforming growth factor-beta stimulates the expression of endothelin mRNA by vascular endothelial cells. Biochem Biophys Res Commun. 1989;159(3):1435–40.CrossRefPubMedGoogle Scholar
  187. 187.
    Yoshizumi M, Kurihara H, Morita T, et al. Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun. 1990;166(1):324–9.CrossRefPubMedGoogle Scholar
  188. 188.
    Orisio S, Morigi M, Zoja C, Perico N, Remuzzi G. Turnour necrosis factor stimulates endothelin-1 gene expression in cultured bovine endothelial cells. Mediat Inflamm. 1992;1(4):263–6.CrossRefGoogle Scholar
  189. 189.
    Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol. 2016;310(10):R877–84.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Georgianos PI, Agarwal R. Endothelin A receptor antagonists in diabetic kidney disease. Curr Opin Nephrol Hypertens. 2017;26:338.CrossRefPubMedGoogle Scholar
  191. 191.
    Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93.CrossRefPubMedGoogle Scholar
  192. 192.
    Widyantoro B, Emoto N, Nakayama K, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18.CrossRefPubMedGoogle Scholar
  193. 193.
    Uguccioni M, Pulsatelli L, Grigolo B, et al. Endothelin-1 in idiopathic pulmonary fibrosis. J Clin Pathol. 1995;48(4):330–4.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Jain R, Shaul PW, Borok Z, Willis BC. Endothelin-1 induces alveolar epithelial-mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol. 2007;37(1):38–47.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Breu V, Ertel SI, Roux S, Clozel M. The pharmacology of bosentan. Expert Opin Investig Drugs. 1998;7(7):1173–92.CrossRefPubMedGoogle Scholar
  196. 196.
    Clozel M, Breu V, Gray GA, et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994;270(1):228–35.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Park SH, Saleh D, Giaid A, Michel RP. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med. 1997;156(2 Pt 1):600–8.CrossRefPubMedGoogle Scholar
  198. 198.
    King TE Jr, Brown KK, Raghu G, et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(1):92–9.CrossRefPubMedGoogle Scholar
  199. 199.
    King TE Jr, Behr J, Brown KK, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;177(1):75–81.CrossRefPubMedGoogle Scholar
  200. 200.
    Seibold JR, Denton CP, Furst DE, et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 2010;62(7):2101–8.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Raghu G, Behr J, Brown KK, et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158(9):641–9.CrossRefPubMedGoogle Scholar
  202. 202.
    Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J, MUSIC Study Group. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J. 2013;42(6):1622–32.CrossRefPubMedGoogle Scholar
  203. 203.
    Okamoto T, Koda M, Miyoshi K, et al. Antifibrotic effects of ambrisentan, an endothelin-A receptor antagonist, in a non-alcoholic steatohepatitis mouse model. World J Hepatol. 2016;8(22):933–41.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Feng HQ, Weymouth ND, Rockey DC. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease. Am J Physiol Gastrointest Liver Physiol. 2009;297(1):G27–33.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Kohan DE, Pritchett Y, Molitch M, et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol. 2011;22(4):763–72.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Korn JH, Mayes M, Matucci Cerinic M, et al. Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum. 2004;50(12):3985–93.CrossRefPubMedGoogle Scholar
  207. 207.
    Claudino RF, Leite DF, Bento AF, Chichorro JG, Calixto JB, Rae GA. Potential role for ET-2 acting through ETA receptors in experimental colitis in mice. Inflamm Res. 2017;66(2):141–55.CrossRefPubMedGoogle Scholar
  208. 208.
    Fichtner-Feigl S, Strober W, Geissler EK, Schlitt HJ. Cytokines mediating the induction of chronic colitis and colitis-associated fibrosis. Mucosal Immunol. 2008;1(Suppl 1):S24–7.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111(4):677–90; quiz 691; quiz 691.CrossRefPubMedGoogle Scholar
  210. 210.
    Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106.CrossRefPubMedGoogle Scholar
  211. 211.
    Fichtner-Feigl S, Young CA, Kitani A, Geissler EK, Schlitt HJ, Strober W. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008;135(6):2003–13, 2013.e1-7.CrossRefPubMedGoogle Scholar
  212. 212.
    Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.CrossRefPubMedGoogle Scholar
  213. 213.
    Danese S, Rudzinski J, Brandt W, et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64(2):243–9.CrossRefPubMedGoogle Scholar
  214. 214.
