The Cut-Off Lemma and a Maximum Principle

  • Nicholas D. Alikakos
  • Giorgio Fusco
  • Panayotis Smyrnelis
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 91)


In this chapter we establish a maximum principle type result that provides pointwise control on minimal solutions. In contrast to the usual maximum principle, it does not hold for solutions in general, not even for local minimizers in the scalar case. We obtain it as a corollary of a replacement lemma modeled after Lemmas  2.4 and  2.5.


  1. 1.
    Alikakos, N.D., Fusco, G.: A maximum principle for systems with variational structure and an application to standing waves. J. Eur. Math. Soc. 17(7), 1547–1567 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antonopoulos, P., Smyrnelis, P.: A maximum principle for the system Δu −∇W(u) = 0. C. R. Acad. Sci. Paris Ser. I 354, 595–600 (2016)Google Scholar
  3. 3.
    Ball, J.M., Crooks, E.C.M.: Local minimizers and planar interfaces in a phase-transition model with interfacial energy. Calc. Var. Partial Differ. Equ. 40(3), 501–538 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bates, S.M.: Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Am. Math. Soc. 117(1), 279–283 (1993)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Boccardo, L., Ferone, V., Fusco, N., Orsina, L.: Regularity of minimizing sequences for functionals of the Calculus of Variations via the Ekeland principle. Differ. Integral Equ. 12(1), 119–135 (1999)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Casten, R.G., Holland, C.J.: Instability results for reaction-diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Czarnecki, A., Kulczychi, M., Lubawski, W.: On the connectedness of boundary and complement for domains. Ann. Pol. Math. 103, 189–191 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Pascale, L.: The Morse-Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50(3), 1371–1386 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  10. 10.
    Evans, L.C.: A strong maximum principle for parabolic systems in a convex set with arbitrary boundary. Proc. Am. Math. Soc. 138(9), 3179–3185 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  12. 12.
    Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. Sect. A 111(1–2), 69–84 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part 1. Ann. I. H. Poincaré Anal. Nonlinear 1, 109–145 (1984)Google Scholar
  14. 14.
    Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Modica, L., Mortola, S.: Un esempio di Γ-convergenza. Boll. Unione Mat. Ital. Sez B 14, 285–299 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. A Series of Modern Surveys in Mathematics, vol. 34, 4th edn. Springer, Berlin (2008)Google Scholar
  17. 17.
    Villegas, S.: Nonexistence of nonconstant global minimizers with limit at of semilinear elliptic equations in all of \({\mathbb R}^N\). Commun. Pure Appl. Anal. 10(6), 1817–1821 (2011)Google Scholar
  18. 18.
    Weinberger, H.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. di Matem. Ser. VI 8, 295–310 (1975)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nicholas D. Alikakos
    • 1
  • Giorgio Fusco
    • 2
  • Panayotis Smyrnelis
    • 3
  1. 1.Department of MathematicsNational and Kapodistrian UniversityAthensGreece
  2. 2.Department of MathematicsUniversity of L’AquilaCoppitoItaly
  3. 3.Center for Mathematical ModelingUniversity of ChileSantiagoChile

Personalised recommendations