• Nicholas D. Alikakos
  • Giorgio Fusco
  • Panayotis Smyrnelis
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 91)


This chapter together with Chap.  4 contain some general tools for obtaining estimates for systems.


  1. 1.
    Alberti, G.: Variational models for phase transitions, an approach via Gamma convergence. In: Ambrosio, L., Dancer, N. (eds.) Calculus of Variations and Partial Differential Equations, pp. 95–114. Springer, Berlin (2000)CrossRefGoogle Scholar
  2. 2.
    Alikakos, N.D., Fusco, G.: Density estimates for vector minimizers and application. Discrete Contin. Dynam. Syst, 35(12), 5631–5663 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alikakos, N.D., Zarnescu, A.: in preparationGoogle Scholar
  4. 4.
    Baldo, S.: Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. Henri Poincaré 7(2), 67–90 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Caffarelli, L., Córdoba, A.: Uniform convergence of a singular perturbation problem. Commun. Pure Appl. Math. 48, 1–12 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Caffarelli, L., Córdoba, A.: Phase transitions: uniform regularity of the intermediate layers. J. Reine Angew. Math. 593, 209–235 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems. Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence (2005)Google Scholar
  8. 8.
    Cecon, B., Paolini, M., Romeo, M.: Optimal interface error estimates for a discrete double obstacle approximation to the prescribed curvature problem. Math. Models Methods Appl. Sci. 9, 799–823 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cesaroni, A., Muratov, C.M., Novaga, M.: Front propagation and phase field models of stratified media. Arch. Ration. Mech. Anal. 216(1), 153–191 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  11. 11.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  12. 12.
    Farina, A.: Two results on entire solutions of Ginzburg–Landau system in higher dimensions. J. Funct. Anal. 214(2), 386–395 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Farina, A., Valdinoci, E.: Geometry of quasiminimal phase transitions. Calc. Var. Partial Differ. Equ. 33(1), 1–35 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fusco, G.: Equivariant entire solutions to the elliptic system Δu − W u(u) = 0 for general G-invariant potentials. Calc. Var. Partial Differ. Equ. 49(3), 963–985 (2014)Google Scholar
  15. 15.
    Fusco, G.: On some elementary properties of vector minimizers of the Allen-Cahn energy. Commun. Pure Appl. Anal. 13(3), 1045–1060 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Modica, L.: Γ-convergence to minimal surfaces problem and global solutions of Δu = 2(u 3 − u). In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, pp. 223–244 (1979)Google Scholar
  17. 17.
    Savin, O.: Regularity of flat level sets in phase transitions. Ann. Math. 169, 41–78 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Savin, O.: Minimal surfaces and minimizers of the Ginzburg Landau energy. Cont. Math. Mech. Anal. 526, 43–58 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Savin, O., Valdinoci, E.: Density estimates for a variational model driven by the Gagliardo norm. J. Math. Pures Appl. 101(1), 1–26 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Savin, O., Valdinoci, E.: Density estimates for a nonlocal variational model via the Sobolev inequality. SIAM J. Math. Anal. 43(6), 2675–2687 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sire, Y., Valdinoci, E.: Density estimates for phase transitions with a trace. Interfaces Free Bound. 14, 153–165 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sourdis, C.: Optimal energy growth lower bounds for a class of solutions to the vectorial Allen-Cahn Equation. arXiv:1402.3844Google Scholar
  23. 23.
    Valdinoci, E.: Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals. J. Reine Angew. Math. 574, 147–185 (2004)MathSciNetzbMATHGoogle Scholar
  24. 24.
    White, B.: Existence of least energy configurations of immiscible fluids. J. Geom. Anal. 6, 151–161 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nicholas D. Alikakos
    • 1
  • Giorgio Fusco
    • 2
  • Panayotis Smyrnelis
    • 3
  1. 1.Department of MathematicsNational and Kapodistrian UniversityAthensGreece
  2. 2.Department of MathematicsUniversity of L’AquilaCoppitoItaly
  3. 3.Center for Mathematical ModelingUniversity of ChileSantiagoChile

Personalised recommendations