    Cicha I, Goppelt-Struebe M. Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors. 2009;35(2):200–8.CrossRefPubMedGoogle Scholar
  215. 215.
    Huang G, Brigstock DR. Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci. 2012;17:2495–507.CrossRefGoogle Scholar
  216. 216.
    Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Shi C, Li G, Tong Y, Deng Y, Fan J. Role of CTGF gene promoter methylation in the development of hepatic fibrosis. Am J Transl Res. 2016;8(1):125–32.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Bickelhaupt S, Erbel C, Timke C, et al. Effects of CTGF blockade on attenuation and reversal of radiation-induced pulmonary fibrosis. J Natl Cancer Inst. 2017;109(8).  https://doi.org/10.1093/jnci/djw339
  219. 219.
    Makino K, Makino T, Stawski L, Lipson KE, Leask A, Trojanowska M. Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis. Arthritis Res Ther. 2017;19(1):134.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Raghu G, Scholand MB, de Andrade J, et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47(5):1481–91.CrossRefPubMedGoogle Scholar
  221. 221.
    Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol. 2010;5(8):1420–8.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today. 1994;15(2):81–8.CrossRefPubMedGoogle Scholar
  223. 223.
    Pilling D, Tucker NM, Gomer RH. Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol. 2006;79(6):1242–51.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Pilling D, Buckley CD, Salmon M, Gomer RH. Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol. 2003;171(10):5537–46.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Haudek SB, Xia Y, Huebener P, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103(48):18284–9.CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Naik-Mathuria B, Pilling D, Crawford JR, et al. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen. 2008;16(2):266–73.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Garnier M, Mailleux AA, Besnard V, et al. Serum amyloid P contained in alveolar fluid from patients with acute respiratory distress syndrome mediates the inhibition of monocyte differentiation into fibrocyte. Crit Care Med. 2016;44(7):e563–73.CrossRefPubMedGoogle Scholar
  228. 228.
    Murray LA, Chen Q, Kramer MS, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int J Biochem Cell Biol. 2011;43(1):154–62.CrossRefPubMedGoogle Scholar
  229. 229.
    Pilling D, Roife D, Wang M, et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007;179(6):4035–44.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Murray LA, Kramer MS, Hesson DP, et al. Serum amyloid P ameliorates radiation-induced oral mucositis and fibrosis. Fibrogenesis Tissue Repair. 2010;3:11.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Dillingh MR, van den Blink B, Moerland M, et al. Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013;26(6):672–6.CrossRefPubMedGoogle Scholar
  232. 232.
    van den Blink B, Dillingh MR, Ginns LC, et al. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. Eur Respir J. 2016;47(3):889–97.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Rastogi R, Geng X, Li F, Ding Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci. 2016;10:301.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Cui W, Matsuno K, Iwata K, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology. 2011;54(3):949–58.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Jiang JX, Venugopal S, Serizawa N, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology. 2010;139(4):1375–84.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Nieto N, Friedman SL, Cederbaum AI. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem. 2002;277(12):9853–64.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology. 2011;53(5):1730–41.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6(231):231ra247.CrossRefGoogle Scholar
  239. 239.
    Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax. 2010;65(8):733–8.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 2011;79(9):944–56.CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol. 2014;25(6):1237–54.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Aoyama T, Paik YH, Watanabe S, et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology. 2012;56(6):2316–27.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem. 2010;53(21):7715–30.CrossRefPubMedGoogle Scholar
  245. 245.
    Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53(2):289–96.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Sedeek M, Gutsol A, Montezano AC, et al. Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond). 2013;124(3):191–202.CrossRefGoogle Scholar
  247. 247.
    Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–29.CrossRefPubMedGoogle Scholar
  248. 248.
    Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60(1):6–20.CrossRefPubMedGoogle Scholar
  249. 249.
    Myllarniemi M, Kaarteenaho R. Pharmacological treatment of idiopathic pulmonary fibrosis - preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur Clin Respir J. 2015;2:26385.CrossRefGoogle Scholar
  250. 250.
    Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229–42.CrossRefPubMedGoogle Scholar
  251. 251.
    Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2093–101.CrossRefGoogle Scholar
  252. 252.
    Kato M, Marumo M, Nakayama J, Matsumoto M, Yabe-Nishimura C, Kamata T. The ROS-generating oxidase Nox1 is required for epithelial restitution following colitis. Exp Anim. 2016;65(3):197–205.CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem. 2000;275(28):21177–84.CrossRefPubMedGoogle Scholar
  254. 254.
