Elliptic Systems of Phase Transition Type pp 111-133 | Cite as
The Cut-Off Lemma and a Maximum Principle
Chapter
First Online:
Abstract
In this chapter we establish a maximum principle type result that provides pointwise control on minimal solutions. In contrast to the usual maximum principle, it does not hold for solutions in general, not even for local minimizers in the scalar case. We obtain it as a corollary of a replacement lemma modeled after Lemmas 2.4 and 2.5.
References
- 1.Alikakos, N.D., Fusco, G.: A maximum principle for systems with variational structure and an application to standing waves. J. Eur. Math. Soc. 17(7), 1547–1567 (2015)MathSciNetCrossRefGoogle Scholar
- 2.Antonopoulos, P., Smyrnelis, P.: A maximum principle for the system Δu −∇W(u) = 0. C. R. Acad. Sci. Paris Ser. I 354, 595–600 (2016)Google Scholar
- 3.Ball, J.M., Crooks, E.C.M.: Local minimizers and planar interfaces in a phase-transition model with interfacial energy. Calc. Var. Partial Differ. Equ. 40(3), 501–538 (2011)MathSciNetCrossRefGoogle Scholar
- 4.Bates, S.M.: Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Am. Math. Soc. 117(1), 279–283 (1993)MathSciNetzbMATHGoogle Scholar
- 5.Boccardo, L., Ferone, V., Fusco, N., Orsina, L.: Regularity of minimizing sequences for functionals of the Calculus of Variations via the Ekeland principle. Differ. Integral Equ. 12(1), 119–135 (1999)MathSciNetzbMATHGoogle Scholar
- 6.Casten, R.G., Holland, C.J.: Instability results for reaction-diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)MathSciNetCrossRefGoogle Scholar
- 7.Czarnecki, A., Kulczychi, M., Lubawski, W.: On the connectedness of boundary and complement for domains. Ann. Pol. Math. 103, 189–191 (2011)MathSciNetCrossRefGoogle Scholar
- 8.de Pascale, L.: The Morse-Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50(3), 1371–1386 (2001)MathSciNetCrossRefGoogle Scholar
- 9.Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
- 10.Evans, L.C.: A strong maximum principle for parabolic systems in a convex set with arbitrary boundary. Proc. Am. Math. Soc. 138(9), 3179–3185 (2010)MathSciNetCrossRefGoogle Scholar
- 11.Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
- 12.Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. Sect. A 111(1–2), 69–84 (1989)MathSciNetCrossRefGoogle Scholar
- 13.Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part 1. Ann. I. H. Poincaré Anal. Nonlinear 1, 109–145 (1984)Google Scholar
- 14.Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)MathSciNetCrossRefGoogle Scholar
- 15.Modica, L., Mortola, S.: Un esempio di Γ-convergenza. Boll. Unione Mat. Ital. Sez B 14, 285–299 (1977)MathSciNetzbMATHGoogle Scholar
- 16.Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. A Series of Modern Surveys in Mathematics, vol. 34, 4th edn. Springer, Berlin (2008)Google Scholar
- 17.Villegas, S.: Nonexistence of nonconstant global minimizers with limit at ∞ of semilinear elliptic equations in all of \({\mathbb R}^N\). Commun. Pure Appl. Anal. 10(6), 1817–1821 (2011)Google Scholar
- 18.Weinberger, H.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. di Matem. Ser. VI 8, 295–310 (1975)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018