    Voziyan PA, Metz TO, Baynes JW, Hudson BG. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J Biol Chem. 2002;277(5):3397–403.CrossRefPubMedGoogle Scholar
  255. 255.
    Degenhardt TP, Alderson NL, Arrington DD, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 2002;61(3):939–50.CrossRefPubMedGoogle Scholar
  256. 256.
    Williams ME, Bolton WK, Khalifah RG, Degenhardt TP, Schotzinger RJ, McGill JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol. 2007;27(6):605–14.CrossRefPubMedGoogle Scholar
  257. 257.
    Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87.CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223:132–42.CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Dees C, Tomcik M, Palumbo-Zerr K, et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor beta in systemic sclerosis. Arthritis Rheum. 2012;64(9):3006–15.CrossRefPubMedGoogle Scholar
  260. 260.
    Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298–307.CrossRefPubMedGoogle Scholar
  261. 261.
    Flamant M, Rigaill J, Paul S, Roblin X. Advances in the development of Janus kinase inhibitors in inflammatory bowel disease: future prospects. Drugs. 2017;77:1057.CrossRefPubMedGoogle Scholar
  262. 262.
    Sahin H, Wasmuth HE. Chemokines in tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1041–8.CrossRefPubMedGoogle Scholar
  263. 263.
    Mirolo M, Fabbri M, Sironi M, et al. Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemotactic proteins. Eur Cytokine Netw. 2008;19(3):119–22.PubMedGoogle Scholar
  264. 264.
    Zhu XY, Chade AR, Krier JD, et al. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27(10):2063–73.CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Sabounjian L, Graham P, Wu L, et al. A first-in-patient, multicenter, double-blind, 2-arm, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease. Clin Pharmacol Drug Dev. 2016;5(4):314–25.CrossRefPubMedGoogle Scholar
  266. 266.
    Tang X, Bridson G, Ke J, et al. Quantitative analyses of CTP-499 and five major metabolites by core-structure analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;963:1–9.CrossRefPubMedGoogle Scholar
  267. 267.
    Braman V, Graham P, Cheng C, et al. A randomized phase I evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy. Clin Pharmacol Drug Dev. 2013;2(1):53–66.CrossRefPubMedGoogle Scholar
  268. 268.
    Lin SL, Chen YM, Chiang WC, Tsai TJ, Chen WY. Pentoxifylline: a potential therapy for chronic kidney disease. Nephrology (Carlton). 2004;9(4):198–204.CrossRefGoogle Scholar
  269. 269.
    Aslanian AHK, West K, Bridson G, Wu L. CTP-499, a novel drug for the treatment of chronic kidney disease, ameliorates renal fibrosis and inflammation in vivo. ASN 2012 Poster. 2012.Google Scholar
  270. 270.
    Peterson TC, Peterson MR, Raoul JM. The effect of pentoxifylline and its metabolite-1 on inflammation and fibrosis in the TNBS model of colitis. Eur J Pharmacol. 2011;662(1-3):47–54.CrossRefPubMedGoogle Scholar
  271. 271.
    Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: molecular basis of pentoxifylline-vitamin E anti-fibrotic effect involved TGF-beta1 cascade inhibition. Radiother Oncol. 2012;105(3):305–12.CrossRefPubMedGoogle Scholar
  272. 272.
    Ezquerro IJ, Lasarte JJ, Dotor J, et al. A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine. 2003;22(1-2):12–20.CrossRefPubMedGoogle Scholar
  273. 273.
    Santiago B, Gutierrez-Canas I, Dotor J, et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol. 2005;125(3):450–5.CrossRefPubMedGoogle Scholar
  274. 274.
    Hermida N, Lopez B, Gonzalez A, et al. A synthetic peptide from transforming growth factor-beta1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovasc Res. 2009;81(3):601–9.CrossRefPubMedGoogle Scholar
  275. 275.
    Baltanas A, Miguel-Carrasco JL, San Jose G, et al. A synthetic peptide from transforming growth factor-beta(1) type III receptor inhibits NADPH oxidase and prevents oxidative stress in the kidney of spontaneously hypertensive rats. Antioxid Redox Signal. 2013;19(14):1607–18.CrossRefPubMedGoogle Scholar
  276. 276.
    Trachtman H, Fervenza FC, Gipson DS, et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79(11):1236–43.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125(7):2795–807.CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Voelker J, Berg PH, Sheetz M, et al. Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol. 2017;28(3):953–62.CrossRefPubMedGoogle Scholar
  279. 279.
    Ruchelman AL, Man HW, Zhang W, et al. Isosteric analogs of lenalidomide and pomalidomide: synthesis and biological activity. Bioorg Med Chem Lett. 2013;23(1):360–5.CrossRefPubMedGoogle Scholar
  280. 280.
    Tseng S, Pak G, Washenik K, Pomeranz MK, Shupack JL. Rediscovering thalidomide: a review of its mechanism of action, side effects, and potential uses. J Am Acad Dermatol. 1996;35(6):969–79.CrossRefPubMedGoogle Scholar
  281. 281.
    Choe JY, Jung HJ, Park KY, et al. Anti-fibrotic effect of thalidomide through inhibiting TGF-beta-induced ERK1/2 pathways in bleomycin-induced lung fibrosis in mice. Inflamm Res. 2010;59(3):177–88.CrossRefPubMedGoogle Scholar
  282. 282.
    Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993;177(6):1675–80.CrossRefPubMedGoogle Scholar
  283. 283.
    Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med. 1991;173(3):699–703.CrossRefPubMedGoogle Scholar
  284. 284.
    Tabata C, Tabata R, Kadokawa Y, et al. Thalidomide prevents bleomycin-induced pulmonary fibrosis in mice. J Immunol. 2007;179(1):708–14.CrossRefPubMedGoogle Scholar
  285. 285.
    Horton MR, Santopietro V, Mathew L, et al. Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: a randomized trial. Ann Intern Med. 2012;157(6):398–406.CrossRefPubMedGoogle Scholar
  286. 286.
    Weingartner S, Zerr P, Tomcik M, et al. Pomalidomide is effective for prevention and treatment of experimental skin fibrosis. Ann Rheum Dis. 2012;71(11):1895–9.CrossRefPubMedGoogle Scholar
  287. 287.
    Yang C, Singh P, Singh H, Le ML, El-Matary W. Systematic review: thalidomide and thalidomide analogues for treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2015;41(11):1079–93.CrossRefPubMedGoogle Scholar
  288. 288.
    Bjork P, Bjork A, Vogl T, et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7(4):e97.CrossRefPubMedGoogle Scholar
  289. 289.
    Stenstrom M, Nyhlen HC, Torngren M, et al. Paquinimod reduces skin fibrosis in tight skin 1 mice, an experimental model of systemic sclerosis. J Dermatol Sci. 2016;83(1):52–9.CrossRefPubMedGoogle Scholar
  290. 290.
    Kerkhoff C, Voss A, Scholzen TE, Averill MM, Zanker KS, Bornfeldt KE. Novel insights into the role of S100A8/A9 in skin biology. Exp Dermatol. 2012;21(11):822–6.CrossRefPubMedPubMedCentralGoogle Scholar
  291. 291.
    Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res. 2016;20:13.CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Fang L, Murphy AJ, Dart AM. A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front Pharmacol. 2017;8:186.PubMedPubMedCentralGoogle Scholar
  293. 293.
    Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc Ther. 2012;30(1):e30–40.CrossRefPubMedGoogle Scholar
  294. 294.
    Ruster C, Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol. 2011;22(7):1189–99.CrossRefPubMedGoogle Scholar
  295. 295.
    Couluris M, Kinder BW, Xu P, Gross-King M, Krischer J, Panos RJ. Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung. 2012;190(5):523–7.CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Wei HS, Li DG, Lu HM, et al. Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl(4). World J Gastroenterol. 2000;6(4):540–5.PubMedPubMedCentralGoogle Scholar
  297. 297.
    Corey KE, Shah N, Misdraji J, et al. The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C. Liver Int. 2009;29(5):748–53.CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Wengrower D, Zanninelli G, Pappo O, et al. Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004;10(5):536–45.CrossRefPubMedPubMedCentralGoogle Scholar
  299. 299.
    Wengrower D, Zanninelli G, Latella G, et al. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012;26(1):33–9.CrossRefPubMedPubMedCentralGoogle Scholar
  300. 300.
    Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res. 2006;69(1):15–25.CrossRefPubMedGoogle Scholar
  301. 301.
    Engebretsen KV, Skardal K, Bjornstad S, et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J Mol Cell Cardiol. 2014;76:148–57.CrossRefPubMedPubMedCentralGoogle Scholar
  302. 302.
    Frantz S, Hu K, Adamek A, et al. Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol. 2008;103(5):485–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Gastroenterology, Michigan MